Supporting information

Highly Enantioselective Cross-Electrophile Aryl-Alkenylation of Unactivated Alkenes

Zhi-Xiong Tian, Jin-Bao Qiao, Guang-Li Xu, Xiaobo Pang, Liangliang Qi, Wei-Yuan Ma, Zhen-Zhen Zhao, Jicheng Duan, Yun-Fei Du, Peifeng Su, Xue-Yuan Liu, Xing-Zhong Shu*
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China.

Table of Contents

1. General Information S2
2. Optimization of Reaction Parameters S3
3. Synthesis of Substrates S6
4. Ni-catalyzed Enantioselective Cross-electrophile Aryl-alkenylation of Alkene S22
5. Mechanistic Investigation S66
6. Crystallographic Data for Compound $\mathbf{3 z}$ S70
7. References. S79
8. Copies of NMR Spectra. S82

1. General Information

All reactions were carried out under an atmosphere of argon in sealed tube with magnetic stirring. Dry DMF, THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purified using a solvent-purification system that contained activated alumina and molecular sieves. Other solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals". ${ }^{1}$

Nickel catalysts, reductants were purchased from Acros, Alfa Aesar, Aldrich, Ark Pharm, and Strem. Other chemicals were purchased from TCI, Adamas, and Energy chemicals, and were directly used without further purifications.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were collected on a Bruker AVANCE III 400MHz, JEOL JNM-ECS 400 M and Agilent-NMR-inova 600 MHz spectrometer at room temperature. ${ }^{1} \mathrm{H}$ NMR spectra were reported in parts per million (ppm) downfield of tetramethylsilane (TMS) and were referenced to the signal of TMS (0 ppm). ${ }^{13} \mathrm{C}$ NMR spectra were reported in ppm relative to residual $\mathrm{CHCl}_{3}(77.00 \mathrm{ppm})$. Coupling constants, J, are reported in hertz (Hz). ${ }^{19}$ F NMR spectra were also collected on Bruker AVANCE III 400 MHz spectrometers and Agilent-NMR-inova 600 MHz spectrometer at room temperature. Melting points were determined on a microscopic apparatus. IR spectra were collected using Bruker-TENSOR 27 spectrometer and Agilent Technologies Cary 630 FTIR, and only major peaks were reported in cm^{-1}. HRMS was performed on Bruker Apex II FT-ICR mass instrument (ESI). GC analysis was performed on Thermo Scientific TRACE 1300. GC-MS data was collected on Thermo Scientific TRACE DSQ GC-MS. The enantiomeric excess (ee) of the products was determined by chiral HPLC (Thermo Scientific UltiMate 3000) using Daicel CHIRALCEL® columns and Daicel CHIRALPAK® columns (internal diameter 4.6 mm , column length 250 mm , particle size $5 \mu \mathrm{~m}$). Optical rotations were measured on an AUTOPOL IV Automatic polarimeter (Rudolph Research Analytical). The X-RAY was measured on Agilent SUPERNOVA. Thin layer chromatography was carried out using XINNUO SGF254 TLC plates. Flash chromatography was performed using XINNUO silica gel (200-300 mesh).

2. Optimization of Reaction Parameters

General Procedure

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with catalyst ($10 \mathrm{~mol} \%, 0.010 \mathrm{mmol}$), $\mathbf{L} 1(14 \mathrm{~mol} \%, 3.8 \mathrm{mg}, 0.014$ mmol), reductant (4 equiv, 0.4 mmol), and solvent $(0.5 \mathrm{~mL})$. The reaction mixture was stirred for 5 \min. Substrates 1a $(27.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{2 a}(23.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at appreciate temperature for 24 h . The reaction mixture was diluted with ethyl acetate (10 mL), washed with water, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. A 0.2 mL of solution was collected, diluted with ethyl acetate (2 mL), and analyzed by GC. The yield was determined versus the internal standard (dodecane). The rest solution was concentrated under the reduced pressure, and part of the residue was purified by thin layer chromatography on silica gel. The enantiomeric excess (ee) of the products was determined by chiral HPLC.

Table S1. Effect of reductant, solvent and temperature ${ }^{a}$

entry	reductant	solvent	temperature	yield (\%)	ee (\%)
1	Mn	DMF	rt.	59	93
2	Zn	DMF	rt.	trace	-
3	Mg	DMF	rt.	0	-
4	Mn	$\mathrm{CH}_{3} \mathrm{CN}$	rt.	0	-
5	Mn	DMSO	rt.	48	90
6	Mn	DMA	rt.	52	91
7	Mn	Toluene	rt.	0	-
8	Mn	THF	rt.	trace	-
9	Mn	Dioxane	rt.	0	-
10	Mn	DMF/THF(4/1)	rt.	60	94
11	Mn	DMF/THF(3/2)	rt.	63	94
12	Mn	DMF/THF (1/1)	rt.	67	95
13	Mn	DMF/THF (2/3)	rt.	55	95
14	Mn	DMF/THF (1/4)	rt.	31	94
15	Mn	DMF/THF(1/1)	$0^{\circ} \mathrm{C}$	trace	-
16	Mn	DMF/THF(1/1)	$10^{\circ} \mathrm{C}$	34	95
17	Mn	DMF/THF(1/1)	$40^{\circ} \mathrm{C}$	60	95
18	Mn	DMF/THF(1/1)	$60^{\circ} \mathrm{C}$	54	93

${ }^{a} \mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{2 a}(0.1 \mathrm{mmol})$ was used. The yields were determined by GC analysis with doecane as an internal standard. The ees were determined by chiral HPLC.

Table S2. Effect of catalyst ${ }^{\text {a }}$

${ }^{a} \mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{2 a}(0.1 \mathrm{mmol})$ was used. The yields were determined by GC analysis with doecane as an internal standard. The ees were determined by chiral HPLC. ${ }^{b}$ Isolated yield.

3. Synthesis of Substrates

3.1 Synthesis of Aryl Iodide tethered Alkenes

10

1p

1s

$1 t$

14

1v

1w

1x

1ae

1af

Known compounds $\mathbf{1 a},{ }^{2} \mathbf{1 b},{ }^{2} \mathbf{1 d},{ }^{3} \mathbf{1 e},{ }^{4} \mathbf{1 f},{ }^{5} \mathbf{1 h}^{5}, \mathbf{1 k}{ }^{6}, \mathbf{1} \mathbf{y}^{2}$, were prepared according to the literature procedure in ref.2. Known compound $\mathbf{1 n}^{7}, \mathbf{1 p}^{2}, \mathbf{1 s}^{8}, \mathbf{1 t}^{9}, \mathbf{1} \mathbf{u}^{10}, \mathbf{1} \mathbf{v}^{11}, \mathbf{1} \mathbf{w}^{12}$, was prepared according to the literature procedure in ref.13. Known compound $\mathbf{1} \mathbf{x}^{14}$ was prepared according to the literature procedure in ref.14, Known compound 1ac ${ }^{15}$ was prepared according to the literature procedure in ref.15. The preparation of new compounds, and their characterization data are provided as follows.

General procedure A:

These compounds were synthesized according to the literature procedure. ${ }^{2}$ To a solution of phenol $(10.0 \mathrm{mmol})$ in DMF $(30.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(4.15 \mathrm{~g}, 30.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, followed by slowly addition of allyl halide (10.0 mmol) after 20 min . The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with water (40.0 mL), and extracted with ethyl acetate $(3 \times 30.0 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the product.

General procedure B:

These compounds were synthesized according to the literature procedure. ${ }^{13}$ To a solution of alcohol $(10.0 \mathrm{mmol})$ and phenol $(10.0 \mathrm{mmol})$ in THF $(30.0 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(2.62 \mathrm{~g}, 10.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, followed by slowly addition of diisopropyl azodicarboxylate (DIAD, $2.02 \mathrm{~g}, 10.0 \mathrm{mmol}$) after 20 min under argon. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with water $(40.0 \mathrm{~mL})$, and extracted with ethyl acetate ($3 \times$ 30.0 mL). The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the product.

1-Iodo-5-isopropyl-4-methyl-2-((2-methylallyl)oxy)benzene (1c)

Step 1: Compound 1c-1 was synthesized according to the literature procedure. ${ }^{16}$ To a solution of phenol (10.0 mmol) in $\mathrm{MeOH}(30.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaI} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.86 \mathrm{~g}, 10.0 \mathrm{mmol})$ and
$\mathrm{NaOH}(0.40 \mathrm{~g}, 10.0 \mathrm{mmol})$, followed by slowly addition of $\mathrm{NaClO}(15.0 \mathrm{ml}, 10.0 \mathrm{mmol}, 5 \%$ aqueous solution,) after 20 min . The reaction mixture was stirred overnight at the same temperature. The MeOH was removed under reduced pressure, and water (30.0 mL) was added. The reaction mixture was neutralized with aqueous $\mathrm{HCl}(2.0 \mathrm{M})$ to $\mathrm{pH}<7$, and extracted with ethyl acetate ($3 \times$ 20.0 mL). The combined organic layers were washed with water, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give 2-iodo-4-isopropyl-5-methylphenol (1c-1).
$1.55 \mathrm{~g}, 56 \%$ yield, white solid, $\mathrm{mp}: 40-42^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.3$ (silica gel, petroleum ether/ethyl acetate $=$ 10:1).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 3.03-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 152.3,141.6,137.7,134.3,116.6,82.4,28.6,23.3,19.0$.
IR (neat, cm $^{-1}$): 2963, 1481, 1459, 1398, 1299, 1269, 1200, 880, 762, 725.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{IO}$ 277.0084, found 277.0093.
Step 2: Compound 1c was prepared from 2-iodo-4-isopropyl-5-methylphenol ($\mathbf{1 c - 1}, 1.38 \mathrm{~g}, 5.0$ $\mathrm{mmol})$ and 3-chloro-2-methylprop-1-ene $(0.45 \mathrm{~g}, 5.0 \mathrm{mmol})$ according to the General procedure A. $1.39 \mathrm{~g}, 84 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.7$ (silica gel, petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H})$, 3.03-2.96 (m, 1 H), 2.27 (s, 3 H), 1.86 (s, 3 H), 1.18 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 154.8,141.4,140.5,136.4,135.7,114.4,112.6,83.3,72.6,28.6$, 23.3, 19.5, 19.4.

IR (neat, $\mathbf{c m}^{-1}$): 2963, 2872, 1654, 1591, 1490, 1252, 1053, 1030, 902, 716.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{IO} 331.0553$, found 331.0562.

2-Iodo-1-methyl-3-((2-methylallyl)oxy)benzene (1g)

This compound was prepared from 2-iodo-3-methylphenol ($2.34 \mathrm{~g}, 10.0 \mathrm{mmol}$) and
3-chloro-2-methylprop-1-ene $(0.91 \mathrm{~g}, 10.0 \mathrm{mmol})$ according to General procedure A.
$22.5 \mathrm{~g}, 78 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.7$ (silica gel, petroleum ether).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0$ Hz, 1 H), 5.22 (s, 1 H), 5.01 (s, 1 H), 4.47 (s, 2 H), 2.47 (s, 3 H), 1.88 ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.2,143.5,140.4,128.5,122.4,112.8,109.2,93.6,72.7,28.8$, 19.5.

IR (neat, $\mathbf{c m}^{-1}$): 3290, 2918, 1959, 1650, 1565, 1450, 1260, 1057, 902, 764.3
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{IO} 289.0084$, found 289.0091.

1-Iodo-3,5-dimethyl-2-((2-methylallyl)oxy)benzene (1i)

This compound was prepared from 2-iodo-4,6-dimethylphenol ($2.48 \mathrm{~g}, 10.0$ mmol) and 3-chloro-2-methylprop-1-ene ($0.91 \mathrm{~g}, 10.0 \mathrm{mmol}$) according to General procedure A.
$2.48 \mathrm{~g}, 82 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.7$ (silica gel, petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H})$, 2.29 (s, 3 H), 2.23(s, 3 H), 1.93 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 154.6,141.2,137.3,135.6,132.2,131.8,113.0,91.8,76.04,20.2$, 19.9, 17.0.

IR (neat, $\mathbf{c m}^{-1}$): 3077, 2973, 2858, 1653, 1469, 1272, 1123, 1041, 995, 853.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{IO} 303.0240$, found 303.0247.

1-Chloro-2-iodo-3-((2-methylallyl)oxy)benzene ($\mathbf{1} \mathbf{j}$)

 This compound was prepared from 3-chloro-2-iodophenol ($2.54 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 3-chloro-2-methylprop-1-ene $(0.91 \mathrm{~g}, 10.0 \mathrm{mmol})$ according to General procedure A. $22.5 \mathrm{~g}, 78 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.7$ (silica gel, petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.9,139.8,139.8,129.6,121.9,113.2,109.7,91.7,73.0,19.5$.
IR (neat, $\mathbf{c m}^{-1}$): 2975, 2920, 1572, 1440, 1259, 1060, 1014, 904, 766, 697
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClIO} 308.9538$, found 308.9542 .

1-(3, 3-Dimethyl-2-methylenebutoxy)-2-iodobenzene (11)

This compound was prepared from 2-iodophenol ($2.20 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 3,3-dimethyl-2-methylenebutan-1-ol ($1.14 \mathrm{~g}, 10.0 \mathrm{mmol}$) according to General procedure B.
$1.96 \mathrm{~g}, 62 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.8$ (silica gel, petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.77(\mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=1.2$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (m, 1 H), 5.33 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (s, 2 H), 1.18 (s, 9 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 157.3,151.2,139.5,129.3,122.4,112.1,110.0,86.4,69.1,34.8$, 29.5 .

IR (neat, cm $^{-1}$): 2961, 2868, 1638, 1582, 1472, 1438, 1274, 1019, $909,747 \mathrm{~cm}^{-1}$.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{IO}$ 317.0397, found 317.0400.

1-Iodo-2-((2-methylenedecyl)oxy)benzene (1m)

1m

This compound was prepared from 2-iodophenol ($2.20 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 2-methylenedecan-1-ol $(1.70 \mathrm{~g}, 10.0 \mathrm{mmol})$ according to the General procedure B. $2.42 \mathrm{~g}, 65 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.8$ (silica gel, petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.77(\mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29-7.25 (m, 1 H), $6.79(\mathrm{dd}, J=0.8$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.2,144.3,139.5,129.3,122.5,112.3,111.9,86.6,71.6,33.2$, $31.9,29.44,29.41,29.3,27.6,22.7,14.1$.

IR (neat, $\mathbf{c m}^{-1}$): 2926, 2857, 1582, 1472, 1439, 1291, 1244, 1019, 746, 727.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{IO} 373.1023$, found 373.1024.

1-((2-((But-3-en-1-yloxy)methyl)allyl)oxy)-2-iodobenzene (10)

Compound $\mathbf{1 0 - 1}$ was synthesized according to the literature procedure. ${ }^{17}$ To a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(4.15 \mathrm{~g}, 30.0 \mathrm{mmol})$, 3-chloro-2-(chloromethyl)prop-1-ene ($2.32 \mathrm{~mL}, 20.0 \mathrm{mmol}$) in acetonitrile $(25.0 \mathrm{~mL})$ was added 2 -iodophenol $(2.20 \mathrm{~g}, 10.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight, and filtered through a pad of celite. The filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford 2.16 g of 10-1 (93% purity, mixed with dichloromethyl ethylene).
Compound $1 \mathbf{0}$ was prepared from the above crude $\mathbf{1 0} \mathbf{- 1}$ and but-3-en-1-ol ($0.50 \mathrm{~g}, 7.0 \mathrm{mmol}$) according to the General procedure A.
$1.69 \mathrm{~g}, 49 \%$ yield for two steps, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.3$ (silica gel, petroleum ether/ethyl acetate $=$ 50:1).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.77(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.4$,
$1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.77(\mathrm{~m}, 1 \mathrm{H}), \underset{\mathrm{s} 10}{5.43}(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$,
5.12-5.01 (m, 2 H$), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.0,140.9,139.4,135.2,129.3,122.6,116.4,114.8,112.2,86.5$, 71.6, 69.7, 69.4, 34.2.

IR (neat, cm $^{-1}$): 3071, 2857, 1582, 1474, 1440, 1247, 1098, 1018, 917, 747.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{IO}_{2}$ 345.0346, found 345.0352.

1-Iodo-2-((4-methylpent-4-en-1-yl)oxy)benzene (1q)

This compound was prepared from 2-iodophenol ($2.20 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 4-methylpent-4-en-1-ol $(1.00 \mathrm{~g}, 10.0 \mathrm{mmol})$ according to General procedure B. $2.05 \mathrm{~g}, 68 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.7$ (silica gel, petroleum ether).
${ }^{1}$ H NMR (400 MHz, CDCl $_{3}$): $\delta 7.76(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.78$ (dd, $J=0.8 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dt}, J=1.2 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.27$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.94$ (m, 2 H), 1.77 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.5,144.8,139.3,129.3,122.3,112.0,110.5,86.7,68.4,34.0$, 27.0, 22.4 .

IR (neat, cm $^{-1}$): 3072, 2918, 2874, 1694, 1464, 1275, 1052, 1018, 889, 746
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{IO} 303.0240$, found 303.0248
(3-Iodo-4-((2-methylallyl)oxy)phenyl)(piperidin-1-yl)methanone (1r)

Step 1: Compound 1r-1 was synthesized according to the literature procedure. ${ }^{18}$ To a solution of 4-hydroxy-3-iodobenzoic acid ($2.64 \mathrm{~g}, 10.0 \mathrm{mmol}$) in DMF (25.0 mL) at $0{ }^{\circ} \mathrm{C}$ was added 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, $5.70 \mathrm{~g}, 15.0 \mathrm{mmol}$) and N, N-Diisopropylethylamine (DIPEA, $2.50 \mathrm{~mL}, 15.0 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 1 h , and piperidine ($1.0 \mathrm{~mL}, 12.0 \mathrm{mmol}$) was dropwise added. The reaction mixture was stirred at room temperature for 24 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with ethyl acetate $(3 \times 20.0 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give $\mathbf{1 r - 1}$ as a white solid $\left(2.71 \mathrm{~g}, 82 \%\right.$ yield, $\left.\mathrm{mp}: 181-183^{\circ} \mathrm{C}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (brs, 2 H), 3.41 (brs, 2 H), 1.68-1.60 (m, 6 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.3,157.3,137.5,128.8,128.7,115.0,84.8,49.1,43.6,26.3$, 25.6, 24.4.

IR (neat, cm $^{-1}$): 3728, 2937, 2621, 1699, 1507, 1277, 1114, 1025, 832, 761.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{INO}_{2}$ 332.0142, found 332.0150.
Step 2: Compound $\mathbf{1 r}$ was prepared from $\mathbf{1 r - 1}(1.66 \mathrm{~g}, 5.0 \mathrm{mmol})$ and 3-chloro-2-methylprop-1-ene $(0.5 \mathrm{~mL}, 5.0 \mathrm{mmol})$ according to the General procedure A.
$1.48 \mathrm{~g}, 77 \%$ yield, white solid, $\mathrm{mp}: 62-64{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.3$ (silica gel, petroleum ether/ethyl acetate $=$ 4:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{brs}, 2 \mathrm{H}), 3.45(\mathrm{brs}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3$ H), 1.68-1.59 (m, 6 H$)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.3,157.7,139.5,138.1,130.3,128.4,113.0,111.3,86.0,72.4$, 48.8, 43.2, 26.2, 25.4, 24.4, 19.3.

IR (neat, $\mathbf{c m}^{-1}$): 3474, 3459, 2910, 2823 1634, 1437, 1277, 1262, 776, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{INO}_{2}$ 386.0611, found 386.0616.

Tert-butyl (2-iodo-4-methylphenyl)(2-methylallyl)carbamate (1z)

General Procedure:
Compound 1z-1 was synthesized according to the literature procedure. ${ }^{14}$ To a solution of 2-iodo-5-methylaniline ($2.33 \mathrm{~g}, 10.0 \mathrm{mmol}$) in THF (30.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.77 \mathrm{~g}, 20.0 \mathrm{mmol})$ and DMAP $(0.12 \mathrm{~g}, 1.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, followed by slowly addition of $(\mathrm{Boc})_{2} \mathrm{O}(2.29 \mathrm{~g}, 10.5 \mathrm{mmol})$ after 10 min . The reaction mixture was allowed to warm to room temperature and stirred for 3 h . The reaction was quenched with saturated aqueous solution of $\mathrm{NaHCO}_{3}(30.0 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 30.0 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. The residue was then engaged in the known procedure $\left(\mathrm{K}_{2} \mathrm{CO}_{3}(4.15 \mathrm{~g}, 30.0 \mathrm{mmol})\right.$, $\mathrm{MeOH}(30.0 \mathrm{~mL}), 3 \mathrm{~h}, 70^{\circ} \mathrm{C}$) to obtain the crude product $\mathbf{1 z - 1}$.

To a solution of the above crude compound $\mathbf{1 z - 1}$ in DMF (20.0 mL) was added KI ($1.99 \mathrm{~g}, 12.0$ mmol) and $\mathrm{NaH}(0.36 \mathrm{~g}, \quad 15.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, followed by slowly addition of 3-chloro-2-methylprop-1-ene $(0.91 \mathrm{~g}, 10.0 \mathrm{mmol})$ after 20 min . The reaction mixture was allowed to
warm to room temperature and stirred at $70{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with water (40.0 $\mathrm{mL})$, and extracted with ethyl acetate $(3 \times 30.0 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the product $\mathbf{1 z}$.
$2.79 \mathrm{~g}, 72 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.7$ (silica gel, petroleum ether/ethyl acetate $=20: 1$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$, mixture of rotamers): $\delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), [7.04 (s), 6.95 (s), 1 H], 6.79 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}),[4.56(\mathrm{~d}, J=15.6 \mathrm{~Hz}), 4.48(\mathrm{~d}, J=16.0 \mathrm{~Hz})$, $1 \mathrm{H}], 3.48(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H})$, [1.52 (s), 1.37 (s), 9 H$]$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 154.2,144.4,141.2,139.2,138.9,138.7$, $130.9,130.3,129.9,129.6,112.8,112.6,95.8,80.6,80.2,56.3,55.2,28.2,20.9,20.6$.

IR (neat, $\mathbf{c m}^{-1}$): 2974, 2925, 1706, 1593, 1367, 1299, 1170, 937, 861, 759.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{INO}_{2} 388.0768$, found 388.0774.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of $\mathbf{1 z}$ were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl (2-iodo-5-methylphenyl)(2-methylallyl)carbamate (1aa)

 This compound was prepared from 2-iodo-4-methylaniline ($2.33 \mathrm{~g}, 10.0 \mathrm{mmol}$) according to the General Procedure for the synthesis of $\mathbf{1 z}$.
$2.94 \mathrm{~g}, 76 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.7$ (silica gel, petroleum ether/ethyl acetate
$=20: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.26-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1$ H), $4.74(\mathrm{~s}, 1 \mathrm{H}),[4.58(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 4.49(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 1 \mathrm{H}], 3.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ ($\mathrm{s}, 3 \mathrm{H}$), $1.81(\mathrm{~s}, 3 \mathrm{H})$, [1.52 (s), 1.36 (s$), 9 \mathrm{H}]$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 154.3,142.0,141.8,141.4,141.2,140.0$, 139.7, 139.0, 138.6, 129.6, 129.3, 129.1, 113.0, 112.8, 99.7, 80.5, 80.0, 56.2, 55.1, 28.2, 20.5, 20.4.

IR (neat, cm $^{-1}$): 3077, 2976, 2925, 1706, 1487, 1368, 1297, 1171, 866, 763.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{INO}_{2}$ 388.0768, found 388.0774.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 1aa were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl (5-chloro-2-iodophenyl)(2-methylallyl)carbamate (1ab)

This compound was prepared from 5 -chloro-2-iodoaniline ($2.53 \mathrm{~g}, 10.0 \mathrm{mmol}$)

1ab
according to the General Procedure for the synthesis of $\mathbf{1 z}$.
$3.30 \mathrm{~g}, 81 \%$ yield, white solid, $\mathrm{mp}: 184-186{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.6$ (silica gel, petroleum ether/ethyl acetate $=$ 20:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$, mixture of rotamers): $\delta 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}),[7.26$ (s), $7.20(\mathrm{~s}), 1$ $\mathrm{H}], 6.70(\mathrm{dd}, J=2.4 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.46$ $(\mathrm{m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}),[1.52(\mathrm{~s}), 1.37(\mathrm{~s}), 9 \mathrm{H}]$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}\right.$, mixture of rotamers): $\delta 153.7,145.7,140.8,140.0,134.2,129.8$, $128.8,113.5,97.6,80.7,56.1,55.0,28.2,20.48$.

IR (neat, $\mathbf{c m}^{\mathbf{- 1}}$): 2976, 1708, 1572, 1463, 1366, 1289, 1165, 863, 729.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{CIINO}_{2}$ 408.0222, found 408.0219.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of $\mathbf{1 a b}$ were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

1-Iodo-4-methyl-2-(3-methylbut-3-en-1-yl)benzene (1ad)

This compound was prepared from (2-iodo-5-methylphenyl)methanol (2.48 g, 10.0 mmol) according to the literature reference 15 .
$1.86 \mathrm{~g}, 65 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.8$ (silica gel, petroleum ether).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=2.0$ $\mathrm{Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 5 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 145.1,144.4,139.1,138.2,130.2,128.7,110.3,96.3,39.3,38.4$, 22.6, 20.9.

IR (neat, $\mathbf{c m}^{\mathbf{- 1}}$): 3075, 2951, 2924, 2854, 1648, 1592, 1467, 1122, 1011, 886.
HRMS (APCI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{I} 287.0291$, found 287.0300.

5-Iodo-6-(3-methylbut-3-en-1-yl)benzo[d][1,3]dioxole (1ae)

IR (neat, $\mathbf{c m}^{-1}$): 3074, 2925, 1648, 1596, 1226, 1107, 1041, 935, 889, 826.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{IO}_{2}$ 317.0041, found 317.0033.

4-Fluoro-1-iodo-2-(3-methylbut-3-en-1-yl)benzene (1af)

 This compound was prepared from (5-fluoro-2-iodophenyl)methanol ($2.52 \mathrm{~g}, 10.0$ mmol) according to the literature reference 15 .
$1.62 \mathrm{~g}, 56 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.4$ (silica gel, petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 1 \mathrm{H})$, 4.72-4.70 (m, 2 H), 2.77-2.73 (m, 2 H), 2.33-2.29 (m, 2 H), 1.76 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 162.9\left(\mathrm{~d}, J_{C-F}=325 \mathrm{~Hz}\right), 144.8\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 144.7,129.6(\mathrm{~d}$, $\left.J_{C-F}=9.0 \mathrm{~Hz}\right), 124.0,115.1\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 112.6\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 110.5,39.2,33.9,22.5$. $148.4,146.6,144.9,137.9,118.5,110.5,109.1,101.4,87.6,39.3,38.4,22.6$.

${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-114.0$

IR (neat, $\mathbf{c m}^{-1}$): 2917, 2849, 1590, 1453, 1417, 1270, 1112, 887, 781, 688.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FI} 291.0040$, found 291.0049.

3.2 Synthesis of Alkenyl Triflate Reagents 2a-2v

Alkenyl triflates $\mathbf{2 a},{ }^{22} \mathbf{2 b},{ }^{22} \mathbf{2 c} \mathbf{c}^{23}, \mathbf{2 d},{ }^{22} \mathbf{2 e},{ }^{22} \mathbf{2 f},{ }^{22} \mathbf{2 g},{ }^{24} \mathbf{2 h},{ }^{22} \mathbf{2 i},{ }^{22} \mathbf{2} \mathbf{j},{ }^{25} \mathbf{2 k},{ }^{26} \mathbf{2 l},{ }^{27} \mathbf{2 m},{ }^{28} \mathbf{2 n},{ }^{22} \mathbf{2 z},{ }^{29}$ 2aa, ${ }^{30}$ are known compounds, and were synthesized according the literature procedure. ${ }^{22}$ Known
compound 2r was prepared according to the literature procedure. ${ }^{31}$ Known compound 2s was prepared according to the literature procedure. ${ }^{32}$ Known compound $\mathbf{2 t}$ was prepared according to the literature procedure. ${ }^{33}$ Known compound $\mathbf{2 u}$ was prepared according to the literature procedure. ${ }^{34}$ The preparation of new compounds, and their characterization data are provided as follows.

General procedure C:

These compounds were synthesized according the literature procedure. ${ }^{22}$ To a solution of alkyne $(10.0 \mathrm{mmol})$ in pentane $(20.0 \mathrm{~mL})$ was dropwise added trifluoromethanesulfonic acid ($1.33 \mathrm{~mL}, 15.0$ mmol) at $-30^{\circ} \mathrm{C}$. The reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ after 1 h , and quenched with saturated aqueous NaHCO_{3}. The organic layer was separated after 5 min , washed twice with saturated aqueous NaHCO_{3}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give alkenyl triflates.

Hept-1-en-2-yl trifluoromethanesulfonate (20)

$1.79 \mathrm{~g}, 73 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.8$ (silica gel, petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.56-1.54 (m, 2 H), 1.36-1.32 (m, 4 H), 0.92-0.90 (m, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.2,118.6\left(\mathrm{q}, J_{C-F}=318.0 \mathrm{~Hz}\right), 103.9,33.8,30.8,25.7,22.2$, 13.8.
${ }^{19}$ F NMR ($564 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.3$.
IR (neat, cm $^{-1}$): 2962, 2875, 1671, 1419, 1251, 1142, 1094, 947, 705, 613.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}$ 247.0610, found 247.0610.

Methyl 6-(((trifluoromethyl)sulfonyl)oxy)hept-6-enoate (2p)

$2.37 \mathrm{~g}, 82 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.4$ (silica gel, petroleum ether/ethyl acetate $=10: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 5.12(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$,
2.39-2.34 (m, 4 H), 1.72-1.66 (m, 2 H), 1.63-1.57 (m, 2 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 173.6,156.2,118.4\left(\mathrm{q}, J_{C-F}=318.0 \mathrm{~Hz}\right), 104.5,51.5,33.5,33.4$, 25.3, 23.8.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-74.2.
IR (neat, $\mathbf{c m}^{-1}$): 2956, 2874, 1740, 1417, 1211, 1073, 943, 830, 791, 638.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}$ 291.0509, found 291.0510.

6-(((Trifluoromethyl)sulfonyl)oxy)hept-6-en-1-yl acetate (2q)

This compound was prepared from hept-6-yn-1-yl acetate $^{36}(1.54 \mathrm{~g}, 10.0$ mmol) according to the General procedure C .
$2.37 \mathrm{~g}, 78 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.4$ (silica gel, petroleum ether/ethyl acetate $=10: 1$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 5.11(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=6.4$ Hz, 2 H), 2.36 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.06 ($\mathrm{s}, 3 \mathrm{H}$), 1.70-1.55 (m, 4 H), 1.46-1.39 (m, 2 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 171.2,156.5,118.4\left(\mathrm{q}, J_{C-F}=318.0 \mathrm{~Hz}\right), 104.3,64.1,33.7,28.1$, 25.5, 25.0, 20.9.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$): δ-74.2.
IR (neat, $\mathbf{c m}^{-1}$): 2954, 2870, 1739, 1643, 1417, 1210, 1141, 900, 706, 637.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S} 305.0665$, found 305.0665.

1-((S)-2-((S)-2-((Tert-butoxycarbonyl)amino)-3-phenylpropanamido)-3,3-dimethylbutanoyl)-1,

2,3,6-tetrahydropyridin-4-yl trifluoromethanesulfonate (2w)

To a stirred solution of acid $\mathbf{2 w - 1} \mathbf{1}^{37}(2.65 \mathrm{~g}, 10.0 \mathrm{mmol})$ and ester $\mathbf{2 w - 2} \mathbf{2}^{38}(1.81 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DIPEA ($1.65 \mathrm{~mL}, 10.0 \mathrm{mmol}$), hydroxybenzotriazole (HOBt , $1.49 \mathrm{~g}, 11.0 \mathrm{mmol}$) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, $1.92 \mathrm{~g}, 10.0 \mathrm{mmol}$). The reaction mixture was stirred at the same temperature for 10 min , and then room temperature for 24 h . The reaction was quenched with saturated aqueous NaHCO_{3}, extracted with ethyl acetate ($3 \times$
30.0 mL). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give peptide $\mathbf{2 w} \mathbf{- 3}$ as a white solid ($2.74 \mathrm{~g}, 70 \%$ yield, $\mathrm{mp}: 114-116^{\circ} \mathrm{C}$).
${ }^{1}$ H NMR (400 MHz, CDCl $_{3}$): $\delta 7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1$ H), 4.39-4.33 (m, 2 H), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.06 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.42 ($\mathrm{s}, 9 \mathrm{H}$), 0.91 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 171.3,170.9,155.4,136.6,129.2,128.6,126.8,80.1,60.0,56.0$, 51.7, 37.8, 34.7, 28.2, 26.4.

IR (neat, cm $^{-1}$): 3317, 2973, 1743, 1655, 1537, 1368, 1168, 1023, 881, 700.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}$ 393.2384, found 393.2388.

To a solution of peptide $\mathbf{2 w - 3}(5.0 \mathrm{mmol}, 1.96 \mathrm{~g})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL} / 10.0 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.05 \mathrm{~g}, 25.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 20 min , then room temperature for 24 h . The reaction was quenched with saturated aqueous NaHCO_{3}, and extracted with ethyl acetate $(3 \times 30.0 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was used for the next step without purification.

To a stirred solution of the above residue in $\mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL} / 10.0 \mathrm{~mL})$ at room temperature was added 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, $3.81 \mathrm{~g}, 10.0 \mathrm{mmol}$) and N, N-diisopropylethylamine (DIPEA, 2.06 $\mathrm{mL}, 12.5 \mathrm{mmol}$), followed by 4-oxopiperidinium chloride ($0.68 \mathrm{~g}, 5.0 \mathrm{mmol}$) after 10 min . The reaction mixture was stirred at room temperature for 24 h . The reaction was quenched with saturated aqueous NaHCO_{3}, and extracted with ethyl acetate $(3 \times 20.0 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was used for the next step without purification.

To a stirred solution of above crude ketone in THF (20.0 mL) was dropwise added Lithium bis(trimethylsilyl)amide (LiHMDS, $0.80 \mathrm{~g}, 4.8 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{PhNTf}_{2}(1.72 \mathrm{~g}, 4.8$ mmol) in THF (10.0 mL) was dropwise added after 1 h . The reaction mixture was allowed to warm to room temperature and stirred for 16 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate $(3 \times 20.0 \mathrm{~mL})$. The organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give alkenyl triflate $2 \mathbf{w}$.
$1.89 \mathrm{~g}, 64 \%$ yield for 3 steps, white solid, $\mathrm{mp}: 70-72^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.4$ (silica gel, petroleum ether/ethyl
acetate $=4: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamors): $\delta 7.30-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H})$, 5.81-5.79 (m, 1 H$), 5.29-5.24(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.51-3.54(\mathrm{~m}, 5 \mathrm{H}), 3.14-3.03(\mathrm{~m}, 2 \mathrm{H})$, 2.57-2.44 (m, 2 H), 1.40-1.37 (m, 9 H), 0.96-0.87 (m, 9 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathbf{M H z}, \mathbf{C D C l}_{3}$, mixture of rotamors): $\delta 171.3,171.0,170.1,169.8,169.7,169.5$, $155.2,155.1,147.5,145.9,136.6,136.53,136.47,129.1,129.0,128.5,128.3,126.8,126.6,118.3(\mathrm{q}$, $\left.J_{C-F}=319.0 \mathrm{~Hz}\right), 115.5,115.4,114.7,79.8,55.6,54.7,54.11,54.05,43.7,43.0,42.8,40.2,40.1,38.6$, $38.5,38.4,37.9,35.7,35.6,35.5,35.3,28.5,28.10,28.05,27.7,26.3,26.23,26.19,26.1$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-73.76,-73.80$.
IR (neat, $\mathbf{c m}^{-1}$): 3423, 2976, 1701, 1638, 1422, 1368, 1215, 1142, 870, 747.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S} 592.2299$, found 592.2309.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of $\mathbf{2 w}$ were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20

5-(((trifluoromethyl)sulfonyl)oxy)hex-5-en-1-yl

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (2x)

Step 1: Triflate 2x-1 (4.22 g, 85\% yield) was prepared as a colorless oil from hex-5-yn-1-ol (2.21 $\mathrm{mL}, 20.0 \mathrm{mmol}$) according to the General procedure C.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 5.11(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{q}, J=6.0$ Hz, 2 H), 2.39 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.99 ($\mathrm{s}, 1 \mathrm{H}$), 1.69-1.58 (m, 4 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 156.6,118.4\left(\mathrm{q}, J_{C-F}=318.0 \mathrm{~Hz}\right), 104.3,62.1,33.5,31.4,22.3$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-74.2.
IR (neat, $\mathbf{c m}^{-1}$): 3347, 2947, 2878, 1672, 1418, 1213, 1148, 1066, 948, 706.
HRMS (ESI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SK} 286.9962$, found 286.9967 .

Step2: To a solution of Indomethacin ($5.37 \mathrm{~g}, 15.0 \mathrm{mmol}$) in DCM (30.0 mL) was added dicyclohexylcarbodiimide ($\mathrm{DCC}, 3.09 \mathrm{~g}, 15.0 \mathrm{mmol}$) and 4-dimethylaminopyridine (DMAP, 0.12 g ,
$1.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min , and a solution of triflate $\mathbf{2 x} \mathbf{- 1}(2.48 \mathrm{~g}$, 10.0 mmol) in $\mathrm{DCM}(10.0 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure, and the residue was treated with water, extracted with ethyl acetate $(3 \times 30.0 \mathrm{~mL})$. The combined organic layers were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the product $\mathbf{2 x}$.
$4.23 \mathrm{~g}, 72 \%$ yield, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.4$ (silica gel, petroleum ether/ethyl acetate $=4: 1$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=2.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, J=7.6$ Hz, 2 H), 1.72-1.52 (m, 4 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.8,168.2,156.0,155.9,139.2,135.9,133.7,131.1,130.7,130.5$, $129.0,118.4\left(\mathrm{q}, J_{C-F}=318 \mathrm{~Hz}\right), 114.9,112.4,111.4,104.6,101.2,64.2,55.6,33.3,30.2,27.5,22.4$, 13.3.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta-74.0$.
IR (neat, $\mathbf{c m}^{-1}$): 3470, 2959, 1735, 1683, 1480, 1418, 1215, 1069, 926, 755.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClF}_{3} \mathrm{NO}_{7} \mathrm{~S} 588.1065$, found 588.1076.

1-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetyl)-1,2,3,6-tetrahydropyridin-4-yl trifluoromethanesulfonate (2y)

Step 1: To a solution of Indomethacin ($1.97 \mathrm{~g}, 5.5 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL} / 10.0 \mathrm{~mL})$ was added 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, $4.18 \mathrm{~g}, 11.0 \mathrm{mmol}$) and N, N-diisopropylethylamine (DIPEA, 2.06 mL , 12.0 mmol) at room temperature. 4-Oxopiperidinium chloride ($0.68 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added after 10 min . The reaction mixture was stirred at room temperature for 24 h . The reaction was quenched with saturated aqueous NaHCO_{3}, and extracted with ethyl acetate $(3 \times 20.0 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced
pressure. The residue was used for the next step without purification.
Step 2: To a solution of the above residue in THF (30.0 mL) was dropwise added Lithium bis(trimethylsilyl)amide (LiHMDS, $1.00 \mathrm{~g}, 6.0 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{PhNTf}_{2}(2.15 \mathrm{~g}, 6.0$ mmol) in THF (10.0 mL) was dropwise added after 1 h . The reaction mixture was allowed to warm to room temperature, and stirred for 16 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with ethyl acetate $(3 \times 20.0 \mathrm{~mL})$. The organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give alkenyl triflate $\mathbf{2 y}$.
$2.05 \mathrm{~g}, 72 \%$ yield for two steps, white solid, $\mathrm{mp}: 184-186{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.4$ (silica gel, petroleum ether/ethyl acetate $=2: 1$), approximate 1.4:1 ratio of rotamers.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.94(\mathrm{~m}, 1 \mathrm{H})$, 6.82-6.80 (m, 1 H), 6.66-6.65 (m, 1 H), [5.81 (s), 5.75 (s$), 1 \mathrm{H}$), [4.25 (d, J = 3.0 Hz), 4.14 (d, J = $1.8 \mathrm{~Hz}), 2 \mathrm{H}), 3.86-3.67(\mathrm{~m}, 7 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.0,168.9,168.2,156.0,147.7,145.7,139.3,135.3,131.1,130.7$, $130.3,129.1,118.3\left(\mathrm{q}, J_{C-F}=319.5 \mathrm{~Hz}\right), 116.0,114.9,114.4,112.4,111.6,111.4,101.2,55.6,43.2$, 42.3, 40.4, 38.6, 30.6, 30.5, 28.4, 27.7, 13.3.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-73.6, -73.8.
IR (neat, $\mathbf{c m}^{-1}$): 2928, 2842, 1679, 1418, 1316, 1213, 1142, 1053, 868, 776.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ 571.0912, found 571.0922.
NOTE: Because of the amide bond rotation equilibrium, two rotamers of $\mathbf{2 y}$ were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 37-38

4. Ni-catalyzed Enantioselective Cross-electrophile Aryl-alkenylation of Alkene

4.1. General Procedure

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with $\mathrm{NiI}_{2}(6.3 \mathrm{mg}, 0.020 \mathrm{mmol}), \mathbf{L 1}(7.6 \mathrm{mg}, 0.028 \mathrm{mmol}), \mathrm{Mn}(44.0$ $\mathrm{mg}, 0.8 \mathrm{mmol}$), and $\mathrm{DMF} / \mathrm{THF}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL})$. The reaction mixture was stirred for 5 min . Substrates $1(0.2 \mathrm{mmol})$ and $2(0.2 \mathrm{mmol})$ were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched with water (20.0 mL), and extracted with ethyl acetate ($3 \times 15.0 \mathrm{~mL}$). The combined organic layers were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product 3 .

4.2. Characterization Data of Products

(R)-3-(cyclohex-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (3a)

3a

This compound was prepared according to the General procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$35.1 \mathrm{mg}, 77 \%$ yield, 98% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm} . t_{\mathrm{R}}($ major $)=$ $9.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=-12\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.99$ (s, 2 H), 1.78-1.61 (m, 2 H$), 1.54-1.44$ (m, 4 H), 1.31 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,135.8,134.6,127.9,125.9,122.9,120.2,109.5,82.3,49.0$, 45.5, 30.1, 26.3, 25.4, 23.0, 22.1.

IR (neat, $\mathbf{c m}^{-1}$): 2926, 2838, 1597, 1482, 1459, 1230, 1016, 980, 831, 747.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}$ 229.1587, found 229.1597.

Integration Results			
No.	Retention Time min	Area $\mathbf{m A U *}$ min	Relative Area $\%$
1	9.117	2.961	50.28
2	11.013	2.928	49.72
Total:		$\mathbf{5 . 8 8 9}$	100.00

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	9.107	23.346	98.82
2	11.077	0.278	1.18
Total:		$\mathbf{2 3 . 6 2 4}$	$\mathbf{1 0 0 . 0 0}$

(R)-3-(cyclopent-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (3b)

3b

The compound was prepared according to the General procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 b}(43.2 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$33.8 \mathrm{mg}, 79 \%$ yield, 98% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $10.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.8 \mathrm{~min}$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $5.37(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.28-2.24 (m, 2 H), 2.11-1.93 (m, 2 H), 1.82-1.74 (m, 2 H), 1.33 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.3,140.8,135.7,128.5,128.0,122.8,120.3,109.5,82.2,45.3$, 42.1, 36.4, 32.3, 26.5, 24.0.

IR (neat, cm $^{-1}$): 3051, 2957, 2849, 1599, 1482, 1232, 1018, 980, 833, 747.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}$ 215.1430, found 215.1438 .

| 500 |
| :--- | :--- | :--- | :--- | :--- |

(R)-3-((4,4-dimethylcyclohex-1-en-1-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3c)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 c}(51.6 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$36.9 \mathrm{mg}, 72 \%$ yield, 99% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=$ $8.1 \mathrm{~min}, t_{\mathrm{R}}($ major $)=8.6 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-5\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{dt}, J=0.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 2 \mathrm{H})$, 1.77-1.59 (m, 4 H), 1.32 (s, 3 H). 1.26-1.23 (m, 2 H), 0.85 ($\mathrm{s}, 3 \mathrm{H}), 0.83$ ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.3,135.8,133.2,127.9,125.1,122.9,120.3,109.5,82.3,48.9$, 45.6, 39.6, 35.8, 28.9, 28.2, 27.8, 27.4, 26.4.

IR (neat, $\mathbf{c m}^{-1}$): 2956, 2920, 1613, 1482, 1459, 1232, 1018, 982, 833, 747.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}$ 257.1900, found 257.1896.

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	8.120	1.048	51.08
2	8.783	1.004	48.92
Total:		$\mathbf{2 . 0 5 2}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	8.097	0.525	0.73
2	8.640	71.825	99.27
Total:		72.350	100.00

(R)-3-(cyclohept-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (3d)

3d The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 d}(48.8 \mathrm{mg}, 0.2 \mathrm{mmol})$. $31.5 \mathrm{mg}, 65 \%$ yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 279 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $8.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=9.9 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{19}=+2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1}$ H NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.53$ (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}$, 2 H), 2.08-1.87 (m, 4 H), 1.69-1.65 (m, 2 H), 1.45-1.31 (m, 4 H), 1.33 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.4,141.3,135.6,131.4,127.9,123.1,120.2,109.5,81.8,50.7$, 45.9, 34.4, 32.5, 28.6, 27.0, 26.5, 26.1.

IR (neat, cm $^{-1}$): 2922, 2846, 1597, 1482, 1450, 1230, 1016, 978, 831, 747.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O} 243.1743$, found 243.1746.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	7.950	8.142	50.24
2	9.557	8.064	49.76
Total:		$\mathbf{1 6 . 2 0 6}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	8.057	27.290	98.63
2	9.887	0.380	1.37
Total:		$\mathbf{2 7 . 6 7 0}$	$\mathbf{1 0 0 . 0 0}$

(R,E)-3-(cyclooct-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (3e)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 e}(51.6 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$21.5 \mathrm{mg}, 42 \%$ yield, 97% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i}$ PrOH-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $10.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.5 \mathrm{~min}$.
$[\alpha]_{\mathbf{D}}{ }^{19}=+2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.35$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.25(\mathrm{~m}$, $2 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.41(\mathrm{~m}, 8 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.3,137.1,135.8,129.0,127.9,123.0,120.2,109.5,82.1,46.8$, 45.7, 29.9, 29.6, 28.3, 26.7, 26.6, 26.0, 26.0.

IR (neat, cm $^{-1}$): 2924, 2853, 1482, 1459, 1277, 1262, 1018, 980, 713, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}$ 257.1900, found 257.1902.

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	10.457	12.553	51.09
2	15.787	12.018	48.91
Total:		$\mathbf{2 4 . 5 7 1}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	10.070	11.539	98.68
2	15.483	0.154	1.32
Total:		$\mathbf{1 1 . 6 9 4}$	100.00

(3R)-3-((4-(tert-butyl)cyclohex-1-en-1-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3f)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 f}(57.2 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$31.8 \mathrm{mg}, 56 \%$ yield, 98% ee, $\mathrm{dr}=1.2 / 1$, white solid, $\mathrm{mp} 34-36{ }^{\circ} \mathrm{C}$.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $0.1 / 99.9,0.4 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm} . t_{\mathrm{RI} 1}$ (major) $=24.2 \mathrm{~min}, t_{\mathrm{R} 1}($ minor $)=30.3 \mathrm{~min} ; t_{\mathrm{R} 2}($ major $)=25.0 \mathrm{~min}, t_{\mathrm{R} 2}($ minor $)=26.0 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+11\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, [5.43 (t, $J=2.4 \mathrm{~Hz}), 5.39(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 1 \mathrm{H}], 4.48-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}$, 2 H), 2.04-1.68 (m, 5 H), 1.33-1.30 (m, 3 H). 1.20-1.07 (m, 2 H), 0.84 (s, 9 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,136.0,135.8,134.5,134.4,127.93,127.90,126.3,126.2$, $122.9,120.3,120.2,109.5,82.3,82.2,48.6,48.3,45.6,45.5,43.83,43.76,32.1,31.7,31.6,27.18$, 27.15, 27.1, 26.4, 26.2, 24.5, 24.3.

IR (neat, cm $^{-1}$): 3008, 2965, 1654, 1547, 1480, 1460, 1277, 1262, 767, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{ONa} 302.2032$, found 302.2034.

Integration Results			
No.	Retention Time min	Area mAU* min 2	Relative Area $\%$
1	24.463	26.570	24.59
2	25.303	27.070	25.06
3	26.427	27.504	25.46
4	30.113	26.898	24.90
Total:		$\mathbf{1 0 8 . 0 4 3}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	24.170	48.208	43.22
2	25.007	61.938	55.53
3	25.960	0.933	0.84
4	30.327	0.464	0.42
Total:		$\mathbf{1 1 1 . 5 4 4}$	$\mathbf{1 0 0 . 0 0}$

(3R)-3-methyl-3-((1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)methyl)-2,3-dihydrobenzofuran (3g)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 g}(61.2 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$34.7 \mathrm{mg}, 57 \%$ yield, 98% ee, $\mathrm{dr}=1.1: 1$, white solid, $\mathrm{mp}: 69-71^{\circ} \mathrm{C}$.
Chiral HPLC: CHIRALPAK IB, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,1 \mathrm{~mL} / \mathrm{min}, 203 \mathrm{~nm} . t_{\mathrm{R1} 1}$ (minor) $=$ $17.0 \mathrm{~min}, t_{\mathrm{R} 1}($ major $)=21.5 \mathrm{~min} ; t_{\mathrm{R} 2}($ minor $)=18.0 \mathrm{~min}, t_{\mathrm{R} 2}($ major $)=18.8 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+12\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{3}_{3}$): $\delta 7.30-7.09(\mathrm{~m}, 7 \mathrm{H}), 6.89-6.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 1$ H), [5.52 (d, $J=2.4 \mathrm{~Hz}), 5.48(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 1 \mathrm{H}), 4.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1$ H), 2.71-2.67 (m, 1 H$), 2.37-1.63(\mathrm{~m}, 8 \mathrm{H}), 1.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,147.0,146.9,135.7,135.6,134.6,134.5,128.29,128.26$, $128.01,127.96,126.82,126.78,125.92,125.90,125.6,125.5,122.9,120.3,109.5,82.2,48.7,48.5$, 45.6, 45.4, 39.7, 39.5, 33.8, 33.4, 30.8, 30.3, 30.1, 30.0, 26.4, 26.2.

IR (neat, cm $^{-1}$): 3407, 2917, 1655, 1482, 1459, 1277, 1262, 1016, 751, 699.
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO} 327.1719$, found 327.1720.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	16.187	135.708	23.69
2	17.253	145.632	25.43
3	18.917	151.248	26.41
4	21.780	140.146	24.47
Total:		$\mathbf{5 7 2 . 7 3 3}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	17.030	3.704	0.74
2	18.037	3.169	0.63
3	18.760	232.358	46.25
4	21.453	263.191	52.38
Total:		$\mathbf{5 0 2 . 4 2 4}$	$\mathbf{1 0 0 . 0 0}$

(R)-8-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-1,4-dioxaspiro[4.5]dec-7-ene (3h)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 h}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $46.9 \mathrm{mg}, 82 \%$ yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes 4/96, $0.8 \mathrm{~mL} / \mathrm{min}, 281 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=$ $16.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.7 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{22}=-7\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$
H), $5.31(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 4 \mathrm{H}), 2.37-2.29$ (m, 2 H), 2.26 (s, 2 H), 2.01-1.89 (m, 2 H), 1.67-1.63 (m, 2 H), 1.33 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,135.5,134.3,128.0,123.04,122.95,120.3,109.6,107.6$, 82.4, 64.3, 47.7, 45.5, 35.8, 31.2, 29.1, 25.9.

IR (neat, $\mathbf{c m}^{-1}$): 2956, 2883, 1597, 1482, 1243, 1116, 1060, 1016, 833, 753.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}$ 287.1642, found 287.1643.

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	17.017	2.190	50.32
2	18.743	2.162	49.68
Total:		$\mathbf{4 . 3 5 2}$	100.00

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	16.653	225.342	98.97
2	18.743	2.340	1.03
Total:		$\mathbf{2 2 7 . 6 8 2}$	$\mathbf{1 0 0 . 0 0}$

(R)-3-((3,6-dihydro-2H-pyran-4-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3i)

$3 i$ The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 i}(46.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $30.8 \mathrm{mg}, 67 \%$ yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=5.6$ $\min , t_{\mathrm{R}}($ minor $)=6.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=+1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
1H NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{dt}, J=0.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.06(\mathrm{~m}, 2 \mathrm{H})$, 3.69-3.59 (m, 2 H), 2.38-2.30 (m, 2 H), 1.86-1.74 (m, 2 H), $1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.3,135.2,132.6,128.1,124.4,122.9,120.3,109.6,82.0,65.4$, 64.2, 48.2, 45.4, 30.2, 26.2.

IR (neat, $\mathbf{c m}^{-1}$): 2962, 2752, 1722, 1597, 1481, 1235, 1128, 978, 832, 752.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}$ 231.1380, found 231.1381.

Integration Results			
No.	Retention Time min	Area mAU* min 2	Relative Area $\%$
1	5.647	3.287	48.89
2	6.210	3.436	51.11
Total:		$\mathbf{6 . 7 2 3}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU * min	Relative Area $\%$
1	5.620	124.961	98.76
2	6.187	1.571	1.24
Total:		$\mathbf{1 2 6 . 5 3 2}$	$\mathbf{1 0 0 . 0 0}$

(R)-3-((3,6-dihydro-2H-thiopyran-4-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3j)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 j}(49.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF.
$32.0 \mathrm{mg}, 65 \%$ yield, 96% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $2 / 98,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $12.0 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=-17\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.19-3.09 (m, 2 H$)$, 2.64-2.53 (m, 2 H), 2.36-2.27 (m, 2 H), 2.04-1.88 (m, 2 H), 1.34 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.3,135.6,135.1,128.2,123.0,122.5,120.3,109.7,82.1,49.8$, 45.6, 30.8, 26.0, 25.7, 25.1.

IR (neat, cm $^{-1}$): 2961, 2883, 1663, 1596, 1480, 1230, 1017, 975, 831, 753.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{OS}$ 247.1151, found 247.1153.

5.00			
[manually integrated]	UV_VIS_1 WVL:260 nm		

20.0	UV_VIS_1 WVL:260 nm		
[manually integrated]			

(R)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrahydropyridine (3k)

3k

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$59.7 \mathrm{mg}, 78 \%$ yield, 98% ee, white solid, $\mathrm{mp}: 87-89^{\circ} \mathrm{C}$.
Chiral HPLC: CHIRALPAK ID, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $8 / 92,1 \mathrm{~mL} / \mathrm{min}, 203 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=56.5$ $\min , t_{\mathrm{R}}($ major $)=57.8 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{23}=-8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1$ H), 7.02 (dd, $J=0.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84 (dt, $J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.29 (s, 1 H), 4.35 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.12-2.94$ (m, 2 H), 2.42 ($\mathrm{s}, 3 \mathrm{H}$), 2.32-2.24 (m, 2 H), 1.94-1.78 (m, 2 H), 1.28 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 159.2,143.5,134.8,133.5,133.2,129.6,128.2,127.6,122.8,121.0$, 120.4, 109.6, 81.7, 47.9, 45.3, 44.7, 42.8, 29.9, 26.0, 21.4 .

IR (neat, $\mathbf{c m}^{-1}$): 2963, 2922, 1597, 1482, 1344, 1165, 1094, 952, 754, 688.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 384.1628$, found 384.1627.

80.0	UR_VIS_1 WVL:203 nm		

Tert-butyl (R)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3,6-dihydropyridine-1(2H)carboxylate (31)

31

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 1}(66.2 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$52.0 \mathrm{mg}, 79 \%$ yield, 96% ee, colorless oil.
Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $2 / 98,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $12.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.0 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=-6\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.41$ ($\mathrm{s}, 1 \mathrm{H}$), $3.29-3.23$ (m, 1 H), 2.38-2.31 (m, 2 H), 1.82-1.76 (m, 2 H), 1.45 (s, 9 H), 1.34 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,154.9,135.0,133.6,128.2,122.9,122.3,120.4,109.6,81.9$, 79.4, 48.3, 45.5, 43.5, 40.9, 30.0, 28.4, 26.1.

IR (neat, $\mathbf{c m}^{-1}$): 2976, 2932, 1698, 1481, 1420, 1366, 1172, 980, 845, 753.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3} 330.2064$, found 330.2062.

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	12.600	0.551	50.05
2	17.010	0.550	49.95
Total:		$\mathbf{1 . 1 0 0}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	12.393	27.826	98.06
2	17.033	0.551	1.94
Total:		$\mathbf{2 8 . 3 7 7}$	$\mathbf{1 0 0 . 0 0}$

(R)-3-((1H-inden-2-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3m)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 m}(52.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $37.2 \mathrm{mg}, 71 \%$ yield, 96% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $6.2 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=6.8 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{22}=+66\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.30-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.81$ (s, 2 H), 1.41 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 159.3,145.8,144.8,143.4,134.9,130.4,128.3,126.2,124.0,123.3$, $122.8,120.5,120.1,109.7,81.8,45.8,42.4,42.1,26.5$.

IR (neat, cm $^{-1}$): 2962, 2885, 1610, 1481, 1392, 1265, 1101, 978, 831, 752.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}$ 263.1430, found 263.1431.

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	6.180	28.276	49.98
2	6.807	28.295	50.02
Total:		$\mathbf{5 6 . 5 7 2}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	6.163	398.223	98.11
2	6.807	7.687	1.89
Total:		405.910	100.00

(R)-3-((3,4-dihydronaphthalen-1-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3n)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(49 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 n}(55.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF.
$39.7 \mathrm{mg}, 72 \%$ yield, 97% ee, colorless oil.
Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \operatorname{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=$ $11.5 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.3 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{22}=-25\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1}$ H NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.15$ (m, 2 H$), 1.31$ ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.4,136.5,135.5,135.4,133.1,129.4,128.0,127.5,126.5,126.1$, 123.1, 123.0, 120.2, 109.6, 82.1, 46.1, 41.7, 28.6, 25.0, 23.2.

IR (neat, cm $^{-1}$): 2963, 2881, 1655, 1597, 1480, 1234, 1016, 975, 833, 744.
HRMS (ESI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{OK} 315.1146$, found 315.1145.

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	12.093	24.237	49.91
2	16.947	24.321	50.09
Total:		$\mathbf{4 8 . 5 5 8}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU* $\mathbf{m i n}$	Relative Area $\%$
1	11.473	8.712	1.66
2	15.297	516.295	98.34
Total:		$\mathbf{5 2 5 . 0 0 7}$	$\mathbf{1 0 0 . 0 0}$

30

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(109.6 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathbf{2 0}(49.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF. $34.6 \mathrm{mg}, 71 \%$ yield, 90% ee, colorless oil.

Chiral HPLC: CHIRALPAK IB, $25^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $7.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.32$ (m, 2 H), 1.84-1.68 (m, 2 H), 1.38-1.14 (m, 9 H), 0.86 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,146.6,135.5,128.0,122.9,120.3,113.4,109.6,82.0,46.3$, 45.3, 37.0, 31.5, 27.6, 26.3, 22.5, 14.0.

IR (neat, cm $^{-1}$): 2958, 2876, 1638, 1599, 1482, 1232, 1018, 982, 896, 747.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}$ 245.1900, found 245.1902.

Methyl (R)-6-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)hept-6-enoate (3p)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(164.4 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathbf{2 p}(58.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$32.8 \mathrm{mg}, 57 \%$ yield, 92% ee, colorless oil.
Chiral HPLC: CHIRALPAK ID, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 203 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=5.7$ $\min , t_{\mathrm{R}}($ minor $)=6.4 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), 4.86 (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ ($\mathrm{s}, 3 \mathrm{H}$), 2.43-2.31 (m, 2 H), 2.27-2.23 (m, 2 H), 1.81-1.64 (m, 2 H), 1.56-1.42 (m, 2 H), 1.40-1.25
(m, 5 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 174.1,159.3,145.9,135.3,128.1,122.8,120.3,113.9,109.6,81.9$, 51.5, 46.3, 45.3, 36.5, 33.8, 27.3, 26.3, 24.4.

IR (neat, $\mathbf{c m}^{-1}$): 3006, 2959, 1739, 1482, 1459, 1276, 1262, 976, 776, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3} 289.1798$, found 289.1800 .

| 500 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 400 |

(R)-6-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)hept-6-en-1-yl acetate (3q)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(164.4 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathbf{2 q}(60.8 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$34.6 \mathrm{mg}, 54 \%$ yield, 93% ee, colorless oil.
Chiral HPLC: CHIRALPAK ID, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes 4/96, $1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=6.0$ $\min , t_{\mathrm{R}}($ minor $)=6.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+5\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{dt}, J=0.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H})$, 1.40-1.19 (m, 7 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.2,159.3,146.1,135.3,128.1,122.8,120.3,113.7,109.6,81.9$, 64.5, 46.3, 45.3, 36.8, 28.4, 27.4, 26.3, 25.5, 21.0.

IR (neat, cm $^{-1}$): 2939, 2866, 1739, 1597, 1482, 1366, 1239, 1046, 978, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{3} 303.1955$, found 303.1953.

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	6.233	4.081	50.85
2	6.820	3.945	49.15
Total:		$\mathbf{8 . 0 2 6}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	5.970	24.450	96.55
2	6.583	0.873	3.45
Total:		$\mathbf{2 5 . 3 2 3}$	100.00

(R)-5-(tert-butyl)-3-methyl-3-(2-propylpent-2-en-1-yl)-2,3-dihydrobenzofuran (3s)

This compound was prepared according to the General Procedure from the reaction of $\mathbf{1 b}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 s}(49.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF.
$18.0 \mathrm{mg}, 30 \%$ yield, $E / Z=2.5 / 1,91 \%$ ee, colorless oil. The E - and Z-isomers were determined by 1-D NOE experiments.

Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $0.4 / 99.6,0.3 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R} 1}$ (major) $=18.6 \mathrm{~min}, t_{\mathrm{R} 1}($ minor $)=21.9 \mathrm{~min} ; t_{\mathrm{R} 2}($ major $)=19.4 \mathrm{~min}, t_{\mathrm{R} 2}($ minor $)=20.9 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+33\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.13(\mathrm{td}, J=2.0 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.123(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.21(\mathrm{~m}, 2 \mathrm{H})$, 2.03-1.92 (m, 2 H), 1.87-1.58 (m, 2 H), 1.32-1.30 (m, 2 H), $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.1,143.2,135.5,135.1,131.9,124.6,119.9,108.6,82.3,46.7$, 45.9, 40.0, 34.3, 31.8, 26.2, 21.7, 21.1, 14.6, 14.0.

IR (neat, cm $^{-1}$): 2960, 2931, 1594, 1490, 1363, 1261, 1186, 1057, 989, 816.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O} 301.2526$, found 301.2533.

Integration Results			
No.	Retention Time min	Area $\mathbf{m A U *}$ min	Relative Area $\%$
1	18.610	9.506	39.79
2	19.403	2.530	10.59
3	20.797	2.145	8.98
4	21.823	9.708	40.64
Total:		$\mathbf{2 3 . 8 8 9}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	18.633	15.919	67.28
2	19.417	6.668	28.18
3	20.863	0.328	1.39
4	21.890	0.745	3.15
Total:		$\mathbf{2 3 . 6 5 9}$	$\mathbf{1 0 0 . 0 0}$

(R)-5-(tert-butyl)-3-(2,3-dimethylbut-2-en-1-yl)-3-methyl-2,3-dihydrobenzofuran (3t)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 b}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $2 \mathrm{t}(43.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF.
$23.4 \mathrm{mg}, 43 \%$ yield, $99.8 \% \mathrm{ee}$, colorless oil.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i}$ PrOH-hexanes $0.4 / 99.6,0.3 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}$ (minor) $=21.6 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.7 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{22}=+38\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.13(\mathrm{dd}, J=2.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1$ H), 2.23 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.63 ($\mathrm{s}, 3 \mathrm{H}$), 1.56 ($\mathrm{s}, 3 \mathrm{H}$), 1.41 ($\mathrm{s}, 3 \mathrm{H}$), 1.35 ($\mathrm{s}, 3 \mathrm{H}$), 1.28 (m, 9 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.2,143.2,135.0,128.6,124.6,124.5,120.2,108.5,83.4,46.7$, 44.5, 34.3, 31.8, 25.4, 20.9, 20.84, 20.82.

IR (neat, $\mathbf{c m}^{-1}$): 2961, 2917, 1738, 1648, 1490, 1462, 1262, 1057, 993, 815.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O} 273.2213$, found 273.2219.

(R)-3-benzyl-3-methyl-2,3-dihydrobenzofuran (3u)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 v}(40.8 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$31.4 \mathrm{mg}, 70 \%$ yield, 98% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $19.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.7 \mathrm{~min}$.
$[\alpha]_{\mathbf{D}}{ }^{21}=+1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 2 \mathrm{H})$, 6.95-6.92 (m, 1 H), 6.88-6.84 (m, 1 H$), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 159.5,137.5,134.8,130.3,128.1,127.9,126.4,123.3,120.2,109.7$, 81.8, 46.6, 46.2, 24.5.

IR (neat, cm $^{-1}$): 3432, 2086, 1637, 1479, 1418, 1261, 1122, 1042, 750, 702.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}$ 225.1274, found 225.1272.

(R)-4-((5-(tert-butyl)-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrahydrop yridine (3v)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 b}$ ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 k}$ ($77.0 \mathrm{mg}, 0.2 \mathrm{mmol}$). $65.9 \mathrm{mg}, 75 \%$ yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $3 / 97,1 \mathrm{~mL} / \mathrm{min}, 279 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=32.7$ $\min , t_{\mathrm{R}}($ major $)=37.8 \mathrm{~min}$.
$[\alpha]_{\mathbf{D}}{ }^{24}=+14\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=2.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1$
H), $4.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 2 \mathrm{H})$, 1.91-1.79 (m, 2 H$), 1.29$ (s, 3 H), 1.27 (s, 9 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 157.0,143.5,143.4,134.1,133.6,133.2,129.6,127.6,124.9,120.9$, 119.7, 108.7, 82.2, 47.9, 45.5, 44.8, 42.9, 34.3, 31.7, 29.9, 25.7, 21.5.

IR (neat, cm $^{-1}$): 2963, 2873, 1490, 1461, 1349, 1165, 1094, 950, 818, 736.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S} 440.2254$, found 440.2253 .

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	32.233	26.305	50.04
2	38.003	26.261	49.96
Total:		$\mathbf{5 2 . 5 6 7}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	32.740	1.229	1.59
2	37.823	76.299	98.41
Total:		$\mathbf{7 7 . 5 2 8}$	100.00

(R)-4-((5-isopropyl-3,6-dimethyl-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrahydr opyridine (3w)

The compound (a colorless oil, $72.0 \mathrm{mg}, 82 \%$ yield, $97 \% \mathrm{ee}$) was prepared according to the General Procedure from the reaction of $\mathbf{1 c}(66.0 \mathrm{mg}, 0.2$ mmol) and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$. The gram scale reaction was conducted with $\mathbf{1 c}(1.32 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $\mathbf{2 k}(1.54 \mathrm{~g}, 4.0 \mathrm{mmol})$ to afford $\mathbf{3 w}$ with 72% yield $(1.27 \mathrm{~g})$ and 97% ee.

Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C},{ }^{i}$ PrOH-hexanes $3 / 97,1 \mathrm{~mL} / \mathrm{min}, 287 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=30.2$ $\min , t_{\mathrm{R}}($ major $)=33.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{24}=+9\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, $6.53(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.46(\mathrm{~m}, 2 \mathrm{H})$, 3.13-3.03 (m, 3 H), 2.42 (s, 3 H), 2.27 (s, 5 H), 1.93-1.82 (m, 2 H), 1.27 (s, 3 H), 1.18-1.14 (m, 6 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 157.0,143.4,138.9,135.0,133.7,133.2,132.2,129.6,127.6,120.8$, $118.9,111.0,82.1,47.9,45.4,44.8,42.9,29.9,28.8,25.9,23.7,23.4,21.4,19.6$.

IR (neat, $\mathbf{c m}^{-1}$): 2960, 2926, 1489, 1459, 1349, 1165, 1094, 948, 818, 738.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S} 440.2254$, found 440.2252 .

Integration Results			
No.	Retention Time min	Area mAU^min	Relative Area $\%$
1	31.037	16.436	50.02
2	34.893	16.420	49.98
Total:		$\mathbf{3 2 . 8 5 7}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU min	Relative Area $\%$
1	30.180	1.732	1.37
2	33.243	124.493	98.63
Total:		$\mathbf{1 2 6 . 2 2 5}$	$\mathbf{1 0 0 . 0 0}$

(R)-4-((3,5-dimethyl-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrahydropyridine (3x)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 d}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$47.6 \mathrm{mg}, 63 \%$ yield, 97% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \operatorname{PrOH}$-hexanes $10 / 90,1 \mathrm{~mL} / \mathrm{min}, 281 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=17.3$ $\min , t_{\mathrm{R}}($ major $)=27.3 \mathrm{~min}$.
$[\alpha]_{D}{ }^{24}=+12\left(c=0.68, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDC1 ${ }_{3}$): $\delta 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.26$ (s, 3 H), 1.94-1.80 (m, 2 H), 1.26 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.1,143.5,134.9,133.6,133.4,129.7,129.6,128.6,127.6,123.3$, 120.9, 109.2, 81.8, 47.8, 45.4, 44.8, 42.8, 30.0, 26.0, 21.5, 20.8.

IR (neat, $\mathbf{c m}^{-1}$): 2967, 2924, 1490, 1459, 1344, 1165, 1094, 982, 814, 688.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S} 398.1784$, found 229.1785.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	17.260	6.092	50.10
2	28.113	6.067	49.90
Total:		$\mathbf{1 2 . 1 5 9}$	$\mathbf{1 0 0 . 0 0}$

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 e}(105.1 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol}) . \mathrm{NiI}_{2}(9.5 \mathrm{mg}$, 0.030 mmol) and $\mathbf{L} 1(11.4 \mathrm{mg}, 0.042 \mathrm{mmol})$ were used.
$16.7 \mathrm{mg}, 38 \%$ yield, 99% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 289 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $13.2 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=21.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=-5\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.81-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.65(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 2 \mathrm{H})$, 1.56-1.45 (m, 4 H), 1.30 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 157.5\left(\mathrm{~d}, J_{C-F}=236.0 \mathrm{~Hz}\right.$), $155.1,137.3\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 134.2$, $126.3,114.0\left(\mathrm{~d}, J_{C-F}=24.0 \mathrm{~Hz}\right), 110.2\left(\mathrm{~d}, J_{C-F}=24.0 \mathrm{~Hz}\right), 109.6\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 82.9,48.8,46.0$, 30.2, 26.1, 25.4, 23.0, 22.1.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta-124.40$.
IR (neat, cm $^{-1}$): 2961, 2850, 1591, 1486, 1261, 1175, 1092, 1039, 807, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FO} 247.1493$, found 247.1509.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	12.510	5.589	51.06
2	19.420	5.358	48.94
Total:		$\mathbf{1 0 . 9 4 7}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	13.243	25.627	99.56
2	21.563	0.113	0.44
Total:		$\mathbf{2 5 . 7 4 0}$	$\mathbf{1 0 0 . 0 0}$

(R)-4-((3-methyl-5-phenyl-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrahydropyrid ine ($\mathbf{3 z}$)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 f}(70.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$. $48.7 \mathrm{mg}, 55 \%$ yield, 95% ee, white solid, $\mathrm{mp}: 60-62^{\circ} \mathrm{C}$.

Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$
$45.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=54.3 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{24}=+75\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2$ H), 7.35 (dd, $J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.14-2.93$ (m, 2 H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 158.9,143.5,141.2,135.5,134.0,133.5,133.2,129.6,128.7,127.6$, 127.4, 126.7, 126.6, 121.6, 121.1, 109.8, 82.2, 47.9, 45.4, 44.8, 42.8, 30.0, 26.1, 21.5.

IR (neat, cm $^{-1}$): 2963, 2853, 1601, 1482, 1344, 1165, 1096, 958, 818, 738.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S} 460.1941$, found 460.1941 .

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	46.800	6.595	50.32
2	53.863	6.512	49.68
Total:		$\mathbf{1 3 . 1 0 7}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	45.900	80.080	97.64
2	54.357	1.936	2.36
Total:		$\mathbf{8 2 . 0 1 6}$	$\mathbf{1 0 0 . 0 0}$

(R)-3-(cyclohex-1-en-1-ylmethyl)-3,6-dimethyl-2,3-dihydrobenzofuran (3ab)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 h}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$29.0 \mathrm{mg}, 60 \%$ yield, 98% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 284 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $11.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.5 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=-8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=0.4 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.59 (s, 1 H), 5.41 (s, 1 H), 4.45 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.13 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (s, 3 H), 2.27 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.5,138.0,134.7,133.0,125.8,122.5,121.0,110.2,82.6,49.0$, 45.2, 30.2, 26.3, 25.4, 23.0, 22.2, 21.5.

IR (neat, $\mathbf{c m}^{-1}$): 2923, 2836, 1592, 1495, 1425, 1251, 1122, 1007, 980, 751.

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}$ 243.1743, found 243.1749.

(R)-3-(cyclohex-1-en-1-ylmethyl)-3,5,7-trimethyl-2,3-dihydrobenzofuran (3ac)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 i}(60.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$33.3 \mathrm{mg}, 65 \%$ yield, 90% ee, colorless oil.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 290 \mathrm{~nm}$, $t_{\mathrm{R}}($ major $)=10.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.6 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 1}}=-2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.75(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H})$, $4.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 5 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H})$, 1.78-1.65 (m, 2 H), 1.57-1.45 (m, 4 H), 1.27 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 155.4,135.3,134.8,129.7,129.4,125.7,120.8,119.0,82.3,48.9$, $45.8,30.2,25.9,25.5,23.1,22.2,20.8,15.0$.

IR (neat, cm $^{-1}$): 3429, 2923, 2836, 1638, 1482, 1200, 1123,1003, 854, 749.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}$ 257.1900, found 257.1903.

Integration Results			
No.	Retention Time min	Area mAU min	Relative Area $\%$
1	9.780	3.450	50.82
2	11.063	3.338	49.18
Total:		6.789	100.00

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	10.870	181.991	94.98
2	12.607	9.617	5.02
Total:		$\mathbf{1 9 1 . 6 0 7}$	$\mathbf{1 0 0 . 0 0}$

(R)-8-((6-chloro-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-1,4-dioxaspiro[4.5]dec-7-ene (3ae)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 k}(61.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 h}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $41.0 \mathrm{mg}, 64 \%$ yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C},{ }^{i}$ PrOH-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}$ (minor) $=10.4 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.5 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 1}}=-8\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 4 \mathrm{H}), 1.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 160.2,134.3,134.0,133.3,123.6,123.4,120.4,110.4,107.6,83.2$, 64.4, 47.6, 45.3, 35.8, 31.2, 29.2, 26.0.

IR (neat, cm $^{-1}$): 2917, 1593, 1480, 1417, 1316, 1260, 1118, 1042, 875, 804.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClO}_{3} 321.1252$, found 321.1259.

Integration Results			
No.	Retention Time min	Area mAU min	Relative Area $\%$
1	9.533	0.199	49.80
2	10.437	0.200	50.20
Total:		$\mathbf{0 . 3 9 9}$	$\mathbf{1 0 0 . 0 0}$

| [manually integrated] | EXT260NM WVL:260 nm | | |
| :--- | :--- | :--- | :--- | :--- |

(S)-3-(tert-butyl)-3-(cyclohex-1-en-1-ylmethyl)-2,3-dihydrobenzofuran (3af)

 The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 1}(63.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$33.0 \mathrm{mg}, 65 \%$ yield, 98% ee, colorless oil.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 295 \mathrm{~nm}$, $t_{\mathrm{R}}($ major $)=7.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.9 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=+68\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.19-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H})$,
$6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.33(\mathrm{~m}, 1 \mathrm{H})$, 1.92 (s, 2 H), 1.44-1.34 (m, 6 H), 0.93 (s, 9 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 160.6,135.9,131.9,127.9,126.4,125.6,119.2,109.0,76.1,54.4$, 42.3, 37.2, 30.0, 25.6, 25.5, 23.0, 22.1.

IR (neat, cm $^{-1}$): 2961, 2935, 1687, 1655, 1459, 1217, 1112, 1084, 835, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}$ 271.2056, found 271.2058.

Integration Results			
No.	Retention Time min	Area mAU* \min	Relative Area $\%$
1	7.523	0.987	50.13
2	9.720	0.981	49.87
Total:		$\mathbf{1 . 9 6 8}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area $\mathbf{m A U *}$ min	Relative Area $\%$
1	7.743	57.854	98.76
2	10.943	0.724	1.24
Total:		$\mathbf{5 8 . 5 7 8}$	$\mathbf{1 0 0 . 0 0}$

(R)-3-(cyclohex-1-en-1-ylmethyl)-3-octyl-2,3-dihydrobenzofuran (3ag)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 m}(74.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$. $42.4 \mathrm{mg}, 68 \%$ yield, 95% ee, colorless.

Chiral HPLC: CHIRALPAK IB, $25{ }^{\circ} \mathrm{C},{ }^{i} \operatorname{PrOH}$-hexanes $0.2 / 99.8,0.5 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $9.0 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.1 \mathrm{~min}$.
$[\alpha]_{\mathbf{D}}{ }^{22}=-2\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.10(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (dt, $J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H}), 1.70-1.42(\mathrm{~m}, 8 \mathrm{H}), 1.32-1.00(\mathrm{~m}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=6.8$ Hz, 3 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 159.8,134.6,134.0,127.9,125.9,123.7,120.0,109.3,80.5,48.9$, $47.6,39.5,31.8,30.2,30.1,29.4,29.3,25.5,24.2,23.0,22.6,22.1,14.1$.

IR (neat, cm $^{-1}$): 2924, 2857, 1597, 1482, 1459, 1230, 1019, 975, 831, 745.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O} 327.2682$, found 327.2682.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	9.073	5.795	49.95
2	10.093	5.806	50.05
Total:		$\mathbf{1 1 . 6 0 1}$	100.00

Integration Results			
No.	Retention Time min	Area mAU * min	Relative Area $\%$
1	8.950	725.404	97.48
2	10.127	18.751	2.52
Total:		744.155	100.00

(R, E)-3-(cyclooct-1-en-1-ylmethyl)-3-pentyl-2,3-dihydrobenzofuran (3ah)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 n}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 e}(51.6 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$26.8 \mathrm{mg}, 46 \%$ yield, 93% ee, colorless oil.

Chiral HPLC: CHIRALPAK IB, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$
$7.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=7.5 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{22}=+10\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1$
H), 6.75 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45-0.88(\mathrm{~m}, 14 \mathrm{H}), 0.83(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 159.8,137.0,134.0,129.0,127.8,123.6,120.0,109.3,80.3,49.1$, $45.4,39.3,32.4,30.0,29.4,28.2,26.70,26.68,26.0,23.9,22.5,14.0$.

IR (neat, $\mathbf{c m}^{-1}$): 2963, 2851, 1595, 1459, 1260, 1122, 1093, 978, 803, 748.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O} 313.2526$, found 313.2527..

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	7.117	2.355	50.00
2	7.373	2.356	50.00
Total:		4.711	100.00

(R)-4-((3-((but-3-en-1-yloxy)methyl)-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrah ydropyridine (3ai)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 0}(68.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF at $60^{\circ} \mathrm{C}$.
$37.2 \mathrm{mg}, 43 \%$ yield, 95% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $10 / 90,1 \mathrm{~mL} / \mathrm{min}, 285 \mathrm{~nm}, t_{\mathrm{R}}$ (minor) $=20.7$ $\min , t_{\mathrm{R}}($ major $)=24.2 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 2$ H), $6.82(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H})$, 5.09-5.01 (m, 2 H), 4.28 (s, 2 H), 3.60-3.36 (m, 6 H), 3.10-2.89 (m, 2 H), 2.52-2.27 (m, 4 H), 2.42, (s, 3 H), 1.87-1.81 (m, 2 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.8,143.5,135.1,133.3,132.9,131.1,129.6,128.8,127.6,124.2$, 121.1, 120.1, 116.4, 109.7, 78.3, 75.7, 70.6, 49.9, 44.8, 42.8, 42.6, 34.0, 30.0, 21.5.

IR (neat, cm $^{-1}$): 2924, 2857, 1597, 1482, 1347, 1165, 1098, 954, 755, 690.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ 454.2047, found 454.2061.

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	20.347	2.333	50.45
2	23.980	2.292	49.55
Total:		$\mathbf{4 . 6 2 5}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	20.670	0.486	2.37
2	24.167	20.027	97.63
Total:		20.513	100.00

(S)-4-(cyclohex-1-en-1-ylmethyl)-4-methylchromane (3aj)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 p}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$28.1 \mathrm{mg}, 58 \%$ yield, 94% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C},{ }^{i}$ PrOH-hexanes $0 / 100,0.3 \mathrm{~mL} / \mathrm{min}, 226 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=$ $18.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.0 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=+1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.66(\mathrm{~m}, 6 \mathrm{H})$, 1.55-1.46 (m, 4 H$), 1.31$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 153.9,135.0,131.1,127.5,126.9,126.2,120.1,116.9,63.0,51.2$, $34.5,33.8,30.7,30.4,25.5,23.1,22.2$.
IR (neat, $\mathbf{c m}^{-1}$): 3410, 2918, 1594, 1447, 1420, 1261, 1117, 1042, 892, 750.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O} 243.1743$, found 243.1748.

Integration Results			
No.	Retention Time min	Area mAU min	Relative Area $\%$
1	16.480	23.612	49.82
2	17.137	23.781	50.18
Total:		$\mathbf{4 7 . 3 9 4}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	18.450	27.891	97.13
2	18.997	0.823	2.87
Total:		$\mathbf{2 8 . 7 1 4}$	$\mathbf{1 0 0 . 0 0}$

(R)-(3-(cyclohex-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran-5-yl)(piperidin-1-yl)metha none (3al)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 r}(138.6 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$30.6 \mathrm{mg}, 45 \%$ yield, 92% ee, white solid, $\mathrm{mp}: 77-79^{\circ} \mathrm{C}$.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=13.8$ $\min , t_{\mathrm{R}}($ minor $)=15.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{22}=+22\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.18(\mathrm{dd}, J=2.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1$ H), 4.51 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (brs, 4 H), 2.33-2.25 (m, 2 H), 1.98 (s, 2 H), 1.77-1.43 (m, 12 H$), 1.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.7,160.4,136.0,134.2,128.4,127.5,126.2,122.6,108.9,82.8$, 49.0, 48.7, 45.4, 43.6, 30.1, 26.4, 26.2, 25.8, 25.3, 24.6, 22.9, 22.0.

IR (neat, $\mathbf{c m}^{-1}$): 3569, 3450, 1655, 1638, 1473, 1277, 1262, 1074, 766, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2} 340.2271$, found 340.2272.

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	13.823	1.373	49.97
2	15.597	1.375	50.03
Total:		$\mathbf{2 . 7 4 8}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU *in	Relative Area $\%$
1	13.747	28.995	96.12
2	15.573	1.169	3.88
Total:		$\mathbf{3 0 . 1 6 4}$	$\mathbf{1 0 0 . 0 0}$

Tert-butyl (R)-3-(cyclohex-1-en-1-ylmethyl)-3-methylindoline-1-carboxylate (3am)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 x}(74.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF.
$30.1 \mathrm{mg}, 46 \%$ yield, 83% ee, colorless oil.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i}$ PrOH-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 284 \mathrm{~nm}$, $t_{\mathrm{R}}($ major $)=21.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=24.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{22}=-25\left(\mathrm{c}=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$, mixture of rotamers): $\delta[7.81(\mathrm{~s}), 7.42(\mathrm{~s}), 1 \mathrm{H}], 7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1$ H), $7.04(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H})$, 2.22(s, 2 H), 1.96 (s, 2 H), 1.64-1.40 (m, 15 H), 1.30 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 152.5,142.1,141.1,140.2,139.2,134.6$, $127.5,125.8,122.5,122.1,114.6,81.3,80.2,59.7,50.1,43.1,42.44,30.1,28.5,27.3,25.5,23.0$, 22.1.

IR (neat, cm $^{-1}$): 2927, 1704, 1600, 1485, 1393, 1291, 1147, 1017, 859, 750.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{2}$ 328.2271, found 328.2277.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 3am were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	21.013	1.310	49.24
2	22.253	1.351	50.76
Total:		$\mathbf{2 . 6 6 1}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	21.527	25.807	91.65
2	24.157	2.352	8.35
Total:		$\mathbf{2 8 . 1 5 9}$	$\mathbf{1 0 0 . 0 0}$

Tert-butyl(R)-3-methyl-3-((1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)methyl)indoline-1-carboxylat e (3an)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 x}(74.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $48.2 \mathrm{mg}, 50 \%$ yield, 91% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $10 / 90,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=15.2$ $\min , t_{\mathrm{R}}($ minor $)=16.7 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{22}=-13\left(\mathrm{c}=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$, mixture of rotamers): $\delta[7.78(\mathrm{~s}), 7.35(\mathrm{~s}), 1 \mathrm{H}], 7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2$ H), 7.30 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 1 \mathrm{H})$, $5.29(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}$, $2 \mathrm{H}), 1.89-1.67$ (m, 2 H), 1.51 ($\mathrm{s}, 9 \mathrm{H}$), 1.27 ($\mathrm{d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 152.2,143.4,141.9,138.9,133.5,133.1$, $129.6,127.9,127.6,122.5,122.2,120.1,114.7,81.4,59.3,48.6,44.7,42.8,42.5,29.9,28.4,27.1$, 21.5.

IR (neat, $\mathbf{c m}^{-1}$): 2975, 2925, 1698, 1598, 1484, 1393, 1164, 1018, 951, 712.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 483.2312$, found 483.2321.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 3an were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Integration Results			
No.	Retention Time min	Area $\mathbf{m A U *}$ min	Relative Area $\%$
1	15.380	4.970	50.25
2	16.730	4.920	49.75
Total:		$\mathbf{9 . 8 9 0}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU* $\mathbf{m i n}$	Relative Area $\%$
1	15.160	116.761	95.63
2	16.697	5.338	4.37
Total:		$\mathbf{1 2 2 . 0 9 9}$	$\mathbf{1 0 0 . 0 0}$

Tert-butyl(R)-3-((1,4-dioxaspiro[4.5]dec-7-en-8-yl)methyl)-3-methylindoline-1-carboxylate (3ao)
 The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 x}(74.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 h}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $29.3 \mathrm{mg}, 38 \%$ yield, 84% ee, colorless oil.

Chiral HPLC: CHIRALPAK ID, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $2 / 98,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=9.7$ $\min , t_{\mathrm{R}}($ minor $)=12.7 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=-11\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta[7.81(\mathrm{~s}), 7.41(\mathrm{~s}), 1 \mathrm{H}], 7.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 5 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 2.27-2.23(\mathrm{~d}, J=4.0$ Hz), 1.89-176 (m, 2 H), 1.64-1.57 (m, 11 H), 1.32 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 152.5$, 142.1, 139.9, 134.3, 127.7, 122.7, 122.1, 114.7, 107.6, 81.4, 80.4, 64.3, 59.9, 48.7, 43.1, 35.9, 31.3, 29.1, 28.5, 27.0.

IR (neat, $\mathbf{c m}^{-1}$): 2925, 1703, 1599, 1485, 1393, 1256, 1147, 1080, 857, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{4} 386.2326$, found 386.2337 .
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 3ao were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Integration Results			
No.	Retention Time min	Area mAU* \min	Relative Area $\%$
1	9.853	4.322	50.33
2	12.930	4.266	49.67
Total:		$\mathbf{8 . 5 8 8}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	9.747	52.292	91.80
2	12.747	4.668	8.20
Total:		$\mathbf{5 6 . 9 6 1}$	$\mathbf{1 0 0 . 0 0}$

Tert-butyl (R)-3-((1H-inden-2-yl)methyl)-3-methylindoline-1-carboxylate (3ap)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 x}(74.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 m}(52.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $38.3 \mathrm{mg}, 53 \%$ yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $4 / 96,1 \mathrm{~mL} / \mathrm{min}, 284 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=$ $5.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=6.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=-24\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$, mixture of isomers): δ [7.82(s), $\left.7.39(\mathrm{~s}), 1 \mathrm{H}\right], 7.37-7.07(\mathrm{~m}, 6 \mathrm{H})$, 7.01-6.97 (m, 1 H), 6.51 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04-3.98 (m, 1 H), 3.65 (s, 1 H), 3.12-2.89 (m, 2 H), 2.81 (s, 2 H), 1.50 (s, 9 H), 1.40 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of isomers): $\delta 152.4,145.8,144.9,143.4,142.1,139.1$, $130.4,127.9,126.2,123.9,123.3,122.7,122.3,120.2,114.8,81.8,80.5,59.4,43.5,42.8,42.5,28.4$, 27.9.

IR (neat, cm $^{-1}$): $3424,2975,2928,1700,1599,1460,1392,1147,857,751$.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{2} 362.2125$, found 362.2123.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 3ap were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	5.673	6.398	48.03
2	6.390	6.924	51.97
Total:		$\mathbf{1 3 . 3 2 2}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU* $\mathbf{m i n}$	Relative Area $\%$
1	5.393	109.721	98.41
2	6.107	1.777	1.59
Total:		$\mathbf{1 1 1 . 4 9 8}$	$\mathbf{1 0 0 . 0 0}$

(R)-1-(3-(cyclohex-1-en-1-ylmethyl)-3-methylindolin-1-yl)ethan-1-one (3aq)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 y}(63.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF.
$24.7 \mathrm{mg}, 46 \%$ yield, 92% ee, colorless oil.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $10 / 90,1 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=6.7$ $\min , t_{\mathrm{R}}($ minor $)=8.3 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=-13\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1}$ H NMR (400 MHz, CDCl ${ }_{3}$): $\delta 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26-1.97 (m, 5 H), 1.65 (s, 2 H), 1.57-1.36 (m, 6 H), 1.31 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.4,142.1,139.6,134.9,127.8,125.9,123.6,122.4,116.9,60.8$, $50.3,43.8,30.0,27.4,25.5,24.2,22.9,22.1$.

IR (neat, cm $^{-1}$): 2923, 1663, 1597, 1481, 1460, 1402, 1120, 1043, 753, 618.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO} 270.1852$, found 270.1859.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	6.700	3.726	49.53
2	8.337	3.797	50.47
Total:		$\mathbf{7 . 5 2 4}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	6.667	384.636	95.82
2	8.327	16.788	4.18
Total:		$\mathbf{4 0 1 . 4 2 5}$	$\mathbf{1 0 0 . 0 0}$

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 z}(77.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $51.2 \mathrm{mg}, 75 \%$ yield, 83% ee, colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{21}=-21\left(\mathrm{c}=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$, $t_{\mathrm{R}}($ major $)=23.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=25.4 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$, mixture of rotamers): $\delta[7.67(\mathrm{~s}), 7.26(\mathrm{~s}), 1 \mathrm{H}], 6.97(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1$ H), $6.77(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{t}, J$ $=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 2 \mathrm{H}), 1.65-1.42(\mathrm{~m}, 15 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 152.5$, 142.3, 137.5, 136.7, 134.8, 125.7, $122.8,122.3,115.4,80.2,60.1,50.1,42.8,30.2,28.5,27.4,25.5,23.1,22.2,21.7$.

IR (neat, $\mathbf{c m}^{-1}$): 2926, 2836, 1705, 1592, 1498, 1389, 1243, 1161, 1027, 764.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2} 342.2428$, found 342.2434.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 3ar were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

| 200 | EXT291NM WVL:291 nm |
| :--- | :--- | :--- | :--- | :--- |

Tert-butyl(R)-3,6-dimethyl-3-((1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)methyl)indoline-1-carbox

 ylate (3as)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 z}(77.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $91.3 \mathrm{mg}, 92 \%$ yield, 96% ee, colorless oil.

Chiral HPLC: CHIRALPAK IB, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $2 / 98,1 \mathrm{~mL} / \mathrm{min}, 290 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=30.0$ $\min , t_{\mathrm{R}}($ minor $)=33.7 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=-25\left(\mathrm{c}=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$, mixture of rotamers): $[\delta 7.64(\mathrm{~s}), 7.27(\mathrm{~s}), 1 \mathrm{H}], 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), 7.30 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.91 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.74 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (s, 1 H), 3.85 $(\mathrm{s}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 2 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 2 \mathrm{H})$, 1.51 (s, 9 H), 1.25 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 152.3,143.4,142.0,137.7,135.6,133.6$, 133.1, 129.5, 127.6, 122.8, 122.1, 120.7, 115.4, 81.4, 80.3, 59.5, 48.6, 44.7, 42.8, 42.5, 29.9, 28.3, 27.2, 21.6, 21.4.

IR (neat, $\mathbf{c m}^{-1}$): $3428,2974,1699,1595,1497,1347,1163,1028,890,737$.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 497.2477$, found 497.2469.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 3as were observed on the
NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl (R)-3-(cyclohex-1-en-1-ylmethyl)-3,5-dimethylindoline-1-carboxylate (3at)

The compound wasprepared according to the General Procedure from the reaction of $\mathbf{1 a a}(77.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $49.1 \mathrm{mg}, 72 \%$ yield, 85% ee, colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{21}=-7\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$, $t_{\mathrm{R}}($ minor $)=17.3 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.7 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$, mixture of rotamers): $\delta[7.67$ (s), $7.28(\mathrm{~s}), 1 \mathrm{H}], 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $6.88(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 2 \mathrm{H})$, 1.55-1.44 (m, 15 H), 1.28 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 152.5,139.8,134.7,131.5,128.0,125.7$, $123.3,114.3,81.0,80.1,59.8,50.0,43.1,42.5,30.1,28.5,27.2,25.5,23.0,22.2,21.0$.

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2} 342.2428$, found 342.2434.

IR (neat, $\mathbf{c m}^{-1}$): 3424, 2927, 1701, 1637, 1494, 1456, 1390, 1243, 1019, 858, 763.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2} 342.2428$, found 342.2432.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 3at were observed on the
NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl(R)-6-chloro-3-(cyclohex-1-en-1-ylmethyl)-3-methylindoline-1-carboxylate (3au)

The compound was prepared according to the General Procedure from the reaction of 1ab ($81.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 a}(46.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $41.9 \mathrm{mg}, 58 \%$ yield, 96% ee, colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{21}=-49\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$, $t_{\mathrm{R}}($ minor $)=13.8 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.3 \mathrm{~min}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta[7.85(\mathrm{~s}), 7.40(\mathrm{~s}), 1 \mathrm{H}], 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), 6.91 (dd, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 ($\mathrm{s}, 1 \mathrm{H}$), 3.98 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 ($\mathrm{s}, 1 \mathrm{H}$), 2.20-2.19 (m, 2 H), 1.96 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.60-1.44 (m, 15 H), 1.29 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 152.2,143.3,137.8,134.3,133.1,126.1$, $123.3,122.0,115.0,81.9,80.7,60.0,50.0,42.9,42.2,30.2,28.4,27.4,25.5,23.0,22.1$.

IR (neat, cm $^{-1}$): 2928, 2836, 1706, 1599, 1486, 1386, 1152, 1081, 921, 860.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{ClNO}_{2} 362.1881$, found 362.1889.
NOTE: Because of the amide bond rotation equilibrium, the rotamers of 3au were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Integration Results			
No.	Retention Time min	Area mAU * min	Relative Area $\%$
1	13.283	9.340	49.56
2	15.597	9.505	50.44
Total:		18.845	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	13.817	0.092	1.96
2	16.287	4.616	98.04
Total:		$\mathbf{4 . 7 0 8}$	$\mathbf{1 0 0 . 0 0}$

(R)-8-((1-methyl-2,3-dihydro-1H-inden-1-yl)methyl)-1,4-dioxaspiro[4.5]dec-7-ene (3av)

$3 a v$ The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a c}(54.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 h}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$43.2 \mathrm{mg}, 76 \%$ yield, 90% ee, colorless oil.
Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes 5/95, $1 \mathrm{~mL} / \mathrm{min}, 273 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=7.1$ $\min , t_{\mathrm{R}}($ minor $)=8.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=+18\left(\mathrm{c}=0.78, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.18-7.10(\mathrm{~m}, 4 \mathrm{H}), 5.28(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 4 \mathrm{H})$, 2.93-2.78 (m, 2 H), 2.28-2.20 (m, 4 H), 2.14-2.08 (m, 1 H), 1.89-1.81 (m, 3 H), 1.66-1.59 (m, 2 H), 1.26 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.4,143.1,135.5,126.2,126.0,124.4,122.7,122.0,107.8,64.2$, 48.5, 47.7, 38.9, 35.8, 31.3, 30.3, 29.3, 27.5.

IR (neat, $\mathbf{c m}^{-1}$): 2956, 2928, 1479, 1450, 11377, 1256, 1112, 1060, 863, 759.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2}$ 285.1849, found 285.1851.

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	7.163	1.798	50.41
2	8.137	1.768	49.59
Total:		$\mathbf{3 . 5 6 6}$	$\mathbf{1 0 0 . 0 0}$

(R)-4-((1-methyl-2,3-dihydro-1H-inden-1-yl)methyl)-1-tosyl-1,2,3,6-tetrahydropyridine (3aw)

The compound was prepared according to the General Procedure from the reaction of $1 \mathbf{a c}(54.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $43.4 \mathrm{mg}, 57 \%$ yield, 84% ee, colorless oil.

Chiral HPLC: CHIRALCEL AS-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=$ $29.1 \mathrm{~min}, t_{\mathrm{R}}($ major $)=30.6 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.04(\mathrm{~m}, 4$ H), 5.26(s, 1 H$), 3.63-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.18$ (m, 2 H), 2.05-2.00 (m, 1 H), 1.98-1.74 (m, 3 H), 1.20 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 150.8,143.4,142.9,134.7,133.3,129.5,127.6,126.4,126.1,124.5$, 122.5, 120.0, 48.8, 47.6, 44.8, 42.9, 38.4, 30.3, 30.2, 27.6, 21.4.

IR (neat, cm $^{-1}$): 3386, 2924, 1600, 1458, 1346, 1162, 1096, 1039, 816, 761.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S} 382.1835$, found 382.1842.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	29.257	1.041	49.01
2	30.963	1.084	50.99
Total:		$\mathbf{2 . 1 2 5}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	29.120	1.717	8.10
2	30.553	19.473	91.90
Total:		$\mathbf{2 1 . 1 9 0}$	$\mathbf{1 0 0 . 0 0}$

(R)-2-((1-methyl-2,3-dihydro-1H-inden-1-yl)methyl)-1H-indene (3ax)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a c}(54.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 m}(52.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $23.4 \mathrm{mg}, 45 \%$ yield, 92% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}$ (minor) $=8.0$ $\min , t_{\mathrm{R}}($ major $)=10.6 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 1}}=-1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.43 (s, 1 H), 3.05-2.85 (m, 2 H), 2.79-2.65 (m, 4 H), 2.15-1.76 (m, 2 H), 1.26 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 151.0,147.7,145.3,143.6,143.2,129.7,126.5,126.3,126.1,124.6$, 123.6, 123.3, 122.6, 119.9, 48.1, 43.0, 42.8, 38.3, 30.2, 27.9.

IR (neat, cm $^{-1}$): 3440, 2962, 1636, 1459, 1416, 1316, 1260, 1094, 798, 755
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21}$ 261.1644, found 261.1638.

Integration Results			
No.	Retention Time min	Area mAU min	Relative Area $\%$
1	7.850	13.595	50.12
2	10.510	13.527	49.88
Total:		$\mathbf{2 7 . 1 2 2}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area $\mathbf{m A U *}$ min	Relative Area $\%$
1	7.963	1.054	4.07
2	10.603	24.852	95.93
Total:		$\mathbf{2 5 . 9 0 6}$	$\mathbf{1 0 0 . 0 0}$

(R)-4-((1-methyl-2,3-dihydro-1H-inden-1-yl)methyl)-1,2-dihydronaphthalene (3ay)

The compound was prepared according to the General Procedure from the reaction of $1 \mathbf{a c}(54.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 n}(55.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $25.2 \mathrm{mg}, 46 \%$ yield, 89% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $4 / 96,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=5.1$ $\min , t_{\mathrm{R}}($ major $)=5.8 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{23}=-1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.20-7.06(\mathrm{~m}, 8 \mathrm{H}), 5.66(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.60(\mathrm{~m}, 6 \mathrm{H})$, 2.18-2.08 (m, 3 H), 1.76-1.69 (m, 1 H), 1.25 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.4,143.2,136.4,136.1,134.1,128.8,127.4,126.3,126.2,125.9$, $125.9,124.4,123.1,123.0,48.3,42.3,39.1,30.2,28.8,27.1,23.3$.

IR (neat, $\mathbf{c m}^{-1}$): 3023, 2930, 1945, 1600, 1478, 1311, 1109, 1023, 756, 670.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{23}$ 275.1797, found 275.1794.

Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area $\%$
1	5.110	2.301	50.84
2	5.823	2.225	49.16
Total:		4.527	100.00

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	5.093	2.028	5.32
2	5.783	36.078	94.68
Total:		$\mathbf{3 8 . 1 0 6}$	$\mathbf{1 0 0 . 0 0}$

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a d}(57.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 m}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $18.6 \mathrm{mg}, 34 \%$ yield, 95% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=8.5$ $\min , t_{\mathrm{R}}($ major $)=9.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=+12\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.14-2.96(\mathrm{~m}$, $2 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.33$ (s, 3 H), 2.18-1.87 (m, 2 H), 1.31 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 147.9,147.5,145.3,143.6,143.4,136.1,129.6,127.1,126.1,125.3$, 123.6, 123.3, 122.4, 119.9, 47.7, 43.1, 42.8, 38.6, 30.1, 27.9, 21.3.

IR (neat, $\mathbf{c m}^{-1}$): 2922, 1959, 1593, 1460, 1421, 1260, 1119, 1037, 831, 799.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{23}$ 275.1794, found 275.1783.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	8.110	8.265	48.87
2	8.770	8.647	51.13
Total:		$\mathbf{1 6 . 9 1 1}$	$\mathbf{1 0 0 . 0 0}$

(R)-8-((1,5-dimethyl-2,3-dihydro-1H-inden-1-yl)methyl)-1,4-dioxaspiro[4.5]dec-7-ene (3ba)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a d}(57.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 h}(57.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $22.1 \mathrm{mg}, 37 \%$ yield, 90% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 271 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=6.0$ $\min , t_{\mathrm{R}}($ minor $)=7.5 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 1}}=+7\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.02-6.96(\mathrm{~m}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.79(\mathrm{~m}$, 2 H), 2.31 (s, 3 H), 2.25-2.18 (m, 4 H), 2.13-2.07 (m, 1 H), 1.92 (s, 2 H), 1.90-1.79 (m, 1 H), $1.65-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.7,143.3,135.9,135.7,126.8,125.1,122.5,121.9,107.9,64.3$, 48.5, 47.4, 39.2, 35.9, 31.4, 30.2, 29.4, 27.5, 21.2.

IR (neat, $\mathbf{c m}^{-1}$): 3370, 2921, 1590, 1453, 1424, 1378, 1259, 1115, 862, 816.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}$ 298.1933, found 298.1939 .

Integration Results			
No.	Retention Time min	Area mAU*	Relatine Area $\%$
1	6.613	0.777	
2	8.397	0.777	50.02
Total:		$\mathbf{1 . 5 5 4}$	$\mathbf{1 0 0 . 0 0}$

(R)-4-((5-methyl-6,7-dihydro-5H-indeno[5,6-d][1,3]dioxol-5-yl)methyl)-1-tosyl-1,2,3,6-tetrahyd ropyridine (3bb)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a e}(63.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 k}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $42.5 \mathrm{mg}, 50 \%$ yield, 94% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 293 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=$ $29.0 \mathrm{~min}, t_{\mathrm{R}}($ major $)=31.0 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=+14\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H})$, $6.53(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=1.2 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.63-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.17-2.88(\mathrm{~m}$, $2 \mathrm{H}), 2.72-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.13$ (m, 2 H), 2.06-1.99 (m, 1 H$), 1.86-1.73$ (m, 3 H), 1.15 (s, 3 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 146.5,146.4,143.9,143.4,135.5,134.7,133.3,129.6,127.6,120.0$, $105.0,103.2,100.9,49.0,47.4,44.8,43.0,38.7,30.3,30.2,30.0,21.5$.

IR (neat, $\mathbf{c m}^{-1}$): 3435, 2086, 1638, 1474, 1417, 1349, 1162, 1097, 943, 711.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}$ 426.1734, found 426.1743.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	28.817	7.157	49.21
2	31.157	7.387	50.79
Total:		$\mathbf{1 4 . 5 4 4}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	29.030	0.406	2.95
2	31.000	13.333	97.05
Total:		13.739	100.00

(R)-5-((1H-inden-2-yl)methyl)-5-methyl-6,7-dihydro-5H-indeno[5,6-d][1,3]dioxole (3bc)

 The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a e}(63.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 m}(77.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DMF. $31.0 \mathrm{mg}, 51 \%$ yield, 94% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, $25{ }^{\circ} \mathrm{C},{ }^{i} \mathrm{PrOH}$-hexanes $10 / 90,1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=$ $13.0 \mathrm{~min}, t_{\mathrm{R}}($ major $)=24.9 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=+55\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1$ H), $6.65(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-2.96(\mathrm{~m}, 2 \mathrm{H})$, 2.77-2.65 (m, 4 H), 2.20-1.87 (m, 2 H), 1.28 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.6,146.6,146.5,145.3,144.0,143.6,135.8,129.7,126.1,123.7$, 123.3, 120.0, 105.0, 103.3, 100.9, 47.9, 43.2, 42.7, 38.7, 30.2, 28.2.

IR (neat, $\mathbf{c m}^{-1}$): 2922, 1594, 1474, 1422, 1304, 1248, 1121, 1039, 941, 857.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{2}$ 305.1536, found 305.1552.

Tert-butyl ((S)-1-(((S)-3,3-dimethyl-1-(4-(((R)-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-

3,6-dihydropyridin-1(2H)-yl)-1-oxobutan-2-yl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate

(4)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(98.3 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathbf{2 w}$ ($118.2 \mathrm{mg}, 0.2 \mathrm{mmol}$).
$91.9 \mathrm{mg}, 78 \%$ yield, 97% de, white solid, mp: 66-68 ${ }^{\circ} \mathrm{C}$.
Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C},{ }^{i}$ PrOH-hexanes $18 / 82,0.2 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=$ $131.5 \mathrm{~min}, t_{\mathrm{R}}($ major $)=138.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=-18\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 7.25-7.06(\mathrm{~m}, 7 \mathrm{H})$, 6.89-6.71 (m, 3 H), 5.40-5.34 (m, 1 H), $5.15(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.76(\mathrm{~m}, 1 \mathrm{H})$, 4.46-4.33 (m, 2 H$), 4.16-3.02(\mathrm{~m}, 7 \mathrm{H})$, 2.39-2.31 (m, 2 H), 1.91-1.56 (m, 2 H), 1.40-1.33 (m, 12 H), 0.92-0.83 (m, 9 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$, mixture of rotamers): $\delta 170.8,170.6,169.5,169.4,169.0,159.28$, $159.25,159.22,159.15,155.1,155.0,136.5,135.1,134.8$, 134.5, 134.4, 133.4, 133.2, 129.14, $129.10,129.0,128.5,128.34,128.25,128.20,128.15,126.8,126.6,122.8,122.7,122.1,121.2$, $121.1,120.33,120.29,109.6,109.5,81.8,81.7,81.6,81.4,79.8,55.7,54.6,54.2,54.0,48.4,48.0$, 45.6, 45.43, 45.41, 45.3, 43.4, 43.3, 42.04, 42.00, 38.8, 38.7, 38.3, 38.0, 37.9, 35.80, 35.75, 35.7, 35.5, 30.2, 30.1, 29.7, 29.6, 28.13, 28.08, 26.4, 26.3, 26.1, 26.0, 25.9.

IR (neat, $\mathbf{c m}^{-1}$): 2993, 2963, 1675, 1477, 1362, 1321, 1226, 1182, 1088, 754, 688.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{5} 590.3588$, found 590.3602 .

NOTE: Because of the amide bond rotation equilibrium, the rotamers of 4 were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.
methoxy-2-methyl-1H-indol-3-yl)acetate (5)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(164.4 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathbf{2 x}(115.6 \mathrm{mg}, 0.2 \mathrm{mmol})$.
$49.1 \mathrm{mg}, 42 \%$ yield, 94% ee, colorless oil.
Chiral HPLC: CHIRALPAK IB, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes 3/97,
$1 \mathrm{~mL} / \mathrm{min}, 203 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=31.8 \mathrm{~min}, t_{\mathrm{R}}($ major $)=33.8 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=+1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2$ H), $6.96(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 1 \mathrm{H}), 4.80$ ($\mathrm{s}, 1 \mathrm{H}$), $4.71(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3$ H), $3.65(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.30$ (m, 2 H), 1.34 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.9,168.2,159.3,156.0145 .7,139.2,135.8,135.2,133.9,131.1$, $130.8,130.6,129.1,128.1,122.8,120.3,114.9,113.9,112.7,111.6,109.6,101.3,81.8,64.8,55.6$, 46.3, 45.3, 36.3, 30.4, 28.1, 26.3, 24.1, 13.3.

IR (neat, $\mathbf{c m}^{-1}$): 2943, 1735, 1687, 1597, 1480, 1321, 1224, 1167, 833, 755.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{ClNO}_{5}$ 586.2355, found 586.2361.

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	31.673	24.693	50.11
2	34.197	24.583	49.89
Total:		$\mathbf{4 9 . 2 7 6}$	100.00

Integration Results			
No.	Retention Time min	Area $\mathbf{m A U *}$ min	Relative Area $\%$
1	31.760	9.443	3.03
2	33.820	302.615	96.97
Total:		$\mathbf{3 1 2 . 0 5 7}$	$\mathbf{1 0 0 . 0 0}$

(R)-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-((3-methyl-2,3-dihydroben zofuran-3-yl)methyl)-3,6-dihydropyridin-1(2H)-yl)ethan-1-one (6)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(98.6 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathbf{2 y}(114.0 \mathrm{mg}$, 0.2 mmol).
$73.8 \mathrm{mg}, 65 \%$ yield, $>99 \%$ ee, white solid, $\mathrm{mp}: 66-68^{\circ} \mathrm{C}$.
Chiral HPLC: CHIRALCEL OD-H, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes 30/70, $1 \mathrm{~mL} / \mathrm{min}, 260 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=$ $19.7 \mathrm{~min}, t_{\mathrm{R}}($ major $)=33.2 \mathrm{~min}$. Approximate 1.25:1 ratio of rotamers.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{23}=-6\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1$ H), $7.02(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}$, 1 H), $6.64(\mathrm{dd}, J=2.4,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, [5.38 (s$), 5.27(\mathrm{~s}), 1 \mathrm{H}], 4.39-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.16-3.90(\mathrm{~m}, 3 \mathrm{H})$, $3.80(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.68-3.32(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 5 \mathrm{H}), 1.89-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.71,168.67,168.1,159.2,155.8,139.1,139.0,135.1,135.0$, 134.9, 134.7, 134.6, 133.81, 133.75, 132.9, 131.1, 130.70, 130.68, 130.62, 130.60, 128.98, 128.96, $128.20,128.15,122.7,120.9,120.31,120.28,114.7,113.2,111.4,111.3,109.6,109.5,101.4,101.3$, 81.70, 81.65, 55.54, 55.52, 48.2, 45.4, 45.3, 44.9, 42.8, 42.2, 38.7, 30.5, 30.4, 30.1, 29.6, 25.9, 25.8, 13.4, 13.3.

IR (neat, $\mathbf{c m}^{-1}$): 3302, 2970, 1709, 1627, 1482, 1455, 1262, 1172, 1017, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}_{4} 569.2202$, found 569.2209.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	20.830	303.509	51.83
2	34.123	282.110	48.17
Total:		585.619	100.00

50. ${ }^{\text {[}}$ [manually integrated] UV_VIS_1 WVL:260 nm			
$20.0-1$ - $12-33.170$			
15.0	$20.0 \quad 30.0$	40.0	$50.0 \quad 60.0$
Integration Results			
No.	Retention Time min	Area mAU* min	Relative Area \%
1	19.733	0.037	0.03
2	33.170	112.038	99.97
Total:		112.075	100.00

NOTE: Because of the amide bond rotation equilibrium, the rotamers of 4 were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.
(8S,9S,13S,14S)-13-methyl-17-(((R)-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-7,8,9,11,12,1

3,14,15-octahydro-6H-cyclopenta[a]phenanthren-3-yl acetate (7)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(98.6 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathbf{2 z}(88.8 \mathrm{mg}, 0.2 \mathrm{mmol})$. $75.1 \mathrm{mg}, 85 \%$ yield, 99% de, white solid, $\mathrm{mp}: 123-125^{\circ} \mathrm{C}$.

Chiral HPLC: CHIRALPAK IA, $25^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $5 / 95,1 \mathrm{~mL} / \mathrm{min}, 288 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=6.4$ $\min , t_{\mathrm{R}}($ minor $)=7.8 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-61\left(\mathrm{c}=1.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1}$ H NMR (400 MHz, CDCl $_{3}$): $\delta 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.78(\mathrm{~m}, 4 \mathrm{H}), 5.16(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.11$ (m, 8 H), 1.96-1.88 (m, 2 H), 1.76-11.73 (m, 1 H$), 1.62-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.8,159.0,150.8,148.3,138.2,138.2,136.2,128.0,126.0,123.4$, $122.6,121.4,120.4,118.4,109.5,81.9,55.3,47.5,44.5,44.4,37.2,37.0,34.4,31.3,29.4,27.5,26.9$, 26.2, 21.1, 15.4 .

IR (neat, $\mathbf{c m}^{-1}$): 2930, 2851, 1765, 1597, 1482, 1370, 1207, 1016, 974, 751.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{3} 443.2581$, found 443.2587 .

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	6.473	1.051	49.78
2	7.743	1.061	50.22
Total:		$\mathbf{2 . 1 1 2}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU*	Relative Area $\%$
1	6.413	27.970	99.30
2	7.747	0.198	0.70
Total:		$\mathbf{2 8 . 1 6 8}$	100.00

($8 R, 9 S, 10 R, 13 S, 14 S, 17 S)$-10,13-dimethyl-3-(((R)-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl) $-2,7,8,9,10,11,12,13,14,15,16,17$-dodecahydro-1H-cyclopenta $[a]$ phenanthren-17-yl acetate (8)

The compound was prepared according to the General Procedure from the reaction of $\mathbf{1 a}(98.6 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathbf{2 a a}(92.4 \mathrm{mg}, 0.2 \mathrm{mmol})$. $49.7 \mathrm{mg}, 54 \%$ yield, 94% de, white solid, $\mathrm{mp}: 47-49^{\circ} \mathrm{C}$.

Chiral HPLC: CHIRALPAK IA, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes 5/95, 1 $\mathrm{mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=4.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{21}=-73\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $5.75(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38-2.33 (m, 2 H), 2.20-2.14 (m, 2 H), 2.04 ($\mathrm{s}, 3 \mathrm{H}$), 1.77-0.94 (m, 18 H), 0.85 (s, 3 H), $0.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 171.2,159.4,141.7,135.4,133.5,128.5,128.0,123.0,121.9,120.3$, $109.5,82.7,82.1,51.2,49.2,48.2,45.8,42.5,36.7,34.7,34.2,31.6,31.3,27.9,27.5,26.4,23.5$, 21.2, 20.5, 18.7, 12.0.

IR (neat, $\mathbf{c m}^{-1}$): 2963, 1735, 1481, 1459, 1373, 1247, 1034, 978, 751, 689.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{O}_{3} 461.3050$, found 461.3068 .

Integration Results

No.	Retention Time min	Area mAU* $\mathbf{A i n}^{*}$	Relative Area $\%$
1	4.990	8.353	50.48
2	8.583	8.195	49.52
Total:		$\mathbf{1 6 . 5 4 8}$	$\mathbf{1 0 0 . 0 0}$

Integration Results

No.	Retention Time min	Area mAU* $\mathbf{m i n}$	Relative Area $\%$
1	4.830	4.074	97.15
2	8.153	0.120	2.85
Total:		$\mathbf{4 . 1 9 3}$	$\mathbf{1 0 0 . 0 0}$

5. Mechanistic Investigation

5.1 Study of the Reaction of Alkenyl Triflate with Alkene

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with $\mathrm{NiI}_{2}(6.3 \mathrm{mg}, 0.020 \mathrm{mmol}), \mathbf{L} 1(7.6 \mathrm{mg}, 0.028 \mathrm{mmol}), \mathrm{Mn}(44.0$ $\mathrm{mg}, 0.8 \mathrm{mmol}$), and DMF/THF ($0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}$). The reaction mixture was stirred for 5 min . Substrates 9 ($29.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 a}(46 \mathrm{mg}, 0.2 \mathrm{mmol})$ were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with ethyl acetate (10 mL), washed with water, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. A 0.2 mL of solution was collected, diluted with ethyl acetate (2 mL), and analyzed by GC.

The reaction afforded alkenyl dimer $\mathbf{1 0}$ with 17% yield and trace of protonated product alkenyl-H. No cross product was observed, and substrate 9 remained intact.

5.2 The reactivity of alkene tethered Ar-I and alkenyl-OTf towards $\mathbf{N i}(\mathbf{0})$

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(27.4 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathbf{L} 1(38.2 \mathrm{mg}, 0.14 \mathrm{mmol})$, and DMF/THF ($0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}$). The reaction mixture was stirred for 5 min . Substrates $\mathbf{1 a}(54.8 \mathrm{mg}, 0.2$ mmol) and $\mathbf{2 a}(46 \mathrm{mg}, 0.2 \mathrm{mmol})$ were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with ethyl acetate (10 mL), washed with water, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. A 0.2 mL of solution was collected, diluted with ethyl acetate (2 mL), and
analyzed by GC.
The reaction afforded dimer $\mathbf{1 1}$ with 21% yield, and trace of protonated product 12. Alkenyl triflate 2a remained intact.

1,2-Bis((R)-3-methyl-2,3-dihydrobenzofuran-3-yl)ethane (11, known ${ }^{39}$)
 ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.15-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.84(\mathrm{~s}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.5,135.4,128.0,126.5,120.1,109.6,82.2,46.8,39.2,25.0$.

5.3 Enantioselectivity of the Formation of Cross-product 3x and Protonated Byproduct 13

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with $\mathrm{NiI}_{2}(31.5 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathbf{L 1}(38.2 \mathrm{mg}, 0.14 \mathrm{mmol}), \mathrm{Mn}(44.0$ $\mathrm{mg}, 4.0$ equiv. $)$, and $\mathrm{DMF} / \mathrm{THF}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}$). The reaction mixture was stirred for 5 min . Substrates $\mathbf{1 n}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{2 e}(51.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{MeOH}(6.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with ethyl acetate (10 mL), washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford 3ah (22.4 $\mathrm{mg}, 36 \%$ yield, $93 \% \mathrm{ee}$) and $\mathbf{1 3}$ ($13.9 \mathrm{mg}, 32 \%$ yield, $93 \% \mathrm{ee}$).

(S)-3-methyl-3-pentyl-2,3-dihydrobenzofuran (13, known)

 $13.9 \mathrm{mg}, 32 \%$ yield, 93% ee, colorless oil. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are consistent with that reported in ref.7.

Chiral HPLC: CHIRALPAK IB, $25{ }^{\circ} \mathrm{C}$, ${ }^{i} \mathrm{PrOH}$-hexanes $0.2 / 99.8,0.75 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=$ $7.6 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=8.3 \mathrm{~min}$.
$[\alpha]]_{\mathrm{D}}{ }^{22}=+2\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{dt}, J=0.8,7.2 \mathrm{~Hz}, 1$
H), $6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.20(\mathrm{~m}, 8 \mathrm{H})$, 1.33 (s, 3 H), 0.85 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 159.5,135.5,127.9,122.8,120.4,109.5,82.5,45.2,40.9,32.3$, 25.6, 24.3, 22.5, 14.0.

Integration Results			
No.	Retention Time min	Area mAU*min	Relative Area $\%$
1	8.593	92.645	49.82
2	9.370	93.310	50.18
Total:		$\mathbf{1 8 5 . 9 5 5}$	$\mathbf{1 0 0 . 0 0}$

Integration Results			
No.	Retention Time min	Area mAU min	Relative Area $\%$
1	7.627	0.865	96.64
2	8.283	0.030	3.36
Total:		0.895	100.00

6. Crystallographic Data for Compound $3 z$ (CCDC 1890459)

tianzhx_1015
Table 1 Crystal data and structure refinement for tianzhx_1015.

Identification code	tianzhx_1015
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight	460.59
Temperature/K	295.6(2)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a/Å	8.5255(6)
b/Å	10.9187(9)
c/Å	26.122(3)
α°	90.00
$\beta /{ }^{\circ}$	90.00
$\gamma /{ }^{\circ}$	90.00
Volume/A ${ }^{3}$	2431.7(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.258
μ / mm^{-1}	1.413
F(000)	980.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.15 \times 0.14$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$

2Θ range for data collection/ ${ }^{\circ} 8.78$ to 133.18
Index ranges $-6 \leq \mathrm{h} \leq 10,-12 \leq \mathrm{k} \leq 12,-31 \leq 1 \leq 29$

Reflections collected 7508

Independent reflections $4101\left[\mathrm{R}_{\text {int }}=0.0426, \mathrm{R}_{\text {sigma }}=0.0706\right]$

Data/restraints/parameters 4101/0/300

Goodness-of-fit on F^{2} 1.121

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0730, \mathrm{wR}_{2}=0.1894$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1101, \mathrm{wR}_{2}=0.2606$
Largest diff. peak/hole / e $\AA^{-3} 0.22 /-0.57$
Flack parameter -0.07(5)

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for tianzhx_1015. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{y}		z^{\prime}	
S1	$-7953.1(18)$	$-5233.5(19)$	$-1431.7(7)$	$83.3(5)$
O1	$-16535(6)$	$-5867(5)$	$-2890(2)$	$93.8(16)$
O2	$-6624(5)$	$-4766(8)$	$-1707(2)$	$124(2)$
O3	$-8104(7)$	$-6521(5)$	$-1341(2)$	$104.8(18)$
N1	$-9511(5)$	$-4815(5)$	$-1751(2)$	$74.0(14)$
C1	$-15865(6)$	$-1118(5)$	$-4366(2)$	$64.1(14)$
C2	$-15793(7)$	$-320(6)$	$-4773(3)$	$76.9(17)$
C3	$-16732(9)$	$-510(7)$	$-5196(3)$	$92(2)$
C4	$-17749(10)$	$-1480(7)$	$-5193(3)$	$100(3)$
C5	$-17808(8)$	$-2271(6)$	$-4788(3)$	$90(2)$
C6	$-16866(6)$	$-2107(5)$	$-4358(2)$	$57.5(12)$
C7	$-16885(6)$	$-3006(5)$	$-3934(2)$	$61.7(13)$
C8	$-18210(6)$	$-3694(6)$	$-3825(3)$	$83(2)$
C9	$-18188(7)$	$-4643(7)$	$-3454(3)$	$96(2)$
C10	$-16782(7)$	$-4917(6)$	$-3234(3)$	$78.0(18)$

C11	-15439(6)	-4256(5)	-3319(2)	60.5(14)
C12	-15497(5)	-3300(5)	-3677(2)	62.1(14)
C13	-14100(6)	-4756(5)	-3016(2)	60.2(13)
C14	-14910(8)	-5917(6)	-2782(3)	90(2)
C15	-12688(7)	-5088(6)	-3341(3)	80.5(18)
C16	-13666(7)	-3817(5)	-2590(2)	67.4(15)
C17	-12237(7)	-4108(5)	-2283(2)	60.4(13)
C18	-10875(8)	-3444(6)	-2329(3)	85(2)
C19	-9535(8)	-3563(7)	-1979(3)	97(3)
C20	-11012(7)	-5163(6)	-1526(3)	78.9(18)
C21	-12284(8)	-5084(9)	-1905(3)	100(3)
C22	-7990(7)	-4483(5)	-846(2)	67.2(15)
C23	-7293(8)	-3357(6)	-784(3)	83.2(19)
C24	-7248(10)	-2772(6)	-318(4)	99(3)
C25	-7870(10)	-3356(7)	108(3)	93(2)
C26	-8583(9)	-4458(7)	65(3)	90(2)
C27	-8636(7)	-5048(6)	-417(3)	79.9(18)
C28	-7765(14)	-2741(8)	635(4)	131(4)

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for tianzhx_1015. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} \mathbf{U}_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
S1	$51.2(7)$	$111.1(13)$	$87.7(11)$	$-5.9(10)$	$-7.5(7)$	$15.6(8)$
O1	$68(3)$	$88(3)$	$125(4)$	$18(3)$	$5(3)$	$-25(2)$
O2	$47(2)$	$229(7)$	$97(4)$	$-7(5)$	$6(2)$	$12(4)$
O3	$101(4)$	$91(3)$	$122(4)$	$-17(3)$	$-26(3)$	$40(3)$
N1	$45(2)$	$82(3)$	$95(4)$	$0(3)$	$2(2)$	$0(2)$
C1	$50(3)$	$74(3)$	$68(3)$	$-12(3)$	$-13(2)$	$4(2)$

C2	63(3)	72(4)	96(5)	1(4)	-6(3)	6(3)
C3	89(5)	85(4)	103(5)	-2(4)	-23(4)	27(4)
C4	106(6)	95(5)	101(6)	-12(4)	-55(5)	19(4)
C5	78(4)	74(4)	118(6)	-16(4)	-45(4)	6(3)
C6	41(2)	71(3)	61(3)	-8(3)	-10(2)	13(2)
C7	41(2)	66(3)	79(4)	-9(3)	-3(2)	4(2)
C8	37(3)	94(4)	118(6)	-4(4)	-13(3)	-5(3)
C9	42(3)	105(5)	141(7)	18(5)	1(3)	-22(3)
C10	51(3)	72(4)	111(5)	7(4)	9(3)	-14(3)
C11	36(2)	62(3)	83(4)	-5(3)	6 (2)	-7(2)
C12	32(2)	65(3)	89(4)	-7(3)	-2(2)	-8(2)
C13	47(2)	62(3)	72(3)	-1(3)	4(2)	-7(2)
C14	68(4)	66(4)	134(7)	13(4)	-2(4)	-11(3)
C15	58(3)	88(4)	95(5)	-10(4)	5(3)	12(3)
C16	58(3)	68(3)	77(4)	-5(3)	2(3)	8(2)
C17	58(3)	59(3)	64(3)	-3(3)	4(3)	1(2)
C18	72(4)	81(4)	102(5)	24(4)	-17(4)	-21(3)
C19	67(4)	105(5)	120(6)	42(5)	-20(4)	-30(4)
C20	53(3)	82(4)	102(5)	18(4)	$-2(3)$	-2(3)
C21	55(3)	148(7)	97(5)	38(5)	$-5(3)$	-20(4)
C22	50(3)	70(3)	81(4)	-1(3)	-1(3)	4(3)
C23	83(4)	79(4)	88(5)	12(4)	-21(4)	-10(3)
C24	97(5)	64(4)	138(7)	2(4)	-38(5)	2(4)
C25	95(5)	81(5)	101(5)	-21(4)	-23(5)	23(4)
C26	84(4)	87(5)	99(5)	10(4)	-1(4)	13(4)
C27	63(3)	75(4)	102(5)	3(4)	0 (3)	-1(3)
C28	162(10)	113(7)	118(7)	4(6)	-35(7)	32(7)

Table 4 Bond Lengths for tianzhx_1015.

Atom Atom		Length/Å	Atom	Atom	Length/Å
S1	O2	1.436(6)	C10	C11	1.371(7)
S1	O3	1.431(6)	C11	C12	1.401(8)
S1	N1	1.633(5)	C11	C13	1.494(8)
S1	C 22	1.735(6)	C 13	C14	1.566(8)
O1	C10	1.390 (8)	C 13	C15	1.516(7)
O1	C14	1.415(8)	C 13	C16	1.557(8)
N1	C19	1.492(8)	C16	C17	1.493(8)
N1	C20	1.458(7)	C 17	C18	1.374(8)
C1	C2	1.376(9)	C17	C21	1.452(9)
C1	C6	1.377(8)	C18	C19	1.468(9)
C2	C3	1.381(10)	C20	C21	1.471(9)
C3	C4	1.369(11)	C22	C23	1.376(9)
C4	C5	1.367(11)	C 22	C27	1.394(9)
C5	C6	$1.392(8)$	C 23	C24	$1.376(10)$
C6	C7	1.480(8)	C24	C25	1.389(12)
C7	C8	$1.386(8)$	C 25	C26	$1.353(10)$
C7	C12	1.398(7)	C 25	C28	1.533(11)
C8	C9	1.421(10)	C26	C27	1.415(10)
C9	C10	1.362(9)			

Table 5 Bond Angles for tianzhx_1015.

Atom Atom Atom						Angle $^{\circ}$	Atom Atom Atom			Angle $/^{\circ}$
O2	S 1	N 1	$106.7(3)$	C 12	C 11	C 13	$130.8(4)$			
O 2	S 1	C 22	$106.7(4)$	C 7	C 12	C 11	$121.4(5)$			
O 3	S 1	O 2	$120.2(4)$	C 11	C 13	C 14	$99.5(5)$			
O 3	S 1	N 1	$106.6(3)$	C 11	C 13	C 15	$113.4(5)$			

$\left.\begin{array}{lllllll}\text { O3 } & \text { S1 } & \text { C22 } & 108.5(3) & \mathrm{C} 11 & \mathrm{C} 13 & \mathrm{C} 16 \\ \mathrm{~N} 1 & \mathrm{~S} 1 & \mathrm{C} 22 & 107.6(3) & \mathrm{C} 15 & \mathrm{C} 13 & \mathrm{C} 14\end{array}\right)$

Table 6 Torsion Angles for tianzhx_1015.

S1 N1	C 20 C 21	-162.9(6)	C 10 C 11 C 12 C 7	1.2(9)
S1 C22	C23C24	-177.1(6)	C 10 C 11 C 13 C 14	5.4(7)
S1 C22	C27C26	176.5(5)	C 10 C 11 C 13 C 15	124.5(6)
O1C10	C11-12	177.2(5)	C 10 C 11 C 13 C 16	-110.8(6)
O1C10	C11-13	0.1(8)	C11-13C14O1	-9.1(8)
O2S1	N1 C19	-39.6(7)	C 11 C 13 C 16 C 17	-173.8(5)
O2S1	N1 C20	-178.0(6)	C 12 C 7 C 8 C 9	2.0(10)
O2S1	C22C23	23.9(6)	C12C11-13 C14	-171.3(6)
O2S1	C22C27	-151.6(5)	C 12 C 11 C 13 C 15	-52.2(9)
O3S1	N1 C19	-169.2(6)	C12C11-13 C16	72.6(8)
O3S1	N1 C20	52.4(6)	C 13 C 11 C 12 C 7	177.7(6)
O3S1	C 22 C 23	154.7(5)	C 13 C 16 C 17 C 18	109.4(7)
O3S1	C22C27	-20.9(6)	C 13 C 16 C 17 C 21	-73.5(8)
N1 S1	C22C23	-90.3(6)	C14O1 C10C9	175.3(8)
N1 S1	C22C27	94.2(5)	C 14 O 1 C 10 C 11	-6.3(9)
N1 C20	C21-17	-36.0(10)	C14C13C16C17	77.8(6)
C1 C2	C3 C4	1.7(11)	C15C13C14O1	-129.2(6)
C1 C6	C7 C8	155.2(6)	C 15 C 13 C 16 C 17	-48.0(7)
C1 C6	C7 C12	-33.5(8)	C16C13C14O1	105.3(7)
C2 C1	C6 C5	0.5(9)	C16C17C18 C19	169.6(7)
C2 C1	C6 C7	176.6(5)	C16C17C21 C20	-165.6(6)
C2 C3	C4 C5	-2.0(12)	C17C18C19N1	27.0(11)
C3 C4	C5 C6	1.5(12)	C 18 C 17 C 21 C 20	11.7(11)
C4 C5	C6 C1	-0.7(10)	C19N1 C20C21	56.6(9)
C4 C5	C6 C7	-176.9(6)	C20N1 C19C18	-51.3(9)
C5 C6	C7 C8	-28.8(9)	C 21 C 17 C 18 C 19	-7.6(12)
C5 C6	C7 C12	142.5(6)	C22S1 N1 C19	74.6(6)
C6 C1	C2 C3	-1.0(9)	C22S1 N1 C20	-63.8(6)
C6C7	C8 C9	173.5(6)	C 22 C 23 C 24 C 25	2.7(12)

| C6 C7 C12C11 | $-171.8(5) \mathrm{C} 23 \mathrm{C} 22 \mathrm{C} 27 \mathrm{C} 26$ | $0.8(10)$ |
| :--- | ---: | ---: | ---: |
| C 7 C 8 C 9 C 10 | $-4.9(12) \mathrm{C} 23 \mathrm{C} 24 \mathrm{C} 25 \mathrm{C} 26$ | $-3.3(12)$ |
| C 8 C 7 C 12 C 11 | $-0.2(9) \mathrm{C} 23 \mathrm{C} 24 \mathrm{C} 25 \mathrm{C} 28$ | $177.3(7)$ |
| C 8 C 9 C 10 O 1 | $-175.7(7) \mathrm{C} 24 \mathrm{C} 25 \mathrm{C} 26 \mathrm{C} 27$ | $2.7(11)$ |
| C 8 C 9 C 10 C 11 | $6.1(12) \mathrm{C} 25 \mathrm{C} 26 \mathrm{C} 27 \mathrm{C} 22$ | $-1.5(10)$ |
| C 9 C 10 C 11 C 12 | $-4.4(11) \mathrm{C} 27 \mathrm{C} 22 \mathrm{C} 23 \mathrm{C} 24$ | $-1.4(10)$ |
| C 9 C 10 C 11 C 13 | $178.5(7) \mathrm{C} 28 \mathrm{C} 25 \mathrm{C} 26 \mathrm{C} 27$ | $-177.9(7)$ |

Table $\mathbf{7}$ Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for tianzhx_1015.

Atom	\boldsymbol{x}	y	z	$\mathbf{U}(\mathbf{e q})$
H1	-15214	-985	-4086	77
H2	-15113	346	-4763	92
H3	-16676	11	-5477	111
H4	-18411	-1603	-5471	121
H5	-18493	-2934	-4800	108
H8	-19136	-3530	-4000	99
H9	-19098	-5061	-3364	115
H12	-14593	-2852	-3744	74
H14A	-14459	-6652	-2930	107
H14B	-14743	-5939	-2415	107
H15A	-13018	-5592	-3622	121
H15B	-11943	-5529	-3136	121
H15C	-12211	-4354	-3469	121
H16A	-13519	-3023	-2748	81
H16B	-14549	-3749	-2357	81
H18	-10797	-2887	-2597	102
H19A	-9615	-2956	-1709	117

H19B	-8567	-3418	-2165	117
H20A	-11245	-4627	-1240	95
H20B	-10945	-5994	-1397	95
H21A	-12318	-5856	-2089	120
H21B	-13265	-5010	-1719	120
H23	-6836	-2979	-1067	100
H24	-6808	-1996	-289	119
H26	-9035	-4825	-451	96
H27	-9104	-5815	891	197
H28A	-8182	-3282	632	197
H28B	-8359	-1994	712	197

7. References

(1) Armarego, W. L. F.; Chai, C. C. L. Purification of laboratory chemicals, 5th ed., Butterworth- Heinemann, 2003.
(2) Gao, Y.; Xiong, W.-F.; Chen, H.-J.; Wu, W.-Q.; Peng, J.-W.; Gao, Y.-L.; Jiang, H.-F. Pd-Catalyzed Highly Regio- and Stereoselective Formation of C-C Double Bonds: An Efficient Method for the Synthesis of Benzofuran-, Dihydrobenzofuran-, and Indoline-Containing Alkenes. J. Org. Chem. 2015, 80, 7456.
(3) Ramesh, K.; Basuli, S.; Satyanarayana, G. Microwave-Assisted Domino Palladium Catalysis in Water: A Diverse Synthesis of 3, 3'-Disubstituted Heterocyclic Compounds. Eur. J. Org. Chem. 2018, 2171.
(4) Yao, T.-L.; He, D. Palladium-Catalyzed Domino Heck/Aryne Carbopalladation/C-H Functionalization: Synthesis of Heterocycle-Fused 9, 10-Dihydrophenanthrenes. Org. Lett. 2017, 19, 842.
(5) Wu, X.-X.; Chen, W.-L.; Shen, Y.; Chen, S.; Xu, P.-F.; Liang, Y.-M. M. Palladium-Catalyzed Domino Heck/Intermolecular C-H Bond Functionalization: Efficient Synthesis of Alkylated Polyfluoroarene Derivatives. Org. Lett. 2016, 18, 1784.
(6) Hu, M.; Gao, Y.; Wu, W. Q.; Li, J. X.; Li, C. S.; Zhang, H.; Jiang, H. F. Efficient assembly of ynones via palladium-catalyzed sequential carbonylation/alkynylation. Org. Biomol. Chem., 2018, 16, 7383.
(7) Zhang, Z.-M.; Xu, B.; Qian, Y.-Y.; Wu, L.-Z.; Wu, Y.-Q.; Zhou, L.-J.; Liu Y.; Zhang, J.-L. Palladium-Catalyzed Enantioselective Reductive Heck Reactions: Convenient Access to 3,3-Disubstituted 2,3-Dihydrobenzofuran. Angew. Chem. Int. Ed. 2018, 57, 10373.
(8) Thapa, S.; Basnet, P.; Giri, R. Copper-Catalyzed Dicarbofunctionalization of Unactivated Olefins by Tandem Cyclization/Cross-Coupling. J. Am. Chem. Soc. 2017, 139, 5700.
(9) Jaimes, M. C. B.; Weingand, V.; Rominger, F.; Hashmi, A. S. K. From Ynamides to Highly Substituted Benzo[b]furans: Gold(I)-Catalyzed 5-endo-dig-Cyclization/Rearrangement of Alkylic Oxonium Intermediates. Chem. Eur. J. 2013, 19, 12504.
(10) Rueping, M.; Leiendecker, M.; Das, A.; Poissona, T.; Bui, L. Potassium tert-butoxide mediated Heck-type cyclization/isomerization-benzofurans from organocatalytic radical cross-coupling reactions. Chem. Commun. 2011, 47, 10629.
(11) Revol, G.; McCallum, T.; Morin, M.; Gagosz, F.; Barriault, L. Photoredox Transformations with Dimeric Gold Complexes. Angew. Chem. Int. Ed. 2013, 52, 13342.
(12) Lockner, J. W.; Dixon, D. D.; Risgaard, R.; Baran, P. S. Practical Radical Cyclizations with Arylboronic Acids and Trifluoroborates. Org. Lett. 2011, 13, 5628.
(13) Zheng, H.-J.; Zhu, Y.-G.; Shi, Y. Palladium(0)-Catalyzed Heck Reaction/C-H Activation/Amination Sequence with Diaziridinone: A Facile Approach to Indoline. Angew. Chem. Int. Ed. 2014, 53, 11280.
(14) (a) Solé, D.; Mariani, F.; Fernández, I.; Sierra, M. A. Intramolecular $\operatorname{Pd}(0)$-Catalyzed Reactions of (2-Iodoanilino)-aldehydes: A Joint Experimental-Computational Study. J. Org. Chem. 2012, 77, 10272. (b) Hédouin, J.; Schneider, C.; Gillaizeau, I.; Hoarau, C. Palladium-Catalyzed Domino Allenamide Carbopalladation/Direct C-H Allylation of Heteroarenes: Synthesis of Primprinine and Papaverine Analogues.

Org. Lett. 2018, 20, 6027.
(15) Iain, D. G. W.; Stefanie. R.; Toste, F. D. Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation. J. Am. Chem. Soc. 2009, 131, 2056.
(16) Mariusz, J. B. A Convenient Synthesis of 2-Arylbenzo[b]furans from Aryl Halides and 2-Halophenols by Catalytic One-Pot Cascade Method. Acs. Catal. 2016, 6, 2429.
(17) Stephen, G. N.; Jennifer, K. H.; Norman, N.; Mark, L. Palladium-Catalyzed Carbohalogenation: Bromide to Iodide Exchange and Domino Processes. J. Am. Chem. Soc. 2011, 133, 14916.
(18) Luo, Z.-S.; Mohamed, N. A synthetic approach for (S)-(3-benzyl-3-methyl-2,3-dihydro-benzofuran-6-yl)-piperidin-1-yl-methanone, a Selective CB2 Receptor Agonist. Tetrahedron Letters. 2012, 53, 3316.
(19) Croft, A. K.; Foley, M. K. Proline-rich Proteins-deriving a Basis for Residue-based Selectivity in Polyphenolic Binding. Org. Biomol. Chem., 2008, 6, 1594.
(20) Alt, I. T.; Guttroff, C.; Plietker, B. Fe-catalyzed Intramolecular Aminations of $\mathrm{C}(\mathrm{sp} 3)$-H-bonds of alkylarylazides. Angew. Chem. Int. Ed. 2015, 54, 10545.
(21) Shan, X. H.; Yang, B.; Zheng, H. X.; Qu, J. P.; Kang, Y. B. Phenanthroline-tBuOK Promoted Intramolecular C-H Arylation of Indoles with ArI under Transition-Metal-Free Conditions. Org. Lett. 2018, 20, 7898.
(22) Su, X.-L.; Huang, H.-G.; Yuan, Y.-F.; Li, Y. Radical Desulfur-Fragmentation and Reconstruction of Enol Triflates: Facile Access to α-Trifluoromethyl Ketones. Angew. Chem. Int. Ed. 2017, 56, 1338.
(23) (a) Overman, L. E.; Tanis, P. S. Origin of Stereocontrol in the Construction of the 12-Oxatricyclo[6.3.1.02,7]dodecane Ring System by Prins Pinacol Reactions. J. Org. Chem., 2010, 75, 455. (b) Crisp, G. T.; Scott, W. J. A Convenient One-Pot Procedure for the Conversion of Terminal Acetylenic Alcohols (and O-Derivatives) into (E)-Olefinic Alcohols (or Derivatives). Synthesis. 1985, 335.
(24) Dürr, A. B.; Yin, G.; Kalvet, I.; Napolya, F.; Schoenebeck, F. Nickel-catalyzed trifluoromethylthiolation of Csp2-O bonds. Chem. Sci. 2016, 7, 1076.
(25) Lippincott, D. J.; Linstadt, R. T. H.; Maser, M. R.; Lipshutz, B. H. Synthesis of Functionalized [3], [4], [5] and [6]Dendralenes through Palladium-Catalyzed Cross-Couplings of Substituted Allenoates. Angew. Chem. Int. Ed. 2017, 56, 847.
(26) Navendu, J.; Quyen, N.; Tom, G. D. Development of a Suzuki Cross-Coupling Reaction between 2-Azidoarylboronic Pinacolate Esters and Vinyl Triflates To Enable the Synthesis of [2,3]-Fused Indole Heterocycles. J. Org. Chem. 2014, 79, 2781.
(27) Si, T.-D.; Li, B.-W.; Xiong, W.-R.; Xu, B.; Tang, W.-J. Efficient cross-coupling of aryl/alkenyl triflates with acyclic secondary alkylboronic acids. Org. Biomol. Chem. 2017, 15, 9903.
(28) Tsuyoshi, U.; Hideyuki, K.; Kei, M. Trichlorophenyl Formate: Highly Reactive and Easily Accessible Crystalline CO Surrogate for Palladium-Catalyzed Carbonylation of Aryl/Alkenyl Halides and Triflates. Org. Lett. 2012, 14, 5370.
(29) Clark, J. R.; Feng, K.-B.; Sookezian, A.; White, M. C. Manganese-Catalysed Benzylic C(sp3)-H Amination for Late-stage Functionalization. Nat. Chem. 2018, 10, 583.
(30) Jigajinni, V. B.; Wightman, R. H. Hydrogenolysis of Enol Triflates; A New Method for the Reduction of Ketones to Methylene Compounds. Tetrahedron Letters, 1982, 23, 117.
(31) Patel, H. H.; Sigman, M. S. Enantioselective Palladium-Catalyzed Alkenylation of Trisubstituted Alkenols To Form Allylic Quaternary Centers. J. Am. Chem. Soc. 2016, 138, 14226.
(32) Peter, J. S.; Thomas, E. D. Preparation of Vinyl Trifluoromethanesulfonates: 3-Methyl-2-Buten-2-yl Triflate. Org. Synth. 1974, 54, 79.
(33) Hu, J. T.; Zheng, B.; Chen, Y. C.; Xiao, Q. Expedient synthesis of 9,10-phenanthrenes via LiOPiv-promoted and palladium-catalysed aryne annulation by vinyl triflates. Org. Chem. Front., 2018, 5, 2045.
(34) Huang, H.; Ash, J.; Kang, J. Y. Tf $\mathrm{F}_{2} \mathrm{O}-$ Promoted Activating Strategy of Phosphate Analogues: Synthesis of Mixed Phosphates and Phosphinate. Org. Lett. 2018, 20, 4938.
(35) Zhang, X.-J.; Xie, X.; Liu, Y.-H. Nickel-Catalyzed Highly Regioselective Hydrocyanation of Terminal Alkynes with $\mathrm{Zn}(\mathrm{CN})_{2}$ Using Water as the Hydrogen Source. J. Am. Chem. Soc. 2018, 140, 7385.
(36) Goh, S. S.; Baars, H.; Gockel, B.; Anderson, E. A. Metal-Catalyzed Syntheses of Abridged CDE Rings of Rubriflordilactones A and B. Org. Lett., 2012, 14, 6278.
(37) Odriozola, A.; Oiarbide, M.; Palomo, C. Enantioselective Synthesis of Quaternary $\Delta 4$-and $\Delta 5$-Dehydroprolines Based on a Two-Step Formal [3+2] Cycloaddition of α-Aryl and α-Alkyl Isocyano(thio)acetates with Vinyl Ketones. Chem. Eur. J. 2017, 23, 12758.
(38) Bischo, A. J.; Nelson, B. M.; Niemeyer, Z. L.; Sigman, M. S.; Movassaghi, M. Quantitative Modeling of Bis(pyridine)silver(I) Permanganate Oxidation of Hydantoin Derivatives: Guidelines for Predicting the Site of Oxidation in Complex Substrates. J. Am. Chem. Soc. 2017, 139, 15539.
(39) Wang, W.; Zhou, R.; Jiang, Z.-J.; Wang, X.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Palladium-Catalyzed Domino Mizoroki-Heck/Intermolecular C(sp^{3})-H Activation Sequence: An Approach to the Formation of $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-C(sp $\left.{ }^{3}\right)$ Bonds. Eur. J. Org. Chem. 2015, 2015, 2579.

8. Copies of NMR Spectra

	等答 士守		＂ めNR䍐	¢	
	VV	$1 /$	$V 1$		\bigcirc

$1 \mathrm{~g} ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

N N
$\stackrel{\underset{1}{*}}{\stackrel{\infty}{\mid}}$
$\stackrel{8}{i}$

$\stackrel{\curvearrowleft}{\text { ®. }}$

1i; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

꿁 꾸

Niलొinioñ
$\stackrel{\omega}{i}$
$\stackrel{8}{i}$

11; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) }) ~}$

$1 \mathrm{~m} ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

1q; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

1r-1; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

$1 \mathrm{z} ;{ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100MHz, CDCl_{3})

1aa; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

		V	\%	-	

M

1ab; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1af; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

1af; ${ }^{19}$ F NMR ($\mathbf{3 7 6 M H z}, \mathrm{CDCl}_{3}$)

$\underbrace{\text { ori }}$

20; ${ }^{19}$ F NMR ($564 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\overbrace{}^{07 \pi}$

2p; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0 M H z}, \mathrm{CDCl}_{3}$)

$2 \mathrm{w}-1 ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

$\mathbf{2 x}-1 ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right)$

2x; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

2x; ${ }^{19}$ F NMR (376MHz, CDCl_{3})

5.54 .04

	$\begin{aligned} & \text { 監圐 } \end{aligned}$		$\stackrel{4}{\text { 8 }}$			 ¢oxin IVI

-

[^0]路

[^1]

[^2]

$3 \mathrm{~m} ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

3n; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0 M H z}, \mathrm{CDCl}_{3}$)

[^3]

3q; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
| :--- |

$E / Z=2.5 / 1$

1D-NOE spectra of $\mathbf{Z - 3 s}$

3t; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

$\stackrel{\text { 草 }}{1}$
$\stackrel{\circ}{\circ}$

| - | \|| |V/|| | $\stackrel{\text { i }}{ }$ | | Vixy |
| :---: | :---: | :---: | :---: | :---: |

3v; ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) } { } ^ { 1 3 } { } ^ { \mathbf { C } } \mathrm { CNMR } (\mathbf { 1 0 0 M H z } , \mathrm { CDCl } _ { 3 }) ~}$

$\stackrel{\substack{\text { \% } \\ \stackrel{\circ}{6} \\ \mid}}{\square}$	Viv		9	ब్wno $\mid \sqrt{\infty}$		

$3 \mathrm{x} ;{ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}); ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

3y; ${ }^{19}$ F NMR (376MHz, CDCl_{3})

3z; ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}); ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})
\qquad

[^4] 0 ppm

3ac; ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ae; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3af; ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}); ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

3ag; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ah; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

-

3al; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})

NiN
Mi io
へiّ
Nָ Nָ
0

-152.46
-142.10
-139.91
-134.34
$\int_{-}^{127.67}$
-122.94
-122.71
-114.68
-107.64
81.36
-70.38
-77.21
76.79
$64.30-$
-59.92

No

 ∞ かNNNN八N心
$\stackrel{\text { N }}{\substack{1}}$

응


```
へ్ల
\(\stackrel{\circ}{i}\)
```


3as; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\%

$\underbrace{\text { ancian }}$

$\begin{array}{lllllll}190 & 180 & 170 & 160 & 150 & 140 & 130\end{array}$
0100
90
60
50
4030
20
10 0 ppm

$$
\begin{aligned}
& \text { IIV WVIV }
\end{aligned}
$$

¢	等	$\begin{gathered} { }_{N}^{\mathrm{N}} \mathrm{~N}_{1}^{\circ} \stackrel{8}{\circ} \\ \hline \end{gathered}$	N		오순 이NN N
	Hovery	V			

$\begin{array}{lllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { pp }\end{array}$

$\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

以

[^0]:

[^1]:

[^2]:

[^3]: $\begin{array}{lllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^4]: $\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

