Supporting Information

Enhancement of Hydrogen Evolution Reaction Performance of Graphitic Carbon Nitride with Incorporated Nickel Boride

Meng Cao[†], Xinyu Zhang^{*,†}, Jiaqian Qin ^{*,‡,§}, and Riping Liu[†]

[†]State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China [‡]Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand [§]Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, Thailand

Number of pages: 9

Number of Figures: 6

Number of Tables: 2

Figure S1. SEM imagine of Ni₂B.

Figure S2. TEM imagine of Ni₂B.

Figure S3. The TEM image and the corresponding elemental mapping for B, Ni, N, C,

respectivily.

Figure S4. AFM imagines of (a)NC-5 and (b)CN-0.

Figure S5.XRD patterns of Ni₂B (a) and Ni₂B modified g-C₃N₄.

Figure S6.XPS High-resolution spectrum of Ni₂B sample on (a)B 1s and (b)Ni 2p.

Figure S7.HER performance of Ni₂B, NC-5-AE, NC-5 and CN-0 samples. (a)

Polarization curves, and (b) corresponding Tafel plots

Supporting Information

Enhancement of Hydrogen Evolution Reaction Performance of Graphitic Carbon Nitride with Nickel Boride Incorporated

Meng Cao[†], Xinyu Zhang^{*,†}, Jiaqian Qin ^{*,‡,§}, and Riping Liu[†]

[†]State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China

[‡]Metallurgy and Materials Science Research Institute, Chulalongkorn University,

Bangkok 10330, Thailand

[§]Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University,

Bangkok, Thailand

*Corresponding Author. Fax: +66 2611 7586

E-mail: jiaqian.q@chula.ac.th (J. Qin), xyzhang@ysu.edu.cn (X. Zhang)

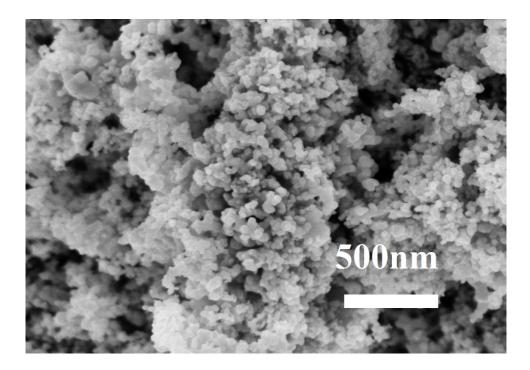


Figure S1. SEM imagine of Ni₂B.

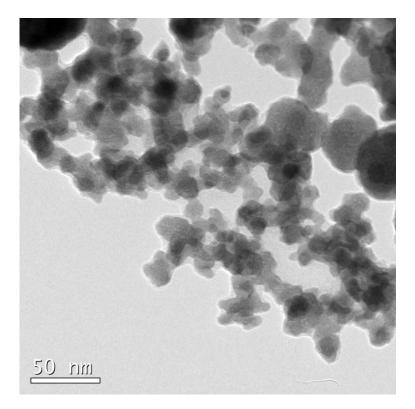


Figure S2. TEM imagine of Ni₂B.

The SEM and TEM spectra exhibit the granular morphology of $\mathrm{Ni}_2\mathrm{B}$ precursor.

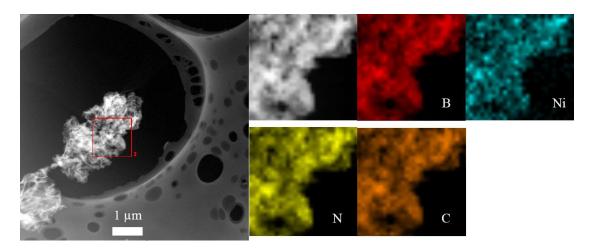


Figure S3. The TEM image and the corresponding elemental mapping for B, Ni, N, C, respectivily.

The elemental mappings revealed the coexistent and homogenerous distribution of Ni

and B elements on g-C₃N₄ sheets.

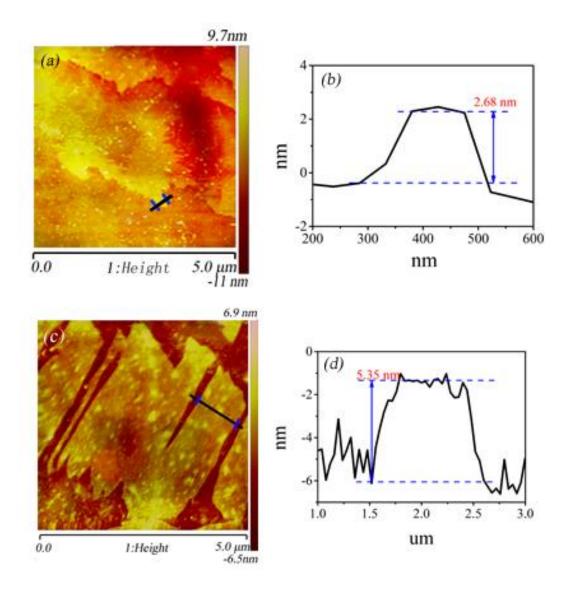


Figure S4. AFM imagines of (a)NC-5 and (b)CN-0.

Stacked layers can be observed from AFM imagines, the height can corresond to the thickness of the $g-C_3N_4$ layers. The Ni₂B modified $g-C_3N_4$ layers displayed thinner layers at thickness of 2.68 nm meanwhile thickness of pure $g-C_3N_4$ was 5.35 nm.

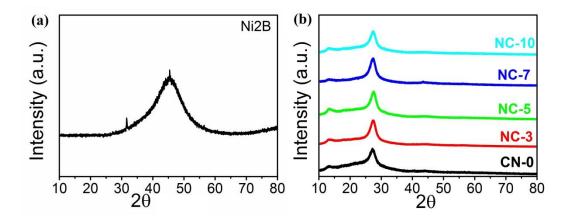


Figure S5.XRD patterns of Ni₂B (a) and Ni₂B modified g-C₃N₄.

XRD pattern of Ni₂B a board peak at 2θ =45° indicating the amorphous character of Ni₂B powders. From the XRD patterns of Ni₂B modified g-C₃N₄, all samples represent the typical diffraction peak at 27.4° and a weaker peak around 13°, which means the incorporation of Ni₂B doesn't change the graphitic in-plane structure.

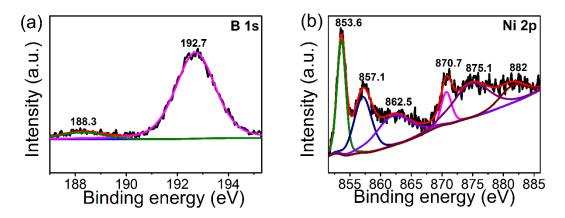


Figure S6.XPS High-resolution spectrum of Ni₂B sample on (a)B 1s and (b)Ni 2p.

The two peaks for B 1s were observed with binding energy (BE) of 188.3eV and 192.7eV. they are response to elemental and oxidized boron, respectively. The binding energy of elemental boron in compounds positive shift 1.2eV compare to pure boron element(with binding energy of 187.1eV). This shift indicates an electron immigrated from alloying B to vacant d-orbital of metallic Ni which makes boron electron deficient while Ni metals are enriched with the electron in all the catalyst powders. That make the Ni₂B a good active site for HER. The Ni 2p spectrum can deconvoluted into two manifolds, two main peaks located at 853.6eV and 870.7eV corresponded to metallic Ni and satellite peaks around 857.1eV and 875.1eV which attributed to Ni $2p_{3/2}$ and Ni $2p_{1/2}$, the peak at 862.5eV related to oxidized Ni compounds¹⁻².

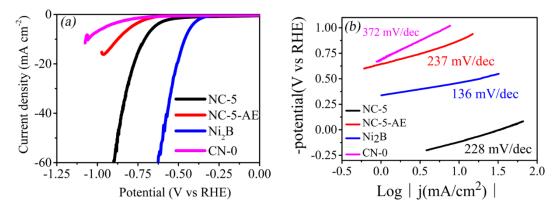


Figure S7.HER performance of Ni2B, NC-5-AE, NC-5 and CN-0 samples (a) Polarization curves, and (b) corresponding Tafel plots

The NC-5 was sonicated in 10% hydrochloric acid for 30 min to remove the nickel ions doped in the sample, and then washed three times with deionized water and alcohol, and then vacuum dried in an oven at 60 °C for 3 hours. The sample obtained is named NC-5-AE. The onset overpotential of Ni₂B working electrode is 335 mV and the overpotential to drive cathodic current densities of 10 mA cm⁻² reaches 459 mV, meanwhile the onset overpotential of NC-5-AE working electrode is 640 mV and overpotential at cathodic current densities of 10 mA cm⁻² is 875 mV. The Tafel slope (Shown in Fig. S7(b)) of NC-5-AE (~237 mV dec⁻¹, and 136 mV dec⁻¹ for the Ni₂B particle working electrode) is much lower than pure g-C₃N₄ samples (372 mV dec⁻¹), it proved the Ni₂B particles incorporated on g-C₃N₄ layers can really enhance the electrocatalyst performance.

cathode	Onset	Overpotential at	Overpotential at	Slope of Tafel	
	overpotential	current density of	current density of	plot(mV/dec)	
	(mV)	10mA/cm ²	20mA/cm ²		
		(mV)	(mV)		
Pt/C	4	56		36	
CN-0	686	1056		372	
NC-3	248	900		348	
NC-5	300	707	773	221	
NC-7	359	915		350	
NC-10	503	923	1031	339	

Table S1. The list of electrocatalytic parameters of the Pt/C, pure g-C₃N₄, and the Ni₂B modified g-C₃N₄.

Catalyst	Current	overpotential	Tafel slope	reference
	density			
Ni ₂ B/g-C ₃ N ₄	10 mA cm^{-2}	707 mV	221 mV/dec	this work
Ni/g-C ₃ N ₄	10 mA cm ⁻²	760 mV		Ref. ³
Zn/g-C ₃ N ₄	10 mA cm ⁻²	800 mV		Ref. ³
Fe/g-C ₃ N ₄	10 mA cm ⁻²	770 mV		Ref. ³
Co/g-C ₃ N ₄	10 mA cm ⁻²	730 mV		Ref. ³
Cu/g-C ₃ N ₄	10 mA cm ⁻²	390 mV	112 mV/dec	Ref. ³
Ni/C ₃ N ₄	10 mA cm ⁻²	222 mV	128 mV/dec	Ref. ⁴
TC@WO ₃ @g-C ₃ N ₄	10 mA cm ⁻²	535 mV	246 mV/dec	Ref. ⁵
g-C ₃ N ₄ @Ni-NiO	10 mA cm ⁻²	725 mV	286 mV/dec	Ref. ⁵

Table S2. Comparison of electrocatalytic performance for g-C₃N₄-based catalysts

1. Fernandes, R.; Patel, N.; Miotello, A.; Filippi, M., Studies on catalytic behavior of Co-Ni-B in hydrogen production by hydrolysis of NaBH4. *Journal of Molecular Catalysis A: Chemical* **2009**, *298*, 1-6.

2. Yan, X.; Tian, L.; Chen, X., Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. *J. Power Sources* **2015**, *300*, 336-343.

3. Zou, X.; Silva, R.; Goswami, A.; Asefa, T., Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material. *Appl. Surf. Sci.* **2015**, *357*, 221-228.

 Wang, L.; Li, Y.; Yin, X.; Wang, Y.; Song, A.; Ma, Z.; Qin, X.; Shao, G., Corallike-Structured Ni/C3N4 Composite Coating: An Active Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Solution. *ACS Sustain. Chem. Eng.* 2017, *5*, 7993-8003.
Kumar, M. P.; Murugesan, P.; Vivek, S.; Ravichandran, S., NiWO3 Nanoparticles Grown on Graphitic Carbon Nitride (g-C3N4) Supported Toray Carbon as an Efficient Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. *Part. Part. Syst. Char.* 2017, *34*, 1700043.