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Fig. S1 Locations of California South Coast Air Basin (left) and 42 monitoring sites within SoCAB (right). SoCAB 
locates along the southwestern coast of California and is centered by Los Angeles. There are 42 monitoring sites 
in total in this air basin and most of them are along major highways. 

These maps were created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of 
Esri and are used herein under license. Copyright © Esri. All rights reserved. For more information about Esri® 
software, please visit www.esri.com. 

Base Map Sources: Esri, DeLorme, HERE, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), 
Esri (Thailand), MapmyIndia, Tomtom 

Esri. “World Street Map” [basemap]. Scale Not Given. “World Street Map”. March 13, 2019. 
https://www.arcgis.com/home/item.html?id=3b93337983e9436f8db950e38a8629af (accessed Apr 1, 2019). 

http://www.esri.com.'/
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Emission Data Source Description: 

In this study, the estimated annually averaged emission data for NOx and VOC were obtained from 

California Almanac of Emissions and Air Quality(Cox et al., 2013, 2009). Two editions of the Almanac 

(2009 and 2013) were used as reference for comparison, though only data from 2009 edition were used 

because it covers a complete set of estimated emissions throughout the study period, which is more 

consistent for the regression analysis. The analysis uses, only, anthropogenic emissions estimates and 

does not include biogenic sources, nor the effect of climate change on biogenic emissions. 

Between those two Almanac editions, organic ozone precursors are treated using two different terms. 

Historically, CARB used reactive organic gases (ROG) as ozone precursors and changed to using VOC in 

the 2013 edition. Based on the CARB’s definition(Schwehr and Propper, 2009), ROG is not identical to 

U.S. EPA’s term “VOC”, but the two are similar with few difference in the list of exempted compounds. 

We conducted a comparison between estimated VOC and ROG emissions, as well as between Almanac 

and SCAQMD inventory, which shows a high consistency with very limited difference (average ROG to 

VOC ratio is 1.15, R2 = 0.98). (Fig. S2).  

 

Fig. S2 Comparison between estimated ROG emissions and VOC emissions from Almanac 2009 edition 
and 2013 edition. 
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10-Fold Cross-Validation Analysis In addition to only examine the R2 as an evaluation of the model 

performance, a cross-validation was also conducted to assess how the model is affected by the 

observation data set, how well when it is applied to an independent dataset. On the other word, it is to 

evaluate the predictive ability of the regression model we developed. This is conducted by holding 10% 

of the observation dataset as test set and only use the rest 90% of the observations as training set to 

build the model. Then we apply the model result to test set and evaluate the model performance. This 

process is repeated for 10 times to cover all of the observations. 

Both models show good performance in this cross-validation test (Fig. S3). For most runs, the R2s 

between observations from test set and estimations by the model are close to 1, with the slope also 

close to 1. There is no significant difference observed  in the model performance between different 

runs. This result basically shows the regression modeling method we developed have robust 

productivity.  

  

Fig. S3 Scatter plots of 10% cross-validation result for base-quadratic model (a) and log-quadratic model (b) 
respectively. 10% of the data was holdout, the model was trained by the leftover 90%, and the plots show the 
comparison between observation and prediction of the held out data (10 sets for each model). For 20 test sets 

from both models, everyone shows high correlation with slope close to one. The average R
2
 is 0.98 and RMSE is 6. 

This evaluation strengthened the good performance and strong prediction ability of those models. 
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Derivation of Empirical Model Uncertainty: 

Formal analysis was conducted based on the regression models(Helwig, 2017). The general formation of 

the regression equation can be expressed as: 

y = Xb + e                                                                          (EQN. S1) 

where, 

𝐲 =  (y1, … , yn)’ ∈ ℝn is the n × 1 response vector (ODVs) 

𝐗 = [1n, 𝐱1, … , 𝐱p] ∈ ℝn×(p+1) is the n × (p + 1) design matrix (Emission Variables) 

𝐛 =  (b0, 𝑏1 … , bp)’ ∈ ℝp+1 is the (p + 1) × 1 vector of coefficients 

𝐞 =  (e1, … , en)’ ∈ ℝn is the n × 1 error vector 

n is the number of data points 

p is the number of independent variables 

The ordinary least squares (OLS) solution has the form: 

𝐛̂  = (𝐗′𝐗)−1𝐗′𝐲                                                                  (EQN. S2) 

where 𝐛̂ is the estimated vector of coefficients based on observation 𝐗 and 𝐲.  

The fitted values can be calculated as: 

𝐲̂  = 𝐗𝒃̂ = 𝐗(𝐗′𝐗)−1𝐗′𝐲                                                            (EQN. S3) 

where 𝐲̂ is the vector of estimated response variable (ODV). 

The estimated error variance is 𝜎̂2: 

𝜎̂2  =  
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑛

𝑖=1

(𝑛−𝑝−1)
                                                                  (EQN. S4) 

which is an unbiased estimate of error variance σ2. 

When we use this model to predict a new observation 𝐱𝐡  = [1, xh1, … , xhp], the fitted value is 𝑦̂ℎ  =

𝒙ℎ𝒃̂, where 𝐱𝐡 is the vector of emission variables at a new observation point, 𝑦̂ℎ is the estimated value 

of the response variable (i.e. ODV) at the new observation point. 

Using this equation, there are two types of uncertainties involved: first is related to the location of the 

distribution of 𝑦̂ℎ for 𝐱𝐡 (captured by 𝜎𝑦̅ℎ

2 ); and second is the variability within the distribution of y 

(captured by σ2). 
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𝜎2 = 𝜎̂2 =  
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑛

𝑖=1

(𝑛−𝑝−1)
                                                                  (EQN. S5)   

Variance of ŷh is given by: σy̅h

2 = Var(𝐱h𝐛̂) =  𝐱hVar(𝐛̂)𝐱𝐡
′ = σ2𝐱h(𝐗′𝐗)−𝟏𝐱𝐡

′                            (EQN. S6) 

The overall variance of the fitted value becomes:       σyh
2  =  σy̅h

2 + σ2                                             (EQN. S7) 

 

Under the test 𝐻0 ∶  𝐸(𝑦ℎ) =  𝑦ℎ
∗  𝒗𝒔. 𝐻1 ∶  𝐸(𝑦ℎ)  ≠  𝑦ℎ

∗, 

100(1-α) % Prediction Interval for E(yh): 𝑦̂ℎ  ± 𝑡𝑛−𝑝−1

(
𝛼

2
)

σyh
                                                                    (EQN. S8) 

Where α is the confidence interval and t is the t-distribution value with probability is α/2 and degrees of 

freedom n-p-1. 

The uncertainty of the prediction at any observation point xh is then: 

Base Quadratic Model:      𝑡𝑛−𝑝−1

(
𝛼

2
)

𝜎√ (𝐱h(𝐗′𝐗)−𝟏𝐱𝐡
′ + 𝟏)                                                                     (EQN.S9) 

Log Quadratic Model:      10
𝑦̂ℎ+ 𝑡𝑛−𝑝−1

(
𝛼
2

)
𝜎√ (𝐱h(𝐗′𝐗)−𝟏𝐱𝐡

′ +𝟏)
− 10

𝑦̂ℎ− 𝑡𝑛−𝑝−1

(
𝛼
2

)
𝜎√ (𝐱h(𝐗′𝐗)−𝟏𝐱𝐡

′ +𝟏)
          (EQN. S10) 

 

Assessment of Reduced Coefficient Models: 

In addition to the full model with 5 variables, we also developed the reduced form of those models 

based on Akaike information criterion (AIC) model selection method. This analysis is to investigate the 

necessity of those pre-designed variables and to evaluate how the model characteristics could change 

by trimming the model based on the variables statistical significance. 

Reduced Base-Quadratic Regression Function: 

ODV (ENOx, EVOC) = 8.25 + 0.11*ENOx + 0.11*EVOC – 9*10-5 *(ENOx
2)                                                 (EQN. S11) 

Reduced Log-quadratic Regression Function: 

Log10 (ODV (ENOx, EVOC)) = 1.75 + 0.0003*ENOx + 0.0003*EVOC – 2*10-7 *(ENOx
2) – 2*10-8 *(EVOC

2)    (EQN. S12) 

In both cases, the NOx-VOC interaction terms were removed. In general, the uncertainty of both models 

have been improved considerably. However, chemical modeling finds that the interaction terms can 

become important as emissions change beyond the range of observations, supporting the use of the full 

models. This can be also be supported by the resulting isopleth developed by reduced models (Fig. S4), 

which does not capture the typical isopleth form. 
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Fig. S4 ODV-Emissions Isopleths developed by empirically-derived non linear regression model with AIC model 
selection conducted and the uncertainty related to the models. Axes define the emissions space with varying 
levels of estimated NOx and VOC and corresponding modeled ODV indicated by color. Historical observations 

are noted with red asterisk. Left column shows the result of reduced base-quadratic model (a, c, e). Right 
column shows the result of reduced log-quadratic model (b, d, f). Top Row: emission space and Isopleths 

constructed based on different regression models(a, b). Middle Row: Prediction uncertainty of regression models 
at different emissions levels (c, d). Bottom Row: Relative Prediction uncertainty of regression models at different 

emissions levels (e, f). 
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Fig. S5 The Comparison between base-quadratic models and log-quadratic models under different emission levels 
for both full models (left) and reduced models (right). The difference is an evaluation of model uncertainty. Lower 

uncertainty is observed near the observations and the differences increase when emissions are away from 
observations. 

Fig. S6 The distributions of uncertainties for different regression models: Base-quadratic full model (top-left), log-
quadratic full model (top-right), base-quadratic reduced model (bottom-left), and log-quadratic reduced model 

(bottom-right). Generally log models have relatively lower uncertainty than base models, and the model selection 
can significantly decrease prediction uncertainty. However, even though reduced models show lower uncertainty, 

the analysis based on the constructed isopleth indicating that the reduced form may not reflect the realistic 
relationship between emissions and ODV. 
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Assessment of how emissions uncertainties impact model results. 

It is known that there are potentially major uncertainties in the emissions(Hanna et al., 2005; McDonald 

et al., 2018), and the question arises as to how much that can influence the approach taken here.  

Quantitative assessment of the uncertainties is, however, fraught with lack of knowledge of the 

magnitude of the uncertainties or the uncertainty structures. Here, the approach taken is to examine 

1000 emission reduction trajectories, starting with the emissions at the beginning of the period (1975) 

and adding uncertainty to the reduction in emissions estimated each year.  The approach is recursive 

such that the uncertainties compound over time. Descriptively, the modeled reduction between each 

year is the estimated reduction between those two years, plus a random uncertainty based on the 

emissions level (not the amount reduced).    

Derivation of Empirical Model Uncertainty Based upon Independent Variables (Emissions): Simulation 

method was developed to evaluate the uncertainty of regression model caused by uncertainties in 

emissions trends. 

1. Generate Simulated Emission Inventory Trajectories 

Calculate the simulated emission ratio between each two years, 

𝑅𝑁𝑂𝑥𝑖+1,𝑗 = (
𝐸𝑁𝑂𝑥𝑖+1

𝑒𝑠𝑡

𝐸𝑁𝑂𝑥𝑖
𝑒𝑠𝑡) ∗ (1 + 0.05 ∗ 𝑅𝑎𝑛𝑑𝑖,𝑗

𝑁𝑂𝑥)                                                                         (EQN. S13) 

𝑅𝑉𝑂𝐶𝑖+1,𝑗 = (
𝐸𝑉𝑂𝐶𝑖+1

𝑒𝑠𝑡

𝐸𝑉𝑂𝐶𝑖
𝑒𝑠𝑡) ∗ (1 + 0.05 ∗ 𝑅𝑎𝑛𝑑𝑖,𝑗

𝑉𝑂𝐶) )                                                                        (EQN. S14) 

Where: 

i is the index for year, from 1975 to 2015; 

j is the index for run of simulations, which is from 1 to N, here we take N = 1000; 

𝐸𝑁𝑂𝑥𝑖
𝑒𝑠𝑡  is the estimated NOx emission for year i based on CARB’s emission inventory; 

𝐸𝑉𝑂𝐶𝑖
𝑒𝑠𝑡 is the estimated VOC emission for year i based on CARB’s emission inventory; 

𝑅𝑁𝑂𝑥𝑖+1,𝑗 is the simulated NOx emission ratio between year i+1 and year i, for run j; 

𝑅𝑉𝑂𝐶𝑖+1,𝑗 is the simulated VOC emission ratio between year i+1 and year i, for run j; 

𝑅𝑎𝑛𝑑𝑖,𝑗
𝑁𝑂𝑥 𝑎𝑛𝑑 𝑅𝑎𝑛𝑑𝑖,𝑗

𝑉𝑂𝐶 are both randomly generated, normally distributed (μ = 0, σ = 1) 

numbers for year i and run j. 

Based on this algorithm, for each run j, the emissions ratio between every two adjacent years for both 

NOx and VOC are simulated based on the actual estimated emission ratio with a random uncertainty of 

5% level per year. 
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𝐸𝑁𝑂𝑥𝑖+1,𝑗 = 𝐸𝑁𝑂𝑥𝑖,𝑗 ∗ 𝑅𝑁𝑂𝑥𝑖+1,𝑗                                                                                                         (EQN. S15) 

𝐸𝑉𝑂𝐶𝑖+1,𝑗 = 𝐸𝑉𝑂𝐶𝑖,𝑗 ∗ 𝑅𝑉𝑂𝐶𝑖+1,𝑗                                                                                                          (EQN. S16) 

 𝐸𝑁𝑂𝑥𝑖,𝑗 is the simulated NOx emission for year i, run j; 𝐸𝑁𝑂𝑥1,𝑗 = 𝐸𝑁𝑂𝑥1
𝑒𝑠𝑡; 

𝐸𝑉𝑂𝐶𝑖,𝑗 is the simulated VOC emission for year i, run j; 𝐸𝑁𝑂𝑥1,𝑗 = 𝐸𝑁𝑂𝑥1
𝑒𝑠𝑡; 

Table S1 Simulation result of independent variable (emissions) uncertainty analysis. Statistics of 
simulated emissions trajectories: including original estimated emissions based on inventory, mean and 

standard deviation of NOx and VOC emissions for each year over 1000 simulations. Here also listed ODV 
calculated by original models, comparing to mean and standard deviation of 1000 ODVs calculated by 

1000 simulated models for each year. 

Mean Std. Mean Std. Mean Std. Mean Std.

1975 1691 2718 275 269 11.4 269 13.0

1976 1659 1658 82 2630 2635 126 259 261 10.2 262 11.3

1977 1626 1626 111 2542 2545 166 245 256 10.0 256 10.9

1978 1594 1596 135 2455 2458 195 250 251 10.4 251 11.3

1979 1562 1561 152 2367 2369 221 266 247 11.7 247 12.7

1980 1530 1531 169 2279 2275 245 273 241 12.4 240 13.2

1981 1536 1542 188 2266 2260 271 251 238 11.5 238 12.2

1982 1542 1544 204 2252 2245 291 233 235 10.8 234 11.3

1983 1549 1548 215 2238 2232 308 229 232 10.0 232 10.5

1984 1555 1557 232 2225 2216 323 225 230 9.6 230 10.0

1985 1561 1562 245 2211 2203 344 226 229 10.1 228 10.5

1986 1560 1559 258 2128 2120 344 222 222 10.2 222 10.5

1987 1560 1553 270 2044 2033 346 217 216 9.9 215 9.9

1988 1559 1557 279 1961 1948 345 205 209 9.7 208 9.6

1989 1558 1555 288 1877 1865 344 192 202 9.7 201 9.4

1990 1558 1557 301 1793 1786 342 186 196 9.9 195 9.4

1991 1513 1510 302 1708 1697 340 182 189 9.2 188 8.6

1992 1467 1465 297 1622 1607 332 180 182 8.8 182 8.1

1993 1422 1417 296 1536 1521 324 177 176 8.0 176 7.3

1994 1377 1371 292 1450 1437 314 171 170 7.3 170 6.5

1995 1332 1326 287 1365 1354 303 165 164 6.7 164 5.8

1996 1301 1297 288 1310 1297 299 161 160 6.7 159 5.8

1997 1270 1262 280 1255 1242 294 148 156 6.6 155 5.6

1998 1239 1232 281 1200 1187 285 154 152 6.3 152 5.2

1999 1208 1203 280 1145 1133 279 147 149 5.7 148 4.7

2000 1177 1173 279 1090 1077 269 146 145 5.6 144 4.5

2001 1138 1135 274 1019 1007 254 129 140 5.2 139 4.1

2002 1100 1096 273 948 936 238 128 135 4.8 135 3.7

2003 1062 1055 270 877 865 224 131 131 4.4 131 3.4

2004 1023 1016 265 806 798 211 127 127 3.8 127 2.8

2005 985 976 259 735 728 197 127 122 3.8 123 2.7

2006 937 926 251 703 698 192 121 120 3.5 121 2.6

2007 888 877 244 671 668 187 122 118 3.3 119 2.4

2008 839 827 234 640 635 181 119 116 3.4 116 2.4

2009 791 780 225 608 605 175 118 113 3.1 114 2.2

2010 742 732 213 576 573 168 112 111 3.0 111 2.0

2011 710 701 206 566 563 170 107 110 2.8 110 1.9

2012 677 669 199 556 551 169 106 108 2.7 108 1.9

2013 645 637 193 546 541 168 107 107 2.6 107 1.8

2014 612 607 188 536 532 168 102 106 2.4 106 1.6

2015 580 575 181 526 522 167 102 105 2.9 105 1.8

2016 557 553 176 522 517 168 108 104 3.7 104 2.3

Simulated (Based Model) Simulated (Log Model)

ODV (ppb)

ObservedEstimatedYear
Simulated Simulated

NOx Emission (tons/day) VOC Emission (tons/day)

Estimated
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For each run, simulated emissions trend for both NOx and VOC are calculated based on the simulated 

emission ratio, and the first years emissions are set to be equal to the estimated first year emissions. 

After all runs, we will have N time series of both NOx and VOC emissions for 1975 to 2016.  

The choice of 1975 base emissions as the starting point does not mean that we believe that the 1975 

estimate is the most accurate, but the interest is in the emissions trajectories.  A similar result is found if 

taking any other year as the starting year (e. g, one can start with 2016 and go backwards using the 

same recursive approach with similar results).   

2. Fitting the Regression Model with the Simulated Emission Trends 

Once the 1000 simulated emission inventory estimates were generated for each year, we applied the 

same regression method to get a regression model for each run j for either base-quadratic model or log-

quadratic model. The resulting mean coefficients are shown in Table S1. In addition, the ozone isopleth 

resulting from the uncertainty analysis can also be plotted by taking the mean of ODVs calculated by the 

1000 different regression models at the different emission levels (Fig. S7). Similarly, the a heat map of 

the ozone standard deviation is also be plotted by taking the standard deviation of ODVs calculated by 

the 1000 different regression models for the range of emissions (Fig. S7). 

3. Result 

This approach assumes that the trajectory of emission reductions is more certain than the absolute 

emissions. With the accumulative uncertainty in the emission ratios at 5% level, the variation 

(uncertainty) simulated at different emissions levels is significant (Table S1, Fig. S7). In general, with 

considerable uncertainty simulated in the emissions (independent variables), the average result of 1000 

emissions uncertainty simulations is very similar to the original models (Fig. S7, Table S2). The signs of 

averaged regression coefficients are consistent with those calculated based on the original model and 

the values of those coefficients are in the similar level (Table S2). On average, after involving 

considerable uncertainty in emissions, the simulated models did not significantly decrease the model 

performance (R2 only decreases 0.02). We found a small uncertainty near the observations, growing as 

one moves away from the historical observations, which is consistent with the formal uncertainty 

analysis for independent variables. Only limited uncertainty is observed over the potential future 

emissions trajectory. Also, the difference between simulated base-quadratic model and log-quadratic 

model is very limited, which shows the stability of this approach under uncertainties involved in 

emissions. 
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Table S2 Simulation results of independent variable (emissions) uncertainty analysi (statistics of regression 
coefficients: mean and standard deviation ) and comparison with original model results. 

Intercept α_NOx α_VOC α_NOx*VOC α_NOx^2 α_VOC^2 R^2

Original 1.03 0.1347 0.1101 3.52E-05 -1.19E-04 -1.10E-05 0.98

Simulation - Mean 62.78 0.0414 0.0440 4.42E-05 -3.78E-05 -1.07E-05 0.96

Simulation - Std 54.89 0.1525 0.0995 1.87E-04 1.74E-04 5.41E-05 0.030

Original 1.72 0.0004 0.0002 1.80E-07 -3.52E-07 -6.90E-08 0.99

Simulation - Mean 1.84 0.0002 0.0002 8.19E-08 -1.09E-07 -3.81E-08 0.97

Simulation - Std 0.13 0.0003 0.0002 3.71E-07 3.54E-07 1.07E-07 0.019

Coefficients

B
as

e
Lo

g

Fig. S7 Simulation result of independent variable (emissions) uncertainty analysis. (a, b) ODV-Emissions Isopleths developed 
by mean of ODVs modeled by 1000 simulated regression models, at different emissions levels. Cross error bars indicate the 
double standard deviation of 1000 simulated emissions at each year’s estimated emissions level. (c, d) The uncertainty of 
modeled ODVs related to the uncertainty of independent variables. Axes define the emissions space with varying levels of 
estimated NOx and VOC and corresponding modeled ODV indicated by color. Historical observations are noted with black 

dots/red asterisks. Left column shows the result of full base-quadratic model (a, c). Right column shows the result of full log-
quadratic model (b, d). Top Row: emission space and Isopleths constructed based on different regression models(a, b). 

Bottom Row: Standard deviation of ODVs modeled by 1000 simulated regression models, at different emissions levels (c, d). 
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Comparison between the trends of CARB estimated emissions inventory with observed concentrations 

for CO, NOx, and ROG.  

One question that arises is how well the estimated emissions trends agree with observations in the 

emissions. For example, a recent article by McDonald et al.,(McDonald et al., 2018) suggested that there 

may be significant uncertainties in the VOC emissions estimated due to the presence of volatile 

consumer products (VCPs).  Prior studies, (e.g., Pollack et al.(Pollack et al., 2013), Warneke et 

al.(Warneke et al., 2012) found good agreement between observations and emission inventories. Here, 

we also obtained observed concentrations of individual organics observed in Central Los Angeles (LA 

North Main Street), and compared them with the estimated emissions. Like the other studies, similar 

trends are found in the observations and emissions (Fig. S8), except for a discontinuity in 2012, after 

which a similar decreasing trend is found. We have been unable to ascertain the reason for the large 

increase that one year. Comparisons between observed NOx concentrations and emissions, and CO 

concentrations and emissions, also show similar agreement(Kim et al., 2016) (Fig. S8). In addition, the 

reduction rate of emissions and observations for the past two decades are in good agreement for those 

species (Table S3). These results do not prove that the absolute emissions estimates are correct, but 

provide support that the emissions trends are being captured.  

 

   

  

NOx Emission 60% NO2 56%

CO Emission 71% CO 81%

ROG Emission 64% Propane 52%

Acetylene 58% Toluene 86%

n-Butane 59% Ethylbenzene 65%

Benzene 82% o-Xylene 73%

Reductions from 1994 to 2016 (%)

Table S3 Summary of emissions and concentrations reductions from 1994 to 2016, including 
NOx, CO, and ROG emissions and concentrations. The trends found in the CARB inventory 

are in good agreement with the ambient observations 
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Fig. S8 Annual average trends of emissions and concentrations, in log scale, including NOx, CO, and ROG emissions 
and concentrations. Observation data is from LA North Main Street monitoring site (obtained from the AQS system). 
The trends found in the CARB inventory are in good agreement with the ambient observations, though there is a very 

large increase in some species in 2013, followed by reductions there after. We have been unable to ascertain the 
reason for the large increase in 2012. 
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