Highly Enantioselective Cross-Electrophile Aryl-Alkenylation of Unactivated Alkenes

Zhi-Xiong Tian, Jin-Bao Qiao, Guang-Li Xu, Xiaobo Pang, Liangliang Qi, Wei-Yuan Ma, Zhen-Zhen Zhao, Jicheng Duan, Yun-Fei Du, Peifeng Su, Xue-Yuan Liu, Xing-Zhong Shu*

State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China.

Table of Contents

1.	General Information	S2
2.	Optimization of Reaction Parameters	S3
3.	Synthesis of Substrates	S6
4.	Ni-catalyzed Enantioselective Cross-electrophile Aryl-alkenylation of Alkene	S22
5.	Mechanistic Investigation	S66
6.	Crystallographic Data for Compound 3z	S70
7.	References	S79
8.	Copies of NMR Spectra	

1. General Information

All reactions were carried out under an atmosphere of argon in sealed tube with magnetic stirring. Dry DMF, THF, CH₂Cl₂ were purified using a solvent-purification system that contained activated alumina and molecular sieves. Other solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals".¹

Nickel catalysts, reductants were purchased from Acros, Alfa Aesar, Aldrich, Ark Pharm, and Strem. Other chemicals were purchased from TCI, Adamas, and Energy chemicals, and were directly used without further purifications.

¹H and ¹³C NMR spectra were collected on a Bruker AVANCE III 400MHz, JEOL JNM-ECS 400M and Agilent-NMR-inova 600 MHz spectrometer at room temperature. ¹H NMR spectra were reported in parts per million (ppm) downfield of tetramethylsilane (TMS) and were referenced to the signal of TMS (0 ppm). ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77.00 ppm). Coupling constants, J, are reported in hertz (Hz). ¹⁹F NMR spectra were also collected on Bruker AVANCE III 400 MHz spectrometers and Agilent-NMR-inova 600 MHz spectrometer at room temperature. Melting points were determined on a microscopic apparatus. IR spectra were collected using Bruker-TENSOR 27 spectrometer and Agilent Technologies Cary 630 FTIR, and only major peaks were reported in cm⁻¹. HRMS was performed on Bruker Apex II FT-ICR mass instrument (ESI). GC analysis was performed on Thermo Scientific TRACE 1300. GC-MS data was collected on Thermo Scientific TRACE DSO GC-MS. The enantiomeric excess (ee) of the products was determined by chiral HPLC (Thermo Scientific UltiMate 3000) using Daicel CHIRALCEL® columns and Daicel CHIRALPAK® columns (internal diameter 4.6 mm, column length 250 mm, particle size 5 µm). Optical rotations were measured on an AUTOPOL IV Automatic polarimeter (Rudolph Research Analytical). The X-RAY was measured on Agilent SUPERNOVA. Thin layer chromatography was carried out using XINNUO SGF254 TLC plates. Flash chromatography was performed using XINNUO silica gel (200-300 mesh).

2. Optimization of Reaction Parameters

General Procedure

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with catalyst (10 mol %, 0.010 mmol), **L1** (14 mol %, 3.8 mg, 0.014 mmol), reductant (4 equiv, 0.4 mmol), and solvent (0.5 mL). The reaction mixture was stirred for 5 min. Substrates **1a** (27.4 mg, 0.1 mmol) and **2a** (23.0 mg, 0.1 mmol) were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at appreciate temperature for 24 h. The reaction mixture was diluted with ethyl acetate (10 mL), washed with water, brine, and dried over anhydrous Na₂SO₄. A 0.2 mL of solution was collected, diluted with ethyl acetate (2 mL), and analyzed by GC. The yield was determined versus the internal standard (dodecane). The rest solution was concentrated under the reduced pressure, and part of the residue was purified by thin layer chromatography on silica gel. The enantiomeric excess (ee) of the products was determined by chiral HPLC.

 Table S1. Effect of reductant, solvent and temperature^a

	+	OTf L	dme) (10 mol%) 1 (14 mol%)		
1a	Me	2a solvent (0	tant (4.0 equiv)).2 M), Temp., 24	l h	3a
 entry	reductant	solvent	temperature	yield (%)	ee (%)
1	Mn	DMF	rt.	59	93
2	Zn	DMF	rt.	trace	-
3	Mg	DMF	rt.	0	-
4	Mn	CH ₃ CN	rt.	0	-
5	Mn	DMSO	rt.	48	90
6	Mn	DMA	rt.	52	91
7	Mn	Toluene	rt.	0	-
8	Mn	THF	rt.	trace	-
9	Mn	Dioxane	rt.	0	-
10	Mn	DMF/THF(4/1)	rt.	60	94
11	Mn	DMF/THF(3/2)	rt.	63	94
12	Mn	DMF/THF (1/1)	rt.	67	95
13	Mn	DMF/THF(2/3)	rt.	55	95
14	Mn	DMF/THF(1/4)	rt.	31	94
15	Mn	DMF/THF(1/1)	0 °C	trace	-
16	Mn	DMF/THF(1/1)	10 °C	34	95
17	Mn	DMF/THF(1/1)	40 °C	60	95
 18	Mn	DMF/THF(1/1)	60 °C	54	93

^{*a*}**1a** (0.1 mmol) and **2a** (0.1 mmol) was used. The yields were determined by GC analysis with doecane as an internal standard. The ees were determined by chiral HPLC.

	OTf	catalyst (10 mol%) L1 (14 mol%)		
1a Me	2a DM	Mn (4.0 equiv) //F/THF (1:1), rt., 24 h	Ja Ja	
entry	catalyst	yield (%)	ee (%)	
1	NiF ₂	0	-	
2	NiCl ₂	30	91	
3	NiBr ₂	69	97	
4	NiI ₂	79 (77) ^b	98	
5	NiCl ₂ (dme)	67	95	
6	Ni(cod) ₂	68	95	
7	NiCl ₂ (dppp)	45	94	
8	NiCl ₂ (dppf)	0	-	
9	$CoCl_2$	0	-	
10	CoBr ₂	0	-	
11	PdCl ₂	0	-	
12	CuCl ₂	0	-	

^{*a*}**1a** (0.1 mmol) and **2a** (0.1 mmol) was used. The yields were determined by GC analysis with doecane as an internal standard. The ees were determined by chiral HPLC. ^{*b*}Isolated yield.

3. Synthesis of Substrates

3.1 Synthesis of Aryl Iodide tethered Alkenes

Known compounds $1a^2 1b^2 1d^3 1e^4 1f^5 1h^5$, $1k^6$, $1y^2$, were prepared according to the literature procedure in ref.2. Known compound $1n^7$, $1p^2$, $1s^8$, $1t^9$, $1u^{10}$, $1v^{11}$, $1w^{12}$, was prepared according to the literature procedure in ref.13. Known compound $1x^{14}$ was prepared according to the literature procedure in ref.14, Known compound $1ac^{15}$ was prepared according to the literature procedure in ref.15. The preparation of new compounds, and their characterization data are provided as follows.

These compounds were synthesized according to the literature procedure.² To a solution of phenol (10.0 mmol) in DMF (30.0 mL) was added K_2CO_3 (4.15 g, 30.0 mmol) at 0 °C, followed by slowly addition of allyl halide (10.0 mmol) after 20 min. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with water (40.0 mL), and extracted with ethyl acetate (3 × 30.0 mL). The combined organic layers were washed with saturated aqueous Na₂S₂O₃, brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the product.

General procedure B:

These compounds were synthesized according to the literature procedure.¹³ To a solution of alcohol (10.0 mmol) and phenol (10.0 mmol) in THF (30.0 mL) was added PPh₃ (2.62 g, 10.0 mmol) at 0 °C, followed by slowly addition of diisopropyl azodicarboxylate (DIAD, 2.02 g, 10.0 mmol) after 20 min under argon. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with water (40.0 mL), and extracted with ethyl acetate (3 × 30.0 mL). The combined organic layers were washed with saturated aqueous Na₂S₂O₃, brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the product.

1-Iodo-5-isopropyl-4-methyl-2-((2-methylallyl)oxy)benzene (1c)

Step 1: Compound **1c-1** was synthesized according to the literature procedure.¹⁶ To a solution of phenol (10.0 mmol) in MeOH (30.0 mL) at 0 °C was added NaI 2H₂O (1.86 g, 10.0 mmol) and

NaOH (0.40 g, 10.0 mmol), followed by slowly addition of NaClO (15.0 ml, 10.0 mmol, 5% aqueous solution,) after 20 min. The reaction mixture was stirred overnight at the same temperature. The MeOH was removed under reduced pressure, and water (30.0 mL) was added. The reaction mixture was neutralized with aqueous HCl (2.0 M) to pH < 7, and extracted with ethyl acetate (3 \times 20.0 mL). The combined organic layers were washed with water, saturated aqueous Na₂S₂O₃, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give 2-iodo-4-isopropyl-5-methylphenol (**1c-1**).

1.55 g, 56% yield, white solid, mp: 40-42 °C, $R_f = 0.3$ (silica gel, petroleum ether/ethyl acetate = 10:1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.43 (s, 1 H), 6.78 (s, 1 H), 5.05 (s, 1 H), 3.03-2.97 (m, 1 H), 2.25 (s, 3 H), 1.18 (d, *J* = 6.8 Hz, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ 152.3, 141.6, 137.7, 134.3, 116.6, 82.4, 28.6, 23.3, 19.0.

IR (neat, cm⁻¹): 2963, 1481, 1459, 1398, 1299, 1269, 1200, 880, 762, 725.

HRMS (ESI): $[M+H]^+$ calcd for $C_{10}H_{14}IO$ 277.0084, found 277.0093.

Step 2: Compound **1c** was prepared from 2-iodo-4-isopropyl-5-methylphenol (**1c-1**, 1.38 g, 5.0 mmol) and 3-chloro-2-methylprop-1-ene (0.45 g, 5.0 mmol) according to the General procedure A. 1.39 g, 84% yield, colorless oil, $R_f = 0.7$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.56 (s, 1 H), 6.57 (s, 1 H), 5.19 (s, 1 H), 5.00 (s, 1 H), 4.43 (s, 2 H), 3.03-2.96 (m, 1 H), 2.27 (s, 3 H), 1.86 (s, 3 H), 1.18 (d, *J* = 6.8 Hz, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ 154.8, 141.4, 140.5, 136.4, 135.7, 114.4, 112.6, 83.3, 72.6, 28.6, 23.3, 19.5, 19.4.

IR (neat, cm⁻¹): 2963, 2872, 1654, 1591, 1490, 1252, 1053, 1030, 902, 716.

HRMS (ESI): [M+H] ⁺ calcd for C₁₄H₂₀IO 331.0553, found 331.0562.

2-Iodo-1-methyl-3-((2-methylallyl)oxy)benzene (1g)

This compound was prepared from 2-iodo-3-methylphenol (2.34 g, 10.0 mmol) and 3-chloro-2-methylprop-1-ene (0.91 g, 10.0 mmol) according to General procedure A.

^{Me} 22.5g, 78% yield, colorless oil, $R_f = 0.7$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.15 (t, J = 8.0 Hz, 1 H), 6.87 (d, J = 8.0 Hz, 1 H), 6.60 (d, J = 8.0 Hz, 1 H), 5.22 (s, 1 H), 5.01 (s, 1 H), 4.47 (s, 2 H), 2.47 (s, 3 H), 1.88 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.2, 143.5, 140.4, 128.5, 122.4, 112.8, 109.2, 93.6, 72.7, 28.8, 19.5.

IR (neat, cm⁻¹): 3290, 2918, 1959, 1650, 1565, 1450, 1260, 1057, 902, 764.3 **HRMS (ESI):** [M+H] ⁺ calcd for C₁₁H₁₄IO 289.0084, found 289.0091.

1-Iodo-3,5-dimethyl-2-((2-methylallyl)oxy)benzene (1i)

Me This compound was prepared from 2-iodo-4,6-dimethylphenol (2.48 g, 10.0 mmol) and 3-chloro-2-methylprop-1-ene (0.91 g, 10.0 mmol) according to General procedure A.

2.48 g, 82% yield, colorless oil, $R_f = 0.7$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.43 (s, 1 H), 6.94 (s, 1 H), 5.19 (s, 1 H), 5.01 (s, 1 H), 4.23 (s, 2 H), 2.29 (s, 3 H), 2.23(s, 3 H), 1.93 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 154.6, 141.2, 137.3, 135.6, 132.2, 131.8, 113.0, 91.8, 76.04, 20.2, 19.9, 17.0.

IR (neat, cm⁻¹): 3077, 2973, 2858, 1653, 1469, 1272, 1123, 1041, 995, 853.

HRMS (ESI): [M+H] ⁺ calcd for C₁₂H₁₆IO 303.0240, found 303.0247.

1-Chloro-2-iodo-3-((2-methylallyl)oxy)benzene (1j)

This compound was prepared from 3-chloro-2-iodophenol (2.54 g, 10.0 mmol) and 3-chloro-2-methylprop-1-ene (0.91 g, 10.0 mmol) according to General procedure A. 22.5g, 78% yield, colorless oil, $R_f = 0.7$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.20 (t, *J* = 8.0 Hz, 1 H), 7.08 (d, *J* = 8.0 Hz, 1 H), 6.65 (d, *J* = 8.0 Hz, 1 H), 5.20 (s, 1 H), 5.03 (s, 1 H), 4.48 (s, 2 H), 1.87 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 158.9, 139.8, 139.8, 129.6, 121.9, 113.2, 109.7, 91.7, 73.0, 19.5.

IR (neat, cm⁻¹): 2975, 2920, 1572, 1440, 1259, 1060, 1014, 904, 766, 697

HRMS (ESI): [M+H] ⁺ calcd for C₁₀H₁₁ClIO 308.9538, found 308.9542.

1-(3, 3-Dimethyl-2-methylenebutoxy)-2-iodobenzene (11)

This compound was prepared from 2-iodophenol (2.20 g, 10.0 mmol) and 3,3-dimethyl-2-methylenebutan-1-ol (1.14 g, 10.0 mmol) according to General procedure B.

1.96 g, 62% yield, colorless oil, $R_f = 0.8$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.77 (dd, *J* = 1.6, 8.0 Hz, 1 H), 7.29-7.24 (m, 1 H), 6.79 (dd, *J* = 1.2, 8.4 Hz, 1 H), 6.69 (m, 1 H), 5.33 (d, *J* =1.2 Hz, 1 H), 5.13 (d, *J* =0.8 Hz, 1 H), 4.61 (s, 2 H), 1.18 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.3, 151.2, 139.5, 129.3, 122.4, 112.1, 110.0, 86.4, 69.1, 34.8, 29.5.

IR (**neat, cm⁻¹**): 2961, 2868, 1638, 1582, 1472, 1438, 1274, 1019, 909, 747 cm⁻¹.

HRMS (ESI): $[M+H]^+$ calcd for $C_{13}H_{18}IO$ 317.0397, found 317.0400.

1-Iodo-2-((2-methylenedecyl)oxy)benzene (1m)

This compound was prepared from 2-iodophenol (2.20 g, 10.0 mmol) and 2-methylenedecan-1-ol (1.70 g, 10.0 mmol) according to the General procedure B. 2.42 g, 65% yield, colorless oil, $R_f = 0.8$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.77 (dd, *J* = 1.6, 7.6 Hz, 1 H), 7.29-7.25 (m, 1 H), 6.79 (dd, *J* = 0.8, 8.4 Hz, 1 H), 6.70 (m, 1 H), 5.22 (s, 1 H), 5.01 (d, *J* =0.8 Hz, 1 H), 4.50 (s, 2 H), 2.18 (t, *J* = 8.0 Hz, 2 H), 1.54-1.47 (m, 2 H), 1.31-1.27 (m, 10 H), 0.88 (t, *J* = 6.4 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.2, 144.3, 139.5, 129.3, 122.5, 112.3, 111.9, 86.6, 71.6, 33.2, 31.9, 29.44, 29.41, 29.3, 27.6, 22.7, 14.1.

IR (neat, cm⁻¹): 2926, 2857, 1582, 1472, 1439, 1291, 1244, 1019, 746, 727.

HRMS (ESI): $[M+H]^+$ calcd for $C_{17}H_{26}IO$ 373.1023, found 373.1024.

1-((2-((But-3-en-1-yloxy)methyl)allyl)oxy)-2-iodobenzene (10)

Compound **10-1** was synthesized according to the literature procedure.¹⁷ To a solution of K_2CO_3 (4.15 g, 30.0 mmol), 3-chloro-2-(chloromethyl)prop-1-ene (2.32 mL, 20.0 mmol) in acetonitrile (25.0 mL) was added 2-iodophenol (2.20 g, 10.0 mmol) at 0 °C. The reaction mixture was stirred at room temperature overnight, and filtered through a pad of celite. The filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford 2.16 g of **10-1** (93% purity, mixed with dichloromethyl ethylene).

Compound **10** was prepared from the above crude **10-1** and but-3-en-1-ol (0.50 g, 7.0 mmol) according to the General procedure A.

1.69 g, 49% yield for two steps, colorless oil, $R_f = 0.3$ (silica gel, petroleum ether/ethyl acetate = 50:1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.77 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.30-7.25 (m, 1 H), 6.82 (dd, *J* = 8.4, 1.2 Hz, 1 H), 6.71 (m, 1 H), 5.87-5.77 (m, 1 H), 5.43 (d, *J* = 0.4 Hz, 1 H), 5.29 (d, *J* = 0.8 Hz, 1 H),

5.12-5.01 (m, 2 H), 4.59 (s, 2 H), 4.13 (s, 2 H), 3.52 (t, *J* = 6.8 Hz, 2 H), 2.38-2.33 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.0, 140.9, 139.4, 135.2, 129.3, 122.6, 116.4, 114.8, 112.2, 86.5, 71.6, 69.7, 69.4, 34.2.

IR (neat, cm⁻¹): 3071, 2857, 1582, 1474, 1440, 1247, 1098, 1018, 917, 747.

HRMS (ESI): $[M+H]^+$ calcd for $C_{14}H_{18}IO_2$ 345.0346, found 345.0352.

1-Iodo-2-((4-methylpent-4-en-1-yl)oxy)benzene (1q)

1q Me

This compound was prepared from 2-iodophenol (2.20 g, 10.0 mmol) and 4-methylpent-4-en-1-ol (1.00 g, 10.0 mmol) according to General procedure B. 2.05g, 68% yield, colorless oil, $R_f = 0.7$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.76 (dd, *J* = 1.6 Hz, *J* = 7.6 Hz, 1 H), 7.29-7.24 (m, 1 H), 6.78 (dd, *J* = 0.8 Hz, *J* = 8.4 Hz, 1 H), 6.68 (dt, *J* = 1.2 Hz, *J* = 7.6 Hz, 1 H), 4.75 (s, 2 H), 4.00 (t, *J* = 6.0 Hz, 2 H), 2.27 (t, *J* = 7.2 Hz, 2 H), 2.01-1.94 (m, 2 H), 1.77 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.5, 144.8, 139.3, 129.3, 122.3, 112.0, 110.5, 86.7, 68.4, 34.0, 27.0, 22.4.

IR (neat, cm⁻¹): 3072, 2918, 2874, 1694, 1464, 1275, 1052, 1018, 889, 746

HRMS (ESI): $[M+H]^+$ calcd for $C_{12}H_{16}IO$ 303.0240, found 303.0248

(3-Iodo-4-((2-methylallyl)oxy)phenyl)(piperidin-1-yl)methanone (1r)

Step 1: Compound **1r-1** was synthesized according to the literature procedure.¹⁸ To a solution of 4-hydroxy-3-iodobenzoic acid (2.64 g, 10.0 mmol) in DMF (25.0 mL) at 0 $^{\circ}$ C was added 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 5.70 g, 15.0 mmol) and *N*, *N*-Diisopropylethylamine (DIPEA, 2.50 mL, 15.0 mmol). The reaction mixture was stirred at room temperature for 1 h, and piperidine (1.0 mL, 12.0 mmol) was dropwise added. The reaction mixture was stirred at room temperature for 24 h. The reaction was quenched with H₂O, and extracted with ethyl acetate (3 × 20.0 mL). The combined organic layers were washed with saturated aqueous NH₄Cl, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give **1r-1** as a white solid (2.71 g, 82% yield, mp: 181-183 $^{\circ}$ C).

¹**H NMR (400 MHz, CDCl₃):** δ 7.72 (s, 1 H), 7.44 (s, 1 H), 7.20 (d, *J* = 6.8 Hz, 1 H), 6.83 (d, *J* = 8.0 Hz, 1 H), 3.67 (brs, 2 H), 3.41 (brs, 2 H), 1.68-1.60 (m, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ 169.3, 157.3, 137.5, 128.8, 128.7, 115.0, 84.8, 49.1, 43.6, 26.3, 25.6, 24.4.

IR (neat, cm⁻¹): 3728, 2937, 2621, 1699, 1507, 1277, 1114, 1025, 832, 761. HRMS (ESI): $[M+H]^+$ calcd for C₁₂H₁₅INO₂ 332.0142, found 332.0150.

Step 2: Compound 1r was prepared from 1r-1 (1.66 g, 5.0 mmol) and 3-chloro-2-methylprop-1-ene

(0.5 mL, 5.0 mmol) according to the General procedure A.

1.48 g, 77% yield, white solid, mp: 62-64 $^{\circ}$ C, R_f = 0.3 (silica gel, petroleum ether/ethyl acetate = 4:1).

¹**H** NMR (400 MHz , CDCl₃): δ 7.84 (d, *J* = 2.0 Hz, 1 H), 7.35 (dd, *J* = 2.0, 8.4 Hz, 1 H), 6.78 (d, *J* = 8.4 Hz, 1 H), 5.19 (s, 1 H), 5.03 (s, 1 H), 4.51 (s, 2 H), 3.60 (brs, 2 H), 3.45 (brs, 2 H), 1.87 (s, 3 H), 1.68-1.59 (m, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ 168.3, 157.7, 139.5, 138.1, 130.3, 128.4, 113.0, 111.3, 86.0, 72.4, 48.8, 43.2, 26.2, 25.4, 24.4, 19.3.

IR (neat, cm⁻¹): 3474, 3459, 2910, 2823 1634, 1437, 1277, 1262, 776, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₁₆H₂₁INO₂ 386.0611, found 386.0616.

Tert-butyl (2-iodo-4-methylphenyl)(2-methylallyl)carbamate (1z)

General Procedure:

Compound **1z-1** was synthesized according to the literature procedure.¹⁴ To a solution of 2-iodo-5-methylaniline (2.33 g, 10.0 mmol) in THF (30.0 mL) was added K_2CO_3 (2.77 g, 20.0 mmol) and DMAP (0.12 g, 1.0 mmol) at 0 °C, followed by slowly addition of $(Boc)_2O$ (2.29 g, 10.5 mmol) after 10 min. The reaction mixture was allowed to warm to room temperature and stirred for 3 h. The reaction was quenched with saturated aqueous solution of NaHCO₃ (30.0 mL), and extracted with ethyl acetate (3 × 30.0 mL). The combined organic layers were washed with saturated aqueous Na₂S₂O₃, brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give the crude product. The residue was then engaged in the known procedure (K₂CO₃ (4.15 g, 30.0 mmol), MeOH (30.0 mL), 3 h, 70 °C) to obtain the crude product **1z-1**.

To a solution of the above crude compound **1z-1** in DMF (20.0 mL) was added KI (1.99 g, 12.0 mmol) and NaH (0.36 g, 15.0 mmol) at 0 °C, followed by slowly addition of 3-chloro-2-methylprop-1-ene (0.91 g, 10.0 mmol) after 20 min. The reaction mixture was allowed to

warm to room temperature and stirred at 70 °C for 3 h. The reaction was quenched with water (40.0 mL), and extracted with ethyl acetate (3 \times 30.0 mL). The combined organic layers were washed with saturated aqueous Na₂S₂O₃, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the product **1***z*.

2.79 g, 72% yield, colorless oil, $R_f = 0.7$ (silica gel, petroleum ether/ethyl acetate = 20:1).

¹**H NMR (400 MHz, CDCl₃, mixture of rotamers):** δ 7.70 (d, *J* = 8.0 Hz, 1 H), [7.04 (s), 6.95 (s), 1

H], 6.79 (d, *J* = 7.2 Hz, 1 H), 4.85 (s, 1 H), 4.77 (s, 1 H), [4.56 (d, *J* = 15.6 Hz), 4.48 (d, *J* = 16.0 Hz),

1 H], 3.48 (d, *J* = 15.6 Hz, 1 H), 2.29 (s, 3 H), 1.82 (s, 3 H), [1.52 (s), 1.37 (s), 9 H].

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ154.2, 144.4, 141.2, 139.2, 138.9, 138.7, 130.9, 130.3, 129.9, 129.6, 112.8, 112.6, 95.8, 80.6, 80.2, 56.3, 55.2, 28.2, 20.9, 20.6.

IR (neat, cm⁻¹): 2974, 2925, 1706, 1593, 1367, 1299, 1170, 937, 861, 759.

HRMS (ESI): [M+H] ⁺ calcd for C₁₆H₂₃INO₂ 388.0768, found 388.0774.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **1z** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl (2-iodo-5-methylphenyl)(2-methylallyl)carbamate (1aa)

This compound was prepared from 2-iodo-4-methylaniline (2.33 g, 10.0 mmol) according to the General Procedure for the synthesis of **1z**.

2.94 g, 76% yield, colorless oil, $R_f = 0.7$ (silica gel, petroleum ether/ethyl acetate

= 20:1).

¹**H NMR (400 MHz, CDCl₃, mixture of rotamers):** δ 7.68 (s, 1 H), 7.26-6.99 (m, 2 H), 4.83 (s, 1 H), 4.74 (s, 1 H), [4.58 (d, *J* = 15.2 Hz), 4.49 (d, *J* = 15.2 Hz), 1 H], 3.47 (d, *J* = 16.0 Hz, 1 H), 2.29 (s, 3 H), 1.81 (s, 3 H), [1.52 (s), 1.36 (s), 9 H].

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ154.3, 142.0, 141.8, 141.4, 141.2, 140.0, 139.7, 139.0, 138.6, 129.6, 129.3, 129.1, 113.0, 112.8, 99.7, 80.5, 80.0, 56.2, 55.1, 28.2, 20.5, 20.4. **IR (neat, cm⁻¹):** 3077, 2976, 2925, 1706, 1487, 1368, 1297, 1171, 866, 763.

HRMS (ESI): $[M+H]^+$ calcd for C₁₆H₂₃INO₂ 388.0768, found 388.0774.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **1aa** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl (5-chloro-2-iodophenyl)(2-methylallyl)carbamate (1ab)

This compound was prepared from 5-chloro-2-iodoaniline (2.53 g, 10.0 mmol)

according to the General Procedure for the synthesis of 1z.

3.30 g, 81% yield, white solid, mp: 184-186 $^{\circ}$ C, R_f = 0.6 (silica gel, petroleum ether/ethyl acetate = 20:1).

¹H NMR (400 MHz, CDCl₃, mixture of rotamers): δ 7.77 (d, *J* = 8.4 Hz, 1 H), [7.26 (s), 7.20 (s), 1 H], 6.70 (dd, *J* = 2.4 Hz, *J* = 8.4 Hz, 1 H), 4.88 (s, 1 H), 4.75 (s, 1 H), 4.58-4.54 (m, 1 H), 3.50-3.46 (m, 1 H), 1.82 (s, 3 H), [1.52 (s), 1.37 (s), 9 H].

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ 153.7, 145.7, 140.8, 140.0, 134.2, 129.8, 128.8, 113.5, 97.6, 80.7, 56.1, 55.0, 28.2, 20.48.

IR (neat, cm⁻¹): 2976, 1708, 1572, 1463, 1366, 1289, 1165, 863, 729.

HRMS (ESI): [M+H] ⁺ calcd for C₁₅H₂₀ClINO₂ 408.0222, found 408.0219.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **1ab** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

1-Iodo-4-methyl-2-(3-methylbut-3-en-1-yl)benzene (1ad)

This compound was prepared from (2-iodo-5-methylphenyl)methanol (2.48 g, 10.0 mmol) according to the literature reference 15.

1.86 g, 65% yield, colorless oil, $R_f = 0.8$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.66 (d, *J* = 8.0 Hz, 1 H), 7.04 (d, *J* = 2.0 Hz, 1 H), 6.70 (dd, *J* = 2.0 Hz, 1 H), 4.76 (s, 2 H), 2.81-2.77 (m, 2 H), 2.31-2.23 (m, 5 H), 1.81 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 145.1, 144.4, 139.1, 138.2, 130.2, 128.7, 110.3, 96.3, 39.3, 38.4, 22.6, 20.9.

IR (neat, cm⁻¹): 3075, 2951, 2924, 2854, 1648, 1592, 1467, 1122, 1011, 886.

HRMS (APCI): $[M+H]^+$ calcd for $C_{12}H_{15}I$ 287.0291, found 287.0300.

5-Iodo-6-(3-methylbut-3-en-1-yl)benzo[d][1,3]dioxole (1ae)

```
1ae Me
```

This compound was prepared from 5-(bromomethyl)-6-iodobenzo[d][1,3]dioxole²¹ (1.52 g, 10.0 mmol) according to the literature reference 15.

2.40 g, 76% yield, colorless oil, $R_f = 0.4$ (silica gel, petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.22 (s, 1 H), 6.73 (s, 1 H), 5.93 (s, 2 H), 4.75 (d, *J* = 9.6 Hz, 2 H), 2.78-2.74 (m, 2 H), 2.24-2.20 (m, 2 H), 1.80 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 148.4, 146.6, 144.9, 137.9, 118.5, 110.5, 109.1, 101.4, 87.6, 39.3, 38.4, 22.6.

IR (neat, cm⁻¹): 3074, 2925, 1648, 1596, 1226, 1107, 1041, 935, 889, 826. HRMS (ESI): $[M+H]^+$ calcd for C₁₂H₁₄IO₂ 317.0041, found 317.0033.

4-Fluoro-1-iodo-2-(3-methylbut-3-en-1-yl)benzene (1af)

F T_{af} Me This compound was prepared from (5-fluoro-2-iodophenyl)methanol (2.52 g, 10.0 mmol) according to the literature reference 15. 1.62 g, 56% yield, colorless oil, $R_f = 0.4$ (silica gel, petroleum ether).

¹**H** NMR (400 MHz, CDCl₃): δ 7.25-7.19 (m, 1 H), 6.96 (d, J = 8.0 Hz, 1 H), 6.91-6.85 (m, 1 H), 4.72-4.70 (m, 2 H), 2.77-2.73 (m, 2 H), 2.33-2.29 (m, 2 H), 1.76 (s, 3 H).

¹³**C NMR (100 MHz, CDCl₃):** δ 162.9 (d, $J_{C-F} = 325$ Hz), 144.8 (d, $J_{C-F} = 8.0$ Hz), 144.7, 129.6 (d, $J_{C-F} = 9.0$ Hz), 124.0, 115.1 (d, $J_{C-F} = 21.0$ Hz), 112.6 (d, $J_{C-F} = 21.0$ Hz), 110.5, 39.2, 33.9, 22.5.

 $148.4,\,146.6,\,144.9,\,137.9,\,118.5,\,110.5,\,109.1,\,101.4,\,87.6,\,39.3,\,38.4,\,22.6.$

¹⁹**F NMR (376 MHz, CDCl₃):** δ -114.0

IR (neat, cm⁻¹): 2917, 2849, 1590, 1453, 1417, 1270, 1112, 887, 781, 688.

HRMS (ESI): [M+H] ⁺ calcd for C₁₁H₁₃FI 291.0040, found 291.0049.

3.2 Synthesis of Alkenyl Triflate Reagents 2a-2v

Alkenyl triflates 2a,²² 2b,²² 2c²³, 2d,²² 2e,²² 2f,²² 2g,²⁴ 2h,²² 2i,²² 2j,²⁵ 2k,²⁶ 2l,²⁷ 2m,²⁸ 2n,²² 2z,²⁹ 2aa,³⁰ are known compounds, and were synthesized according the literature procedure.²² Known

compound **2r** was prepared according to the literature procedure.³¹ Known compound **2s** was prepared according to the literature procedure.³² Known compound **2t** was prepared according to the literature procedure.³³ Known compound **2u** was prepared according to the literature procedure.³⁴ The preparation of new compounds, and their characterization data are provided as follows.

General procedure C:

$$R_{4} \xrightarrow{n} P_{n} \xrightarrow{\text{TfOH (1.5 equiv)}} R_{4} \xrightarrow{n} R_{n}$$

These compounds were synthesized according the literature procedure.²² To a solution of alkyne (10.0 mmol) in pentane (20.0 mL) was dropwise added trifluoromethanesulfonic acid (1.33 mL, 15.0 mmol) at -30 °C. The reaction mixture was warmed to 0 °C after 1 h, and quenched with saturated aqueous NaHCO₃. The organic layer was separated after 5 min, washed twice with saturated aqueous NaHCO₃, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give alkenyl triflates.

Hept-1-en-2-yl trifluoromethanesulfonate (20)

OTf This compound was prepared from hept-1-yne (0.96 g, 10.0 mmol) according to the General procedure C.

1.79 g, 73% yield, colorless oil, $R_f = 0.8$ (silica gel, petroleum ether).

¹**H NMR (600 MHz, CDCl₃):** δ 5.08 (d, *J* = 3.6 Hz, 1 H), 4.92 (d, *J* = 3.6 Hz, 1 H), 2.33 (t, *J* = 7.8 Hz, 2 H), 1.56-1.54 (m, 2 H), 1.36-1.32 (m, 4 H), 0.92-0.90 (m, 3 H).

¹³**C NMR (150 MHz, CDCl₃):** δ 157.2, 118.6 (q, J_{C-F} = 318.0 Hz), 103.9, 33.8, 30.8, 25.7, 22.2, 13.8.

¹⁹F NMR (564 MHz, CDCl₃): δ -74.3.

IR (neat, cm⁻¹): 2962, 2875, 1671, 1419, 1251, 1142, 1094, 947, 705, 613.

HRMS (ESI): $[M+H]^+$ calcd for $C_8H_{14}F_3O_3S$ 247.0610, found 247.0610.

Methyl 6-(((trifluoromethyl)sulfonyl)oxy)hept-6-enoate (2p)

OTf This compound was prepared from methyl hept-6-ynoate³⁵ (1.40 g, 10.0 mmol) according to the General procedure C.

2.37 g, 82% yield, colorless oil, $R_f = 0.4$ (silica gel, petroleum ether/ethyl acetate = 10:1).

¹**H NMR (400 MHz, CDCl₃):** δ 5.12 (d, J = 3.6 Hz, 1 H), 4.97 (d, J = 3.6 Hz, 1 H), 3.68 (s, 3 H),

2.39-2.34 (m, 4 H), 1.72-1.66 (m, 2 H), 1.63-1.57 (m, 2 H).

¹³**C NMR (100 MHz, CDCl₃):** δ 173.6, 156.2, 118.4 (q, J_{C-F} = 318.0 Hz), 104.5, 51.5, 33.5, 33.4, 25.3, 23.8.

¹⁹F NMR (**376** MHz, CDCl₃): δ -74.2.

IR (neat, cm⁻¹): 2956, 2874, 1740, 1417, 1211, 1073, 943, 830, 791, 638.

HRMS (ESI): $[M+H]^+$ calcd for C₉H₁₄F₃O₅S 291.0509, found 291.0510.

6-(((Trifluoromethyl)sulfonyl)oxy)hept-6-en-1-yl acetate (2q)

2q O This compound was prepared from hept-6-yn-1-yl acetate³⁶ (1.54 g, 10.0 mmol) according to the General procedure C.

2.37 g, 78% yield, colorless oil, $R_f = 0.4$ (silica gel, petroleum ether/ethyl acetate = 10:1).

¹**H NMR** (**400 MHz, CDCl₃**): δ 5.11 (d, *J* = 3.6 Hz, 1 H), 4.95 (d, *J* = 3.6 Hz, 1 H), 4.07 (t, *J* = 6.4 Hz, 2 H), 2.36 (t, *J* = 7.2 Hz, 2 H), 2.06 (s, 3 H), 1.70-1.55 (m, 4 H), 1.46-1.39 (m, 2 H).

¹³**C NMR (100 MHz, CDCl₃):** δ 171.2, 156.5, 118.4 (q, J_{C-F} = 318.0 Hz), 104.3, 64.1, 33.7, 28.1, 25.5, 25.0, 20.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -74.2.

IR (neat, cm⁻¹): 2954, 2870, 1739, 1643, 1417, 1210, 1141, 900, 706, 637.

HRMS (ESI): $[M+H]^+$ calcd for $C_{10}H_{16}F_3O_5S$ 305.0665, found 305.0665.

1-((S)-2-((S)-2-((Tert-butoxycarbonyl)amino)-3-phenylpropanamido)-3,3-dimethylbutanoyl)-1, 2,3,6-tetrahydropyridin-4-yl trifluoromethanesulfonate (2w)

To a stirred solution of acid $2w-1^{37}$ (2.65 g, 10.0 mmol) and ester $2w-2^{38}$ (1.81 g, 10.0 mmol) in CH₂Cl₂ (20.0 mL) at 0 °C was added DIPEA (1.65 mL, 10.0 mmol), hydroxybenzotriazole (HOBt, 1.49 g, 11.0 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, 1.92 g, 10.0 mmol). The reaction mixture was stirred at the same temperature for 10 min, and then room temperature for 24 h. The reaction was quenched with saturated aqueous NaHCO₃, extracted with ethyl acetate (3 ×

30.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give peptide **2w-3** as a white solid (2.74 g, 70% yield, mp: 114-116 °C).

¹**H NMR (400 MHz, CDCl₃):** δ 7.31-7.20 (m, 5 H), 6.46 (d, *J* = 9.2 Hz, 1 H), 5.09 (d, *J* = 7.2 Hz, 1 H), 4.39-4.33 (m, 2 H), 3.67 (s, 3 H), 3.06 (d, *J* = 6.8 Hz, 2 H), 1.42 (s, 9 H), 0.91 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ 171.3, 170.9, 155.4, 136.6, 129.2, 128.6, 126.8, 80.1, 60.0, 56.0, 51.7, 37.8, 34.7, 28.2, 26.4.

IR (neat, cm⁻¹): 3317, 2973, 1743, 1655, 1537, 1368, 1168, 1023, 881, 700.

HRMS (ESI): [M+H] ⁺ calcd for C₂₁H₃₃N₂O₅ 393.2384, found 393.2388.

To a solution of peptide **2w-3** (5.0 mmol, 1.96 g) in THF/H₂O (10.0 mL/10.0 mL) was added LiOH H₂O (1.05 g, 25.0 mmol) at 0 °C. The reaction mixture was stirred at the same temperature for 20 min, then room temperature for 24 h. The reaction was quenched with saturated aqueous NaHCO₃, and extracted with ethyl acetate (3×30.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was used for the next step without purification.

To a stirred solution of the above residue in THF/CH₂Cl₂ (10.0 mL/10.0 mL) at room temperature was added 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 3.81 g, 10.0 mmol) and N,N-diisopropylethylamine (DIPEA, 2.06 mL, 12.5 mmol), followed by 4-oxopiperidinium chloride (0.68 g, 5.0 mmol) after 10 min. The reaction mixture was stirred at room temperature for 24 h. The reaction was quenched with saturated aqueous NaHCO₃, and extracted with ethyl acetate (3 × 20.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was used for the next step without purification.

To a stirred solution of above crude ketone in THF (20.0 mL) was dropwise added Lithium bis(trimethylsilyl)amide (LiHMDS, 0.80 g, 4.8 mmol) at -78 °C. A solution of PhNTf₂ (1.72 g, 4.8 mmol) in THF (10.0 mL) was dropwise added after 1h. The reaction mixture was allowed to warm to room temperature and stirred for 16 h. The reaction was quenched with H₂O and extracted with ethyl acetate (3 × 20.0 mL). The organic layers were washed with saturated aqueous NH₄Cl, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give alkenyl triflate **2w**.

1.89 g, 64% yield for 3 steps, white solid, mp: 70-72 $^{\circ}$ C, R_f = 0.4 (silica gel, petroleum ether/ethyl

acetate = 4:1).

¹H NMR (400 MHz, CDCl₃, mixture of rotamors): δ 7.30-7.13 (m, 5 H), 7.03-7.01 (m, 1 H), 5.81-5.79 (m, 1 H), 5.29-5.24 (m, 1 H), 4.91-4.80 (m, 1 H), 4.51-3.54 (m, 5 H), 3.14-3.03 (m, 2 H), 2.57-2.44 (m, 2 H), 1.40-1.37 (m, 9 H), 0.96-0.87 (m, 9 H).

¹³C NMR (100 MHz, CDCl₃, mixture of rotamors): δ 171.3, 171.0, 170.1, 169.8, 169.7, 169.5, 155.2, 155.1, 147.5, 145.9, 136.6, 136.53, 136.47, 129.1, 129.0, 128.5, 128.3, 126.8, 126.6, 118.3(q, $J_{C-F} = 319.0$ Hz), 115.5, 115.4, 114.7, 79.8, 55.6, 54.7, 54.11, 54.05, 43.7, 43.0, 42.8, 40.2, 40.1, 38.6, 38.5, 38.4, 37.9, 35.7, 35.6, 35.5, 35.3, 28.5, 28.10, 28.05, 27.7, 26.3, 26.23, 26.19, 26.1.

¹⁹F NMR (376 MHz, CDCl₃): δ -73.76, -73.80.

IR (neat, cm⁻¹): 3423, 2976, 1701, 1638, 1422, 1368, 1215, 1142, 870, 747.

HRMS (ESI): [M+H] ⁺ calcd for C₂₆H₃₇F₃N₃O₇S 592.2299, found 592.2309.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of 2w were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20

5-(((trifluoromethyl)sulfonyl)oxy)hex-5-en-1-yl

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (2x)

Step 1: Triflate **2x-1** (4.22 g, 85% yield) was prepared as a colorless oil from hex-5-yn-1-ol (2.21 mL, 20.0 mmol) according to the General procedure C.

¹**H NMR (400 MHz, CDCl₃):** δ 5.11 (d, *J* = 3.6 Hz, 1 H), 4.97 (d, *J* = 3.6 Hz, 1 H), 3.66 (q, *J* = 6.0 Hz, 2 H), 2.39 (t, *J* = 6.8 Hz, 2 H), 1.99 (s, 1 H), 1.69-1.58 (m, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ 156.6, 118.4 (q, J_{C-F} = 318.0 Hz), 104.3, 62.1, 33.5, 31.4, 22.3.

¹⁹**F NMR (376 MHz, CDCl₃):** δ -74.2.

IR (neat, cm⁻¹): 3347, 2947, 2878, 1672, 1418, 1213, 1148, 1066, 948, 706.

HRMS (ESI): [M+K] ⁺ calcd for C₇H₁₁F₃O₄SK 286.9962, found 286.9967.

Step2: To a solution of Indomethacin (5.37 g, 15.0 mmol) in DCM (30.0 mL) was added dicyclohexylcarbodiimide (DCC, 3.09 g, 15.0 mmol) and 4-dimethylaminopyridine (DMAP, 0.12 g,

1.0 mmol) at 0 °C. The reaction mixture was stirred for 30 min, and a solution of triflate 2x-1 (2.48 g, 10.0 mmol) in DCM (10.0 mL) was added. The reaction mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure, and the residue was treated with water, extracted with ethyl acetate (3 × 30.0 mL). The combined organic layers were washed with water, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the product 2x.

4.23 g, 72% yield, colorless oil, $R_f = 0.4$ (silica gel, petroleum ether/ethyl acetate = 4:1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.66 (d, J = 8.4 Hz, 2 H), 7.47 (d, J = 8.8 Hz, 2 H), 6.96 (d, J = 2.4 Hz, 1 H), 6.86 (d, J = 8.8 Hz, 1 H), 6.67 (dd, J = 2.4, 9.2 Hz, 1 H), 5.08 (d, J = 3.2 Hz, 1 H), 4.86 (d, J = 3.6 Hz, 1 H), 4.13 (t, J = 6.4 Hz, 2 H), 3.83 (s, 3 H), 3.67 (s, 2 H), 2.39 (s, 3 H), 2.33 (t, J = 7.6 Hz, 2 H), 1.72-1.52 (m, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ 170.8, 168.2, 156.0, 155.9, 139.2, 135.9, 133.7, 131.1, 130.7, 130.5, 129.0, 118.4 (q, J_{C-F} = 318 Hz), 114.9, 112.4, 111.4, 104.6, 101.2, 64.2, 55.6, 33.3, 30.2, 27.5, 22.4, 13.3.

¹⁹F NMR (**376** MHz, CDCl₃): δ -74.0.

IR (neat, cm⁻¹): 3470, 2959, 1735, 1683, 1480, 1418, 1215, 1069, 926, 755. **HRMS (ESI):** [M+H] ⁺ calcd for C₂₆H₂₆ClF₃NO₇S 588.1065, found 588.1076.

1-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetyl)-1,2,3,6-tetrahydropyridin-4-yl trifluoromethanesulfonate (2y)

Step 1: To a solution of Indomethacin (1.97 g, 5.5 mmol) in THF/CH₂Cl₂ (10.0 mL/10.0 mL) was added 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxidhexafluorophosphate (HATU, 4.18 g, 11.0 mmol) and N,N-diisopropylethylamine (DIPEA, 2.06 mL,12.0 mmol) at room temperature. 4-Oxopiperidinium chloride (0.68 g, 5.0 mmol) was added after 10min. The reaction mixture was stirred at room temperature for 24 h. The reaction was quenched withsaturated aqueous NaHCO₃, and extracted with ethyl acetate (3 × 20.0 mL). The combined organiclayers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was used for the next step without purification.

Step 2: To a solution of the above residue in THF (30.0 mL) was dropwise added Lithium bis(trimethylsilyl)amide (LiHMDS, 1.00 g, 6.0 mmol) at -78 °C. A solution of PhNTf₂ (2.15 g, 6.0 mmol) in THF (10.0 mL) was dropwise added after 1 h. The reaction mixture was allowed to warm to room temperature, and stirred for 16 h. The reaction was quenched with H₂O, and extracted with ethyl acetate (3×20.0 mL). The organic layers were washed with saturated aqueous NH₄Cl, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give alkenyl triflate **2y**.

2.05 g, 72% yield for two steps, white solid, mp: 184-186 $^{\circ}$ C, R_f = 0.4 (silica gel, petroleum ether/ethyl acetate = 2:1), approximate 1.4:1 ratio of rotamers.

¹**H** NMR (600 MHz, CDCl₃): δ 7.66 (d, J = 8.4 Hz, 2 H), 7.47 (d, J = 8.4 Hz, 2 H), 6.94 (m, 1 H), 6.82-6.80 (m, 1 H), 6.66-6.65 (m, 1 H), [5.81 (s), 5.75 (s), 1 H), [4.25 (d, J = 3.0 Hz), 4.14 (d, J = 1.8 Hz), 2 H), 3.86-3.67 (m, 7 H), 2.47 (s, 1 H), 2.38 (d, J = 6.0 Hz, 3 H), 2.32 (s, 1 H).

¹³**C NMR (150 MHz, CDCl₃):** δ 169.0, 168.9, 168.2, 156.0, 147.7, 145.7, 139.3, 135.3, 131.1, 130.7, 130.3, 129.1, 118.3 (q, $J_{C-F} = 319.5$ Hz), 116.0, 114.9, 114.4, 112.4, 111.6, 111.4, 101.2, 55.6, 43.2, 42.3, 40.4, 38.6, 30.6, 30.5, 28.4, 27.7, 13.3.

¹⁹**F NMR (376 MHz, CDCl₃):** δ -73.6, -73.8.

IR (neat, cm⁻¹): 2928, 2842, 1679, 1418, 1316, 1213, 1142, 1053, 868, 776.

HRMS (ESI): [M+H] ⁺ calcd for C₂₅H₂₃ClF₃N₂O₆S 571.0912, found 571.0922.

NOTE: Because of the amide bond rotation equilibrium, two rotamers of 2y were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 37-38

4. Ni-catalyzed Enantioselective Cross-electrophile Aryl-alkenylation of Alkene

4.1. General Procedure

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with NiI₂ (6.3 mg, 0.020 mmol), L1 (7.6 mg, 0.028 mmol), Mn (44.0 mg, 0.8 mmol), and DMF/THF (0.5 mL/0.5 mL). The reaction mixture was stirred for 5 min. Substrates 1 (0.2 mmol) and 2 (0.2 mmol) were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at 25 °C for 24 h. The reaction was quenched with water (20.0 mL), and extracted with ethyl acetate (3 × 15.0 mL). The combined organic layers were washed with water, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product **3**.

4.2. Characterization Data of Products

(R)-3-(cyclohex-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (3a)

This compound was prepared according to the General procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol).

35.1 mg, 77% yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm. $t_R(major) = 9.1 \text{ min}, t_R(minor) = 11.1 \text{ min}.$

 $[\alpha]_{D}^{25} = -12 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.13-7.07 (m, 2 H), 6.86 (dt, *J* = 0.8, 7.6 Hz, 1 H), 6.77 (d, *J* = 8.0 Hz, 1 H), 5.41 (s, 1 H), 4.47 (d, *J* = 8.4 Hz, 1 H), 4.14 (d, *J* = 8.4 Hz, 1 H), 2.33-2.25 (m, 2 H), 1.99 (s, 2 H), 1.78-1.61 (m, 2 H), 1.54-1.44 (m, 4 H), 1.31 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.2, 135.8, 134.6, 127.9, 125.9, 122.9, 120.2, 109.5, 82.3, 49.0, 45.5, 30.1, 26.3, 25.4, 23.0, 22.1.

IR (neat, cm⁻¹): 2926, 2838, 1597, 1482, 1459, 1230, 1016, 980, 831, 747.

HRMS (**ESI**): [M+H] ⁺ calcd for C₁₆H₂₁O 229.1587, found 229.1597.

(R)-3-(cyclopent-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (3b)

The compound was prepared according to the General procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2b** (43.2 mg, 0.2 mmol). 33.8 mg, 79% yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, $t_R(major) = 10.5 min$, $t_R(minor) = 12.8 min$.

 $[\alpha]_{D}^{20} = +20 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.13-7.07 (m, 2 H), 6.86 (d, *J* = 7.2 Hz, 1 H), 6.76 (d, *J* = 8.0 Hz, 1 H), 5.37 (t, *J* = 0.8 Hz, 1 H), 4.45 (d, *J* = 8.4 Hz, 1 H), 4.16 (d, *J* = 8.8 Hz, 1 H), 2.51-2.40 (m, 2 H), 2.28-2.24 (m, 2 H), 2.11-1.93 (m, 2 H), 1.82-1.74 (m, 2 H), 1.33 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.3, 140.8, 135.7, 128.5, 128.0, 122.8, 120.3, 109.5, 82.2, 45.3, 42.1, 36.4, 32.3, 26.5, 24.0.

IR (neat, cm⁻¹): 3051, 2957, 2849, 1599, 1482, 1232, 1018, 980, 833, 747.

HRMS (ESI): $[M+H]^+$ calcd for $C_{15}H_{19}O$ 215.1430, found 215.1438.

(R)-3-((4,4-dimethylcyclohex-1-en-1-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3c)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) with **2c** (51.6 mg, 0.2 mmol).

36.9 mg, 72% yield, 99% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, $t_R(\text{minor}) = 8.1 \text{ min}, t_R(\text{major}) = 8.6 \text{ min}.$

 $0.1 \text{ mm}, t_{\text{R}}(\text{major}) = 0.0 \text{ mm}.$

 $[\alpha]_{D}^{20} = -5 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.13-7.07 (m, 2 H), 6.86 (dt, J = 0.8, 7.2 Hz, 1 H), 6.75 (d, J = 8.0 Hz, 1 H), 5.33 (s, 1 H), 4.48 (d, J = 8.8 Hz, 1 H), 4.15 (d, J = 8.4 Hz, 1 H), 2.34-2.27 (m, 2 H), 1.77-1.59 (m, 4 H), 1.32 (s, 3 H). 1.26-1.23 (m, 2 H), 0.85 (s, 3 H), 0.83 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.3, 135.8, 133.2, 127.9, 125.1, 122.9, 120.3, 109.5, 82.3, 48.9, 45.6, 39.6, 35.8, 28.9, 28.2, 27.8, 27.4, 26.4.

IR (neat, cm⁻¹): 2956, 2920, 1613, 1482, 1459, 1232, 1018, 982, 833, 747.

HRMS (ESI): $[M+H]^+$ calcd for $C_{18}H_{25}O$ 257.1900, found 257.1896.

(*R*)-3-(cyclohept-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (3d)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2d** (48.8 mg, 0.2 mmol).

31.5 mg, 65% yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 279 nm, $t_R(major) = 8.1 \text{ min}, t_R(minor) = 9.9 \text{ min}.$

 $[\alpha]_{D}^{19} = +2 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.12-7.07 (m, 2 H), 6.85 (dt, *J* = 0.8, 7.6 Hz, 1 H), 6.76 (d, *J* = 8.0 Hz, 1 H), 5.53 (t, *J* = 6.4 Hz, 1 H), 4.51 (d, *J* = 8.4 Hz, 1 H), 4.09 (d, *J* = 8.8 Hz, 1 H), 2.35-2.27 (m, 2 H), 2.08-1.87 (m, 4 H), 1.69-1.65 (m, 2 H), 1.45-1.31 (m, 4 H), 1.33 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.4, 141.3, 135.6, 131.4, 127.9, 123.1, 120.2, 109.5, 81.8, 50.7, 45.9, 34.4, 32.5, 28.6, 27.0, 26.5, 26.1.

IR (neat, cm⁻¹): 2922, 2846, 1597, 1482, 1450, 1230, 1016, 978, 831, 747.

HRMS (ESI): $[M+H]^+$ calcd for $C_{17}H_{23}O$ 243.1743, found 243.1746.

(R,E)-3-(cyclooct-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (3e)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2e** (51.6 mg, 0.2 mmol).

21.5 mg, 42% yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, t_R (major) =

10.1 min, $t_{\rm R}({\rm minor}) = 15.5$ min.

 $[\alpha]_D^{19} = +2 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.12-7.07 (m, 2 H), 6.87-6.83 (t, *J* = 7.2 Hz, 1 H), 6.77 (d, *J* = 8.0 Hz, 1 H), 5.35 (t, *J* = 8.0 Hz, 1 H), 4.50 (d, *J* = 8.4 Hz, 1 H), 4.14 (d, *J* = 8.4 Hz, 1 H), 2.36-2.25 (m, 2 H), 2.10-1.90 (m, 4 H), 1.45-1.41 (m, 8 H), 1.33 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.3, 137.1, 135.8, 129.0, 127.9, 123.0, 120.2, 109.5, 82.1, 46.8, 45.7, 29.9, 29.6, 28.3, 26.7, 26.6, 26.0, 26.0.

IR (neat, cm⁻¹): 2924, 2853, 1482, 1459, 1277, 1262, 1018, 980, 713, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₁₈H₂₅O 257.1900, found 257.1902.

100	100 [manually integrated] UV_VIS_1 WVL:280 nm		100	[manually integrated]	UV_VI	S_1 WVL:280 nm	
$50 - \frac{1}{9.5} - \frac{11 - 10.457}{12.5} - \frac{12 - 15.787}{15.0} - \frac{17.5}{20.0}$		50- -2= U 9.5	1 - 10.070	<u>12 - 15.483</u>	17.5 20.0		
Integration Results Integration Results							
No.	Retention Time	Area	Relative Area	No.	Retention Time	Area	Relative Area
	min	mAU*min	%		min	mAU*min	%
1	10.457	12.553	51.09	1	10.070	11.539	98.68
2	15.787	12.018	48.91	2	15.483	0.154	1.32
Total:		24.571	100.00	Total:		11.694	100.00

(3R)-3-((4-(tert-butyl)cyclohex-1-en-1-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3f)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2f** (57.2 mg, 0.2 mmol).

31.8 mg, 56% yield, 98% ee, dr = 1.2/1, white solid, mp 34-36 °C.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.1/99.9, 0.4 mL/min, 280 nm. t_{R1} (major) = 24.2 min, t_{R1} (minor) = 30.3 min; t_{R2} (major) = 25.0 min, t_{R2} (minor) = 26.0 min.

 $[\alpha]_{D}^{23} = +11 \text{ (c} = 1.0, \text{CH}_2\text{Cl}_2\text{)}.$

¹**H NMR (400 MHz, CDCl₃):** δ 7.13-7.07 (m, 2 H), 6.88-6.84 (m, 1 H), 6.77 (d, J = 8.0 Hz, 1 H),

[5.43 (t, *J* = 2.4 Hz), 5.39 (d, *J* = 3.2 Hz), 1 H], 4.48-4.45 (m, 1 H), 4.16-4.12 (m, 1 H), 2.32-2.25 (m, 2 H), 2.04-1.68 (m, 5 H), 1.33-1.30 (m, 3 H). 1.20-1.07 (m, 2 H), 0.84 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.2, 136.0, 135.8, 134.5, 134.4, 127.93, 127.90, 126.3, 126.2, 122.9, 120.3, 120.2, 109.5, 82.3, 82.2, 48.6, 48.3, 45.6, 45.5, 43.83, 43.76, 32.1, 31.7, 31.6, 27.18, 27.15, 27.1, 26.4, 26.2, 24.5, 24.3.

IR (neat, cm⁻¹): 3008, 2965, 1654, 1547, 1480, 1460, 1277, 1262, 767, 751.

HRMS (**ESI**): [M+Na] ⁺ calcd for C₂₀H₂₈ONa 302.2032, found 302.2034.

S26

(3R)-3-methyl-3-((1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)methyl)-2,3-dihydrobenzofuran (3g)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2g** (61.2 mg, 0.2 mmol).

34.7 mg, 57% yield, 98% ee, dr = 1.1:1, white solid, mp: 69-71°C.

Chiral HPLC: CHIRALPAK IB, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 1 mL/min, 203 nm. $t_{R1}(minor) = 17.0 \text{ min}, t_{R1}(major) = 21.5 \text{ min}; t_{R2}(minor) = 18.0 \text{ min}, t_{R2}(major) = 18.8 \text{ min}.$

 $[\alpha]_D^{23} = +12 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.30-7.09 (m, 7 H), 6.89-6.85 (t, *J* = 7.2 Hz, 1 H), 6.80-6.76 (m, 1 H), [5.52 (d, *J* = 2.4 Hz), 5.48 (d, *J* = 1.2 Hz), 1 H), 4.50 (d, *J* = 8.4 Hz, 1 H), 4.17 (t, *J* = 8.4 Hz, 1 H), 2.71-2.67 (m, 1 H), 2.37-1.63 (m, 8 H), 1.34 (d, *J* = 6.4 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.2, 147.0, 146.9, 135.7, 135.6, 134.6, 134.5, 128.29, 128.26, 128.01, 127.96, 126.82, 126.78, 125.92, 125.90, 125.6, 125.5, 122.9, 120.3, 109.5, 82.2, 48.7, 48.5, 45.6, 45.4, 39.7, 39.5, 33.8, 33.4, 30.8, 30.3, 30.1, 30.0, 26.4, 26.2.

IR (neat, cm⁻¹): 3407, 2917, 1655, 1482, 1459, 1277, 1262, 1016, 751, 699.

HRMS (ESI): [M+Na] ⁺ calcd for C₂₂H₂₄NaO 327.1719, found 327.1720.

(R)-8-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-1,4-dioxaspiro[4.5]dec-7-ene (3h)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2h** (57.6 mg, 0.2 mmol) in DMF. 46.9 mg, 82% yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ⁱPrOH-hexanes 4/96, 0.8 mL/min, 281 nm, t_R(major) =

16.7 min, $t_{\rm R}$ (minor) =18.7 min.

 $[\alpha]_{D}^{22} = -7 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.13-7.07 (m, 2 H), 6.86 (t, J = 7.2 Hz, 1 H), 6.77 (d, J = 8.0 Hz, 1

H), 5.31 (s, 1 H), 4.45 (d, *J* = 8.8 Hz, 1 H), 4.16 (d, *J* = 8.4 Hz, 1 H), 3.97-3.93 (m, 4 H), 2.37-2.29 (m, 2 H), 2.26 (s, 2 H), 2.01-1.89 (m, 2 H), 1.67-1.63 (m, 2 H), 1.33 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.2, 135.5, 134.3, 128.0, 123.04, 122.95, 120.3, 109.6, 107.6, 82.4, 64.3, 47.7, 45.5, 35.8, 31.2, 29.1, 25.9.

IR (neat, cm⁻¹): 2956, 2883, 1597, 1482, 1243, 1116, 1060, 1016, 833, 753.

HRMS (ESI): [M+H] ⁺ calcd for C₁₈H₂₃O₃ 287.1642, found 287.1643.

(R)-3-((3,6-dihydro-2H-pyran-4-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3i)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2i** (46.4 mg, 0.2 mmol) in DMF. 30.8 mg, 67% yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 280 nm, $t_R(major) = 5.6$ min, $t_R(minor) = 6.2$ min.

 $[\alpha]_{D}^{21} = +1 \ (c = 1.0, CH_2Cl_2).$

1H NMR (400 MHz, CDCl₃): δ 7.14-7.08 (m, 2 H), 6.88-6.84 (dt, *J* = 0.8, 7.2 Hz, 1 H), 6.77 (d, *J* = 8.0 Hz, 1 H), 5.40 (s, 1 H), 4.46 (d, *J* = 8.8 Hz, 1 H), 4.16 (d, *J* = 8.4 Hz, 1 H), 4.10-4.06 (m, 2 H), 3.69-3.59 (m, 2 H), 2.38-2.30 (m, 2 H), 1.86-1.74 (m, 2 H), 1.35 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.3, 135.2, 132.6, 128.1, 124.4, 122.9, 120.3, 109.6, 82.0, 65.4, 64.2, 48.2, 45.4, 30.2, 26.2.

IR (neat, cm⁻¹): 2962, 2752, 1722, 1597, 1481, 1235, 1128, 978, 832, 752.

HRMS (ESI): [M+H] ⁺ calcd for C₁₅H₁₉O₂ 231.1380, found 231.1381.

(R)-3-((3,6-dihydro-2H-thiopyran-4-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3j)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2j** (49.6 mg, 0.2 mmol) in DMF. 32.0 mg, 65% yield, 96% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 2/98, 1 mL/min, 260 nm, $t_R(major) = 12.0 \text{ min}, t_R(minor) = 13.2 \text{ min}.$

 $[\alpha]_{D}^{21} = -17 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.14-7.07 (m, 2 H), 6.87 (dt, J = 0.8, 7.6 Hz, 1 H), 6.78 (d, J = 8.0 Hz, 1 H), 5.57 (s, 1 H), 4.45 (d, J = 8.8 Hz, 1 H), 4.14 (d, J = 8.8 Hz, 1 H), 3.19-3.09 (m, 2 H), 2.64-2.53 (m, 2 H), 2.36-2.27 (m, 2 H), 2.04-1.88 (m, 2 H), 1.34 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.3, 135.6, 135.1, 128.2, 123.0, 122.5, 120.3, 109.7, 82.1, 49.8, 45.6, 30.8, 26.0, 25.7, 25.1.

IR (neat, cm⁻¹): 2961, 2883, 1663, 1596, 1480, 1230, 1017, 975, 831, 753.

HRMS (ESI): [M+H] ⁺ calcd for C₁₅H₁₉OS 247.1151, found 247.1153.

(*R*)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrahydropyridine (3k)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol).

59.7 mg, 78% yield, 98% ee, white solid, mp: 87-89 °C.

Chiral HPLC: CHIRALPAK ID, 25 °C, ^{*i*}PrOH-hexanes 8/92, 1 mL/min, 203 nm, $t_R(\text{minor}) = 56.5$ min, $t_R(\text{major}) = 57.8$ min.

 $[\alpha]_{D}^{23} = -8 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.64 (d, *J* = 8.4 Hz, 2 H), 7.31 (d, *J* = 8.0 Hz, 2 H), 7.12-7.08 (m, 1 H), 7.02 (dd, *J* = 0.8, 7.2 Hz, 1 H), 6.84 (dt, *J* =0.8, 7.6 Hz, 1 H), 6.73 (d, *J* = 8.0 Hz, 1 H), 5.29 (s, 1 H), 4.35 (d, *J* = 8.4 Hz, 1 H), 4.08 (d, *J* = 8.8 Hz, 1 H), 3.61-3.47 (m, 2 H), 3.12-2.94 (m, 2 H), 2.42 (s, 3 H), 2.32-2.24 (m, 2 H), 1.94-1.78 (m, 2 H), 1.28 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.2, 143.5, 134.8, 133.5, 133.2, 129.6, 128.2, 127.6, 122.8, 121.0, 120.4, 109.6, 81.7, 47.9, 45.3, 44.7, 42.8, 29.9, 26.0, 21.4.

IR (neat, cm⁻¹): 2963, 2922, 1597, 1482, 1344, 1165, 1094, 952, 754, 688.

HRMS (ESI): [M+H] ⁺ calcd for C₂₂H₂₆NO₃S 384.1628, found 384.1627.

Tert-butyl (R)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3,6-dihydropyridine-1(2H)-

carboxylate (3l)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2l** (66.2 mg, 0.2 mmol).

52.0 mg, 79% yield, 96% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 2/98, 1 mL/min, 260 nm, $t_{\rm R}$ (major) =

12.4 min, $t_{\rm R}$ (minor) =17.0 min.

 $[\alpha]_{D}^{23} = -6 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.14-7.06 (m, 2 H), 6.86 (dt, J = 0.8, 7.6 Hz, 1 H), 6.77 (d, J = 8.0

Hz, 1 H), 5.34 (s, 1 H), 4.44 (d, *J* = 8.4 Hz, 1 H), 4.14 (d, *J* = 8.8 Hz, 1 H), 3.91-3.76 (m, 2 H), 3.41 (s, 1 H), 3.29-3.23 (m, 1 H), 2.38-2.31 (m, 2 H), 1.82-1.76 (m, 2 H), 1.45 (s, 9 H), 1.34 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 154.9, 135.0, 133.6, 128.2, 122.9, 122.3, 120.4, 109.6, 81.9, 79.4, 48.3, 45.5, 43.5, 40.9, 30.0, 28.4, 26.1.

IR (neat, cm⁻¹): 2976, 2932, 1698, 1481, 1420, 1366, 1172, 980, 845, 753.

HRMS (ESI): [M+H] ⁺ calcd for C₂₀H₂₈NO₃ 330.2064, found 330.2062.

(R)-3-((1H-inden-2-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3m)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2m** (52.8 mg, 0.2 mmol) in DMF. 37.2 mg, 71% yield, 96% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 280 nm, $t_R(major) = 6.2 \text{ min}, t_R(minor) = 6.8 \text{ min}.$

 $[\alpha]_{D}^{22} = +66 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.30-7.07 (m, 6 H), 6.89 (dt, *J* = 1.2, 7.6 Hz, 1 H), 6.76 (d, *J* = 8.0 Hz, 1 H), 6.52 (m, 1 H), 4.52 (d, *J* = 8.8 Hz, 1 H), 4.19 (d, *J* = 8.4 Hz, 1 H), 3.15-2.95 (m, 2 H), 2.81 (s, 2 H), 1.41 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.3, 145.8, 144.8, 143.4, 134.9, 130.4, 128.3, 126.2, 124.0, 123.3, 122.8, 120.5, 120.1, 109.7, 81.8, 45.8, 42.4, 42.1, 26.5.

IR (neat, cm⁻¹): 2962, 2885, 1610, 1481, 1392, 1265, 1101, 978, 831, 752.

HRMS (ESI): [M+H] ⁺ calcd for C₁₉H₁₉O 263.1430, found 263.1431.

(R)-3-((3,4-dihydronaphthalen-1-yl)methyl)-3-methyl-2,3-dihydrobenzofuran (3n)

The compound was prepared according to the General Procedure from the reaction of **1a** (49 mg, 0.2 mmol) and **2n** (55.6 mg, 0.2 mmol) in DMF. 39.7 mg, 72% yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 260 nm, $t_R(\text{minor}) = 11.5 \text{ min}, t_R(\text{major}) = 15.3 \text{ min}.$

 $[\alpha]_{D}^{22} = -25 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.23-7.19 (m, 1 H), 7.12-7.05 (m, 5 H), 6.82-6.75 (m, 2 H), 5.72 (t, *J* = 4.8 Hz, 1 H), 4.47 (d, *J* = 8.8 Hz, 1 H), 4.00 (d, *J* = 8.8 Hz, 1 H), 2.85-2.67 (m, 4 H), 2.20-2.15 (m, 2 H), 1.31 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.4, 136.5, 135.5, 135.4, 133.1, 129.4, 128.0, 127.5, 126.5, 126.1, 123.1, 123.0, 120.2, 109.6, 82.1, 46.1, 41.7, 28.6, 25.0, 23.2.

IR (neat, cm⁻¹): 2963, 2881, 1655, 1597, 1480, 1234, 1016, 975, 833, 744.

HRMS (ESI): $[M+K]^+$ calcd for C₂₀H₂₀OK 315.1146, found 315.1145.

(*R*)-3-methyl-3-(2-methyleneheptyl)-2,3-dihydrobenzofuran (30)

The compound was prepared according to the General Procedure from the reaction of **1a** (109.6 mg, 0.4 mmol) and **2o** (49.2 mg, 0.2 mmol) in THF. 34.6 mg, 71% yield, 90% ee, colorless oil.

Chiral HPLC: CHIRALPAK IB, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, $t_R(major) =$

7.3 min, $t_{\rm R}({\rm minor}) = 11.6$ min.

 $[\alpha]_{D}^{20} = +8 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR** (**400 MHz, CDCl₃**): δ 7.13-7.09 (m, 2 H), 6.88-6.84 (m, 1 H), 6.77 (d, *J* = 8.0 Hz, 1 H), 4.85 (d, *J* = 1.6 Hz, 1 H), 4.70 (s, 1H), 4.50 (d, *J* = 8.4 Hz, 1 H), 4.16 (d, *J* = 8.8 Hz, 1 H), 2.44-2.32 (m, 2 H), 1.84-1.68 (m, 2 H), 1.38-1.14 (m, 9 H), 0.86 (t, *J* = 7.2 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.2, 146.6, 135.5, 128.0, 122.9, 120.3, 113.4, 109.6, 82.0, 46.3, 45.3, 37.0, 31.5, 27.6, 26.3, 22.5, 14.0.

IR (neat, cm⁻¹): 2958, 2876, 1638, 1599, 1482, 1232, 1018, 982, 896, 747.

HRMS (ESI): $[M+H]^+$ calcd for C₁₇H₂₅O 245.1900, found 245.1902.

Methyl (*R*)-6-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)hept-6-enoate (3p)

The compound was prepared according to the General Procedure from the reaction of **1a** (164.4 mg, 0.6 mmol) and **2p** (58.0 mg, 0.2 mmol). 32.8 mg, 57% yield, 92% ee, colorless oil.

Chiral HPLC: CHIRALPAK ID, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 203 nm, $t_R(major) = 5.7$ min, $t_R(minor) = 6.4$ min.

 $[\alpha]_{D}^{20} = +4 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.14-7.09 (m, 2 H), 6.87 (t, *J* = 7.2 Hz, 1 H), 6.77 (d, *J* = 8.0 Hz, 1 H), 4.86 (d, *J* = 0.8 Hz, 1 H), 4.72 (s, 1 H), 4.50 (d, *J* = 8.8 Hz, 1 H), 4.16 (d, *J* = 8.4 Hz, 1 H), 3.66 (s, 3 H), 2.43-2.31 (m, 2 H), 2.27-2.23 (m, 2 H), 1.81-1.64 (m, 2 H), 1.56-1.42 (m, 2 H), 1.40-1.25

(m, 5 H).

¹³C NMR (100 MHz, CDCl₃): δ 174.1, 159.3, 145.9, 135.3, 128.1, 122.8, 120.3, 113.9, 109.6, 81.9, 51.5, 46.3, 45.3, 36.5, 33.8, 27.3, 26.3, 24.4.

IR (neat, cm⁻¹): 3006, 2959, 1739, 1482, 1459, 1276, 1262, 976, 776, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₁₈H₂₅O₃ 289.1798, found 289.1800.

(R)-6-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)hept-6-en-1-yl acetate (3q)

The compound was prepared according to the General Procedure from the reaction of **1a** (164.4 mg, 0.6 mmol) and **2q** (60.8 mg, 0.2 mmol).

34.6 mg, 54% yield, 93% ee, colorless oil.

Chiral HPLC: CHIRALPAK ID, 25 °C, ^{*i*}PrOH-hexanes 4/96, 1 mL/min, 280 nm, $t_R(major) = 6.0$ min, $t_R(minor) = 6.6$ min.

 $[\alpha]_{D}^{20} = +5 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.14-7.09 (m, 2 H), 6.86 (dt, *J* = 0.8, 7.2 Hz, 1 H), 6.77 (d, *J* = 8.0 Hz, 1 H), 4.85 (d, *J* = 1.2 Hz, 1 H), 4.72 (s, 1 H), 4.50 (d, *J* = 8.4 Hz, 1 H), 4.16 (d, *J* = 8.8 Hz, 1 H), 4.02 (t, *J* = 6.8 Hz, 2H), 2.43-2.31 (m, 2 H), 2.04 (s, 3 H), 1.84-1.64 (m, 2 H), 1.60-1.53 (m, 2 H), 1.40-1.19 (m, 7 H).

¹³C NMR (100 MHz, CDCl₃): δ 171.2, 159.3, 146.1, 135.3, 128.1, 122.8, 120.3, 113.7, 109.6, 81.9, 64.5, 46.3, 45.3, 36.8, 28.4, 27.4, 26.3, 25.5, 21.0.

IR (neat, cm⁻¹): 2939, 2866, 1739, 1597, 1482, 1366, 1239, 1046, 978, 751.

HRMS (ESI): $[M+H]^+$ calcd for $C_{19}H_{27}O_3$ 303.1955, found 303.1953.

(R)-5-(tert-butyl)-3-methyl-3-(2-propylpent-2-en-1-yl)-2,3-dihydrobenzofuran (3s)

This compound was prepared according to the General Procedure from the reaction of **1b** (66.0 mg, 0.2 mmol) and **2s** (49.2mg, 0.2 mmol) in DMF.

18.0 mg, 30% yield, E/Z= 2.5/1, 91% ee, colorless oil. The *E*- and *Z*-isomers were determined by 1-D NOE experiments.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.4/99.6, 0.3 mL/min, 280 nm, t_{R1} (major) = 18.6 min, t_{R1} (minor) = 21.9 min; t_{R2} (major) = 19.4 min, t_{R2} (minor) = 20.9 min.

 $[\alpha]_D^{23} = +33 (c = 1.0, CH_2Cl_2).$

¹**H** NMR (400 MHz, CDCl₃): δ 7.13 (td, J = 2.0 Hz, J = 8.4 Hz, 2 H), 7.20 (d, J = 8.4 Hz, 1 H), 5.123 (t, J = 6.8 Hz, 1 H), 4.47 (d, J = 8.4 Hz, 1 H), 4.12 (d, J = 8.4 Hz, 1 H), 2.40-2.21 (m, 2 H), 2.03-1.92 (m, 2 H), 1.87-1.58 (m, 2 H), 1.32-1.30 (m, 2 H), 1.32 (s, 3 H), 1.30 (s, 9 H), 0.92 (t, J = 7.6 Hz, 3 H), 0.78 (t, J = 7.2 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.1, 143.2, 135.5, 135.1, 131.9, 124.6, 119.9, 108.6, 82.3, 46.7, 45.9, 40.0, 34.3, 31.8, 26.2, 21.7, 21.1, 14.6, 14.0.

IR (neat, cm⁻¹): 2960, 2931, 1594, 1490, 1363, 1261, 1186, 1057, 989, 816.

HRMS (**ESI**): [M+H] ⁺ calcd for C₂₁H₃₃O 301.2526, found 301.2533.

(R)-5-(tert-butyl)-3-(2,3-dimethylbut-2-en-1-yl)-3-methyl-2,3-dihydrobenzofuran (3t)

The compound was prepared according to the General Procedure from the reaction of **1b** (66.0 mg, 0.2 mmol) and **2t** (43.6 mg, 0.2 mmol) in DMF. 23.4 mg, 43% yield, 99.8% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.4/99.6, 0.3 mL/min, 280 nm, $t_R(minor) = 21.6 min, t_R(major) = 22.7 min.$

 $[\alpha]_{D}^{22} = +38 (c = 1.0, CH_2Cl_2).$

¹H NMR (400 MHz, CDCl₃): δ 7.13 (dd, J = 2.0 Hz, J = 8.0 Hz, 1 H), 7.20 (d, J = 2.0 Hz, 1 H), 7.08 (d, J = 8.4 Hz, 1 H), 4.37 (d, J = 8.4 Hz, 1 H), 4.09 (d, J = 8.4 Hz, 1 H), 2.61 (d, J = 13.6 Hz, 1 H), 2.23 (d, J = 13.6 Hz, 1 H), 1.63 (s, 3 H), 1.56 (s, 3 H), 1.41 (s, 3 H), 1.35 (s, 3 H), 1.28 (m, 9 H). ¹³C NMR (100 MHz, CDCl₃): δ 157.2, 143.2, 135.0, 128.6, 124.6, 124.5, 120.2, 108.5, 83.4, 46.7,

44.5, 34.3, 31.8, 25.4, 20.9, 20.84, 20.82.

IR (neat, cm⁻¹): 2961, 2917, 1738, 1648, 1490, 1462, 1262, 1057, 993, 815.

HRMS (ESI): [M+H] ⁺ calcd for C₁₉H₂₉O 273.2213, found 273.2219.

(R)-3-benzyl-3-methyl-2,3-dihydrobenzofuran (3u)

The compound was prepared according to the General Procedure from the reaction of **1a** (54.8 mg, 0.2 mmol) and **2v** (40.8 mg, 0.2 mmol).

31.4 mg, 70% yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 220 nm, $t_R(major) =$

19.1 min, $t_{\rm R}({\rm minor}) = 22.7$ min.

 $[\alpha]_{D}^{21} = +1 \ (c = 1.0, CH_2Cl_2).$

¹**H** NMR (400 MHz, CDCl₃): δ 7.25-7.20 (m, 3 H), 7.15-7.11 (m, 1 H), 7.00-6.98 (m, 2 H), 6.95-6.92 (m, 1 H), 6.88-6.84 (m, 1 H), 6.76 (d, J = 8.0 Hz, 1 H), 4.50 (d, J = 8.8 Hz, 1 H), 4.05 (d, J = 8.8 Hz, 1 H), 2.91-2.83 (m, 2 H), 1.35 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.5, 137.5, 134.8, 130.3, 128.1, 127.9, 126.4, 123.3, 120.2, 109.7, 81.8, 46.6, 46.2, 24.5.

IR (neat, cm⁻¹): 3432, 2086, 1637, 1479, 1418, 1261, 1122, 1042, 750, 702.

HRMS (ESI): [M+H] ⁺ calcd for C₁₆H₁₇O 225.1274, found 225.1272.

(R) - 4 - ((5 - (tert - butyl) - 3 - methyl - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1 - tosyl - 1, 2, 3, 6 - tetrahydrop - 1, 2, 3, 4 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 3, 5 - 1, 5

yridine (3v)

The compound was prepared according to the General Procedure from the reaction of **1b** (66.0 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol). 65.9 mg, 75% yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 3/97, 1 mL/min, 279 nm, $t_R(\text{minor}) = 32.7$ min, $t_R(\text{major}) = 37.8$ min.

 $[\alpha]_D^{24} = +14 \ (c = 1.0, CH_2Cl_2).$

¹**H** NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.0 Hz, 2 H), 7.31 (d, *J* = 8.0 Hz, 2 H), 7.12 (dd, *J* = 2.0, 8.0 Hz, 1 H), 7.02 (d, *J* = 2.0 Hz, 1 H), 6.66 (d, *J* = 8.4 Hz, 1 H), 5.29 (s, 1 H), 4.33 (d, *J* = 8.4 Hz, 1

H), 4.07 (d, *J* = 8.8 Hz, 1 H), 3.60-3.46 (m, 2 H), 3.11-2.92 (m, 2 H), 2.42 (s, 3 H), 2.28 (s, 2 H), 1.91-1.79 (m, 2 H), 1.29 (s, 3 H), 1.27 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.0, 143.5, 143.4, 134.1, 133.6, 133.2, 129.6, 127.6, 124.9, 120.9, 119.7, 108.7, 82.2, 47.9, 45.5, 44.8, 42.9, 34.3, 31.7, 29.9, 25.7, 21.5.

IR (neat, cm⁻¹): 2963, 2873, 1490, 1461, 1349, 1165, 1094, 950, 818, 736.

HRMS (ESI): $[M+H]^+$ calcd for C₂₆H₃₄NO₃S 440.2254, found 440.2253.

The compound (a colorless oil, 72.0 mg, 82% yield, 97% ee) was prepared according to the General Procedure from the reaction of **1c** (66.0 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol). The gram scale reaction was

conducted with **1c** (1.32 g, 4.0 mmol) and **2k** (1.54 g, 4.0 mmol) to afford **3w** with 72% yield (1.27 g) and 97% ee.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 3/97, 1 mL/min, 287 nm, $t_R(\text{minor}) = 30.2$ min, $t_R(\text{major}) = 33.2$ min.

 $[\alpha]_{D}^{24} = +9 \ (c = 1.0, CH_2Cl_2).$

¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 8.4 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 6.87 (s, 1 H), 6.53 (s, 1 H), 5.29 (s, 1 H), 4.30 (d, J = 8.8 Hz, 1 H), 4.05 (d, J = 8.8 Hz, 1 H), 3.61-3.46 (m, 2 H), 3.13-3.03 (m, 3 H), 2.42 (s, 3 H), 2.27 (s, 5 H), 1.93-1.82 (m, 2 H), 1.27 (s, 3 H), 1.18-1.14 (m, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 157.0, 143.4, 138.9, 135.0, 133.7, 133.2, 132.2, 129.6, 127.6, 120.8,

118.9, 111.0, 82.1, 47.9, 45.4, 44.8, 42.9, 29.9, 28.8, 25.9, 23.7, 23.4, 21.4, 19.6.

IR (neat, cm⁻¹): 2960, 2926, 1489, 1459, 1349, 1165, 1094, 948, 818, 738.

HRMS (ESI): $[M+H]^+$ calcd for C₂₆H₃₄NO₃S 440.2254, found 440.2252.

The compound was prepared according to the General Procedure from the reaction of **1d** (57.6 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol). 47.6 mg, 63% yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 10/90, 1 mL/min, 281 nm, $t_R(\text{minor}) = 17.3$ min, $t_R(\text{major}) = 27.3$ min.

 $[\alpha]_{D}^{24} = +12 \ (c = 0.68, CH_2Cl_2).$

¹**H NMR** (**400 MHz, CDCl₃**): δ 7.64 (d, *J* = 8.4 Hz, 2 H), 7.31 (d, *J* = 8.0 Hz, 2 H), 6.89 (d, *J* = 8.0 Hz, 1 H), 6.83 (s, 1 H), 6.62 (d, *J* = 8.0 Hz, 1 H), 5.30 (s, 1 H), 4.32 (d, *J* = 8.4 Hz, 1 H), 4.05 (d, *J* = 8.8 Hz, 1 H), 3.61-3.49 (m, 2 H), 3.11-2.95 (m, 2 H), 2.42 (s, 3 H), 2.31-2.23 (m, 2 H), 2.26 (s, 3 H), 1.94-1.80 (m, 2 H), 1.26 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.1, 143.5, 134.9, 133.6, 133.4, 129.7, 129.6, 128.6, 127.6, 123.3, 120.9, 109.2, 81.8, 47.8, 45.4, 44.8, 42.8, 30.0, 26.0, 21.5, 20.8.

IR (neat, cm⁻¹): 2967, 2924, 1490, 1459, 1344, 1165, 1094, 982, 814, 688.

HRMS (ESI): [M+H] ⁺ calcd for C₂₃H₂₈NO₃S 398.1784, found 229.1785.

30.0	[manually integrated]	EXT281	NM WVL:281 nm	100	[manually integrated]	EXT281	NM WVL:281 nm
20.0-	1 - 17.260	12 - 26	3.113	50 -	, ₁ 1 - 17.313	12 - 27.250	o
-0.5= 15.	0 20.0	25.0 3	0.0 35.0	-1-	20.0	25.0 30	0.0 35.0
Integra	ation Results			Integra	ation Results		
No.	Retention Time	Area	Relative Area	No.	Retention Time	Area	Relative Area
	min	mAU*min	%		min	mAU*min	%
1	17.260	6.092	50.10	1	17.313	0.678	1.51
2	28.113	6.067	49.90	2	27.250	44.336	98.49
Total:		12.159	100.00	Total:		45.014	100.00

(*R*)-3-(cyclohex-1-en-1-ylmethyl)-5-fluoro-3-methyl-2,3-dihydrobenzofuran (3y)

The compound was prepared according to the General Procedure from the reaction of 1e (105.1 mg, 0.36 mmol) and 2a (46.0 mg, 0.2 mmol). NiI₂ (9.5 mg, 0.030 mmol) and L1 (11.4 mg, 0.042 mmol) were used.

16.7 mg, 38% yield, 99% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 289 nm, $t_R(major) = 13.2 \text{ min}, t_R(minor) = 21.6 \text{ min}.$

 $[\alpha]_D^{21} = -5 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 6.81-6.76 (m, 2 H), 6.68-6.65 (m, 1 H), 5.40 (s, 1 H), 4.48 (d, *J* = 8.8 Hz, 1 H), 4.16 (d, *J* = 8.8 Hz, 1 H), 2.31-2.22 (m, 2 H), 1.99 (s, 2 H), 1.78-1.62 (m, 2 H), 1.56-1.45 (m, 4 H), 1.30 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 157.5 (d, $J_{C-F} = 236.0$ Hz), 155.1, 137.3 (d, $J_{C-F} = 8.0$ Hz), 134.2, 126.3, 114.0 (d, $J_{C-F} = 24.0$ Hz), 110.2 (d, $J_{C-F} = 24.0$ Hz), 109.6 (d, $J_{C-F} = 8.0$ Hz), 82.9, 48.8, 46.0, 30.2, 26.1, 25.4, 23.0, 22.1.

¹⁹**F NMR (376 MHz, CDCl₃):** δ -124.40.

IR (neat, cm⁻¹): 2961, 2850, 1591, 1486, 1261, 1175, 1092, 1039, 807, 751.

HRMS (ESI): $[M+H]^+$ calcd for C₁₆H₂₀FO 247.1493, found 247.1509.

(*R*)-4-((3-methyl-5-phenyl-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrahydropyrid ine (3z)

The compound was prepared according to the General Procedure from the reaction of **1f** (70.0 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol). 48.7 mg, 55% yield, 95% ee, white solid, mp: 60-62 $^{\circ}$ C.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 280 nm, $t_R(major) =$

45.9 min, $t_{\rm R}$ (minor) = 54.3 min.

 $[\alpha]_{D}^{24} = +75 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.64 (d, *J* = 8.0 Hz, 2 H), 7.52-7.50 (m, 2 H), 7.40 (t, *J* = 8.0 Hz, 2 H), 7.35 (dd, *J* = 2.0, 8.0 Hz, 1 H), 7.31-7.28 (m, 3 H), 7.25 (d, *J* = 2.0 Hz, 1 H), 6.80 (d, *J* = 8.0 Hz, 1 H), 5.33 (s, 1 H), 4.41 (d, *J* = 8.8 Hz, 1 H), 4.14 (d, *J* = 8.8 Hz, 1 H), 3.62-3.47 (m, 2 H), 3.14-2.93 (m, 2 H), 2.42 (s, 3 H), 2.37-2.29 (m, 2 H), 1.97-1.85 (m, 2 H), 1.33 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 158.9, 143.5, 141.2, 135.5, 134.0, 133.5, 133.2, 129.6, 128.7, 127.6, 127.4, 126.7, 126.6, 121.6, 121.1, 109.8, 82.2, 47.9, 45.4, 44.8, 42.8, 30.0, 26.1, 21.5.

IR (neat, cm⁻¹): 2963, 2853, 1601, 1482, 1344, 1165, 1096, 958, 818, 738.

HRMS (ESI): [M+H] ⁺ calcd for C₂₈H₃₀NO₃S 460.1941, found 460.1941.

(R)-3-(cyclohex-1-en-1-ylmethyl)-3,6-dimethyl-2,3-dihydrobenzofuran (3ab)

The compound was prepared according to the General Procedure from the reaction of **1h** (57.6 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol).

29.0 mg, 60% yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 284 nm, $t_R(major) =$

11.4 min, $t_{\rm R}({\rm minor}) = 13.5$ min.

 $[\alpha]_{D}^{21} = -8 (c = 1.0, CH_2Cl_2)$

¹**H** NMR (400 MHz, CDCl₃): δ 6.95 (d, J = 7.6 Hz, 1 H), 6.83 (dd, J = 0.4 Hz, J = 7.2 Hz, 1 H), 6.59 (s, 1 H), 5.41 (s, 1 H), 4.45 (d, J = 8.4 Hz, 1 H), 4.13 (d, J = 8.4 Hz, 1 H), 2.30 (s, 3 H), 2.27 (d, J = 6.0 Hz, 2 H), 1.99 (s, 2 H), 1.77-1.64 (m, 2 H), 1.58-1.45 (m, 4 H), 1.28 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.5, 138.0, 134.7, 133.0, 125.8, 122.5, 121.0, 110.2, 82.6, 49.0, 45.2, 30.2, 26.3, 25.4, 23.0, 22.2, 21.5.

IR (neat, cm⁻¹): 2923, 2836, 1592, 1495, 1425, 1251, 1122, 1007, 980, 751.

HRMS (ESI): $[M+H]^+$ calcd for $C_{17}H_{23}O$ 243.1743, found 243.1749.

(R)-3-(cyclohex-1-en-1-ylmethyl)-3,5,7-trimethyl-2,3-dihydrobenzofuran (3ac)

The compound was prepared according to the General Procedure from the reaction of **1i** (60.4 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol). 33.3 mg, 65% yield, 90% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 290 nm, $t_{\rm R}$ (major) = 10.9 min, $t_{\rm R}$ (minor) = 12.6 min.

 $[\alpha]_{D}^{21} = -2 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 6.75 (d, *J* = 0.8 Hz, 1 H), 6.72 (d, *J* = 0.4 Hz, 1 H), 5.42 (s, 1 H), 4.44 (d, *J* = 8.4 Hz, 1 H), 4.12 (d, *J* = 8.4 Hz, 1 H), 2.30-2.22 (m, 5 H), 2.17(s, 3 H), 2.00 (s, 2 H), 1.78-1.65 (m, 2 H), 1.57-1.45 (m, 4 H), 1.27 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 155.4, 135.3, 134.8, 129.7, 129.4, 125.7, 120.8, 119.0, 82.3, 48.9, 45.8, 30.2, 25.9, 25.5, 23.1, 22.2, 20.8, 15.0.

IR (neat, cm⁻¹): 3429, 2923, 2836, 1638, 1482, 1200, 1123,1003, 854, 749.

HRMS (ESI): [M+H] ⁺ calcd for C₁₈H₂₅O 257.1900, found 257.1903.

(R) - 8 - ((6 - chloro - 3 - methyl - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 - yl) methyl) - 1, 4 - dioxaspiro [4.5] dec - 7 - ene (1 - 2, 3 - dihydrobenzofuran - 3 -

(**3ae**)

The compound was prepared according to the General Procedure from the reaction of **1k** (61.6 mg, 0.2 mmol) and **2h** (57.6 mg, 0.2 mmol) in DMF. 41.0 mg, 64% yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 260 nm, $t_R(minor) = 10.4 \text{ min}, t_R(major) = 12.5 \text{ min}.$

 $[\alpha]_D^{21} = -8 (c = 0.5, CH_2Cl_2).$

¹H NMR (400 MHz, CDCl₃): δ 6.98 (d, J = 8.0 Hz, 1 H), 6.83 (dd, J = 1.6 Hz, J = 8.0 Hz, 1 H), 6.76 (d, J = 1.6 Hz, 1 H), 5.30 (s, 1 H), 4.47 (d, J = 8.4 Hz, 1 H), 4.18 (d, J = 8.4 Hz, 1 H), 3.96 (d, J= 2.4 Hz, 4 H), 2.31-2.26 (m, 4 H), 1.96 (d, J = 5.6 Hz, 2 H), 1.66 (t, J = 6.4 Hz, 2 H), 1.32 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 160.2, 134.3, 134.0, 133.3, 123.6, 123.4, 120.4, 110.4, 107.6, 83.2, 64.4, 47.6, 45.3, 35.8, 31.2, 29.2, 26.0.

IR (neat, cm⁻¹): 2917, 1593, 1480, 1417, 1316, 1260, 1118, 1042, 875, 804.

HRMS (ESI): [M+H] ⁺ calcd for C₁₈H₂₂ClO₃ 321.1252, found 321.1259.

(S)-3-(tert-butyl)-3-(cyclohex-1-en-1-ylmethyl)-2,3-dihydrobenzofuran (3af)

The compound was prepared according to the General Procedure from the reaction of **1l** (63.2 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol).

33.0 mg, 65% yield, 98% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 295 nm, $t_{\rm R}({\rm major}) = 7.7 {\rm min}, t_{\rm R}({\rm minor}) = 10.9 {\rm min}.$

 $[\alpha]_{D}^{21} = +68 \ (c = 0.5, CH_2Cl_2).$

¹H NMR (400 MHz, CDCl₃): δ 7.19-7.17 (m, 1 H), 7.10 (dt, *J* = 1.2, 7.6 Hz, 1 H), 6.80 (m, 1 H),

6.70 (d, *J* = 8.0 Hz, 1 H), 5.31 (s, 1 H), 4.49-4.41 (m, 2 H), 2.56-2.53 (m, 1 H), 2.36-2.33 (m, 1 H), 1.92 (s, 2 H), 1.44-1.34 (m, 6 H), 0.93 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ 160.6, 135.9, 131.9, 127.9, 126.4, 125.6, 119.2, 109.0, 76.1, 54.4, 42.3, 37.2, 30.0, 25.6, 25.5, 23.0, 22.1.

IR (neat, cm⁻¹): 2961, 2935, 1687, 1655, 1459, 1217, 1112, 1084, 835, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₁₉H₂₇O 271.2056, found 271.2058.

(*R*)-3-(cyclohex-1-en-1-ylmethyl)-3-octyl-2,3-dihydrobenzofuran (3ag)

The compound was prepared according to the General Procedure from the reaction of **1m** (74.4 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol).

42.4 mg, 68% yield, 95% ee, colorless.

Chiral HPLC: CHIRALPAK IB, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.5 mL/min, 280 nm, $t_R(major) = 9.0 \text{ min}, t_R(minor) = 10.1 \text{ min}.$

 $[\alpha]_{D}^{22} = -2 \ (c = 0.5, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.10 (dt, *J* = 1.2, 7.6 Hz, 1 H), 7.04 (dd, *J* = 1.2, 7.6 Hz, 1 H), 6.84 (dt, *J* = 0.8, 7.6 Hz, 1 H), 6.74 (d, *J* = 7.8 Hz, 1 H), 5.38 (s, 1 H), 4.41 (d, *J* = 8.8 Hz, 1 H), 4.26 (d, *J* = 8.4 Hz, 1 H), 2.33 (s, 2 H), 1.98 (s, 2 H), 1.70-1.42 (m, 8 H), 1.32-1.00 (m, 12 H), 0.86 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.8, 134.6, 134.0, 127.9, 125.9, 123.7, 120.0, 109.3, 80.5, 48.9, 47.6, 39.5, 31.8, 30.2, 30.1, 29.4, 29.3, 25.5, 24.2, 23.0, 22.6, 22.1, 14.1.

IR (neat, cm⁻¹): 2924, 2857, 1597, 1482, 1459, 1230, 1019, 975, 831, 745.

HRMS (ESI): $[M+H]^+$ calcd for C₂₃H₃₅O 327.2682, found 327.2682.

(*R*,*E*)-3-(cyclooct-1-en-1-ylmethyl)-3-pentyl-2,3-dihydrobenzofuran (3ah)

The compound was prepared according to the General Procedure from the reaction of **1n** (66.0 mg, 0.2 mmol) and **2e** (51.6 mg, 0.2 mmol).

26.8 mg, 46% yield, 93% ee, colorless oil.

Chiral HPLC: CHIRALPAK IB, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, t_R (major) =

7.1 min, $t_{\rm R}({\rm minor}) = 7.5$ min.

 $[\alpha]_{D}^{22} = +10 \ (c = 0.5, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.12-7.08 (m, 1 H), 7.04 (d, *J* = 7.6 Hz, 1 H), 6.84 (t, *J* = 7.2 Hz, 1 H), 6.75 (d, *J* = 8.0 Hz, 1 H), 5.33 (t, *J* = 8.0 Hz, 1 H), 4.45 (d, *J* = 8.8 Hz, 1 H), 4.28 (d, *J* = 8.8 Hz, 1 H), 2.42-2.31 (m, 2 H), 2.07-1.81 (m, 4 H), 1.69-1.57 (m, 2 H), 1.45-0.88 (m, 14 H), 0.83 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.8, 137.0, 134.0, 129.0, 127.8, 123.6, 120.0, 109.3, 80.3, 49.1, 45.4, 39.3, 32.4, 30.0, 29.4, 28.2, 26.70, 26.68, 26.0, 23.9, 22.5, 14.0.

IR (neat, cm⁻¹): 2963, 2851, 1595, 1459, 1260, 1122, 1093, 978, 803, 748.

HRMS (ESI): [M+H] ⁺ calcd for C₂₂H₃₃O 313.2526, found 313.2527...

(*R*)-4-((3-((but-3-en-1-yloxy)methyl)-2,3-dihydrobenzofuran-3-yl)methyl)-1-tosyl-1,2,3,6-tetrah ydropyridine (3ai)

The compound was prepared according to the General Procedure from the reaction of **1o** (68.8 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol) in DMF at 60 °C.

37.2 mg, 43% yield, 95% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 10/90, 1 mL/min, 285 nm, $t_R(\text{minor}) = 20.7$ min, $t_R(\text{major}) = 24.2$ min.

 $[\alpha]_{D}^{22} = -1$ (c = 1.0, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃):** δ 7.63 (d, *J* = 8.0 Hz, 2 H), 7.31 (d, *J* = 8.0 Hz, 2 H), 7.15-7.07 (m, 2 H), 6.82 (dt, *J* = 1.2, 7.6 Hz, 1 H), 6.74 (d, *J* = 8.0 Hz, 1 H), 5.82-5.75 (m, 1 H), 5.31 (s, 1 H), 5.09-5.01 (m, 2 H), 4.28 (s, 2 H), 3.60-3.36 (m, 6 H), 3.10-2.89 (m, 2 H), 2.52-2.27 (m, 4 H), 2.42, (s, 3 H), 1.87-1.81 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.8, 143.5, 135.1, 133.3, 132.9, 131.1, 129.6, 128.8, 127.6, 124.2, 121.1, 120.1, 116.4, 109.7, 78.3, 75.7, 70.6, 49.9, 44.8, 42.8, 42.6, 34.0, 30.0, 21.5.

IR (neat, cm⁻¹): 2924, 2857, 1597, 1482, 1347, 1165, 1098, 954, 755, 690.

HRMS (ESI): [M+H] ⁺ calcd for C₂₆H₃₃NO₄S 454.2047, found 454.2061.

(S)-4-(cyclohex-1-en-1-ylmethyl)-4-methylchromane (3aj)

The compound was prepared according to the General Procedure from the reaction of **1p** (57.6 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol).

28.1 mg, 58% yield, 94% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0/100, 0.3 mL/min, 226 nm, t_R (major) =

18.5 min, $t_{\rm R}({\rm minor}) = 19.0$ min.

 $[\alpha]_D^{21} = +1$ (c = 1.0, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃):** δ 7.26-7.24 (m, 1 H), 7.06 (t, *J* = 8.0 Hz, 1 H), 6.88-6.84 (m, 1 H), 6.77 (d, *J* = 8.0 Hz, 1 H), 5.39 (s, 1 H), 4.21-4.14 (m, 2 H), 2.44-2.22 (m, 2 H), 2.05-1.66 (m, 6 H), 1.55-1.46 (m, 4 H), 1.31 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 153.9, 135.0, 131.1, 127.5, 126.9, 126.2, 120.1, 116.9, 63.0, 51.2, 34.5, 33.8, 30.7, 30.4, 25.5, 23.1, 22.2.

IR (neat, cm⁻¹): 3410, 2918, 1594, 1447, 1420, 1261, 1117, 1042, 892, 750.

HRMS (ESI): [M+H] ⁺ calcd for C₁₇H₂₃O 243.1743, found 243.1748.

(*R*)-(3-(cyclohex-1-en-1-ylmethyl)-3-methyl-2,3-dihydrobenzofuran-5-yl)(piperidin-1-yl)metha none (3al)

The compound was prepared according to the General Procedure from the reaction of **1r** (138.6 mg, 0.36 mmol) and **2a** (46.0 mg, 0.2 mmol).

30.6 mg, 45% yield, 92% ee, white solid, mp: 77-79 $^{\rm o}{\rm C}.$

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 280 nm, $t_R(major) = 13.8$ min, $t_R(minor) = 15.6$ min.

 $[\alpha]_{D}^{22} = +22 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.18 (dd, *J* = 2.0, 4.0 Hz, 2 H), 6.74 (d, *J* = 8.8 Hz, 1 H), 5.40 (s, 1 H), 4.51 (d, *J* = 8.4 Hz, 1 H), 4.19 (d, *J* = 8.4 Hz, 1 H), 3.53 (brs, 4 H), 2.33-2.25 (m, 2 H), 1.98 (s, 2 H), 1.77-1.43 (m, 12 H), 1.32 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 170.7, 160.4, 136.0, 134.2, 128.4, 127.5, 126.2, 122.6, 108.9, 82.8, 49.0, 48.7, 45.4, 43.6, 30.1, 26.4, 26.2, 25.8, 25.3, 24.6, 22.9, 22.0.

IR (neat, cm⁻¹): 3569, 3450, 1655, 1638, 1473, 1277, 1262, 1074, 766, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₂₂H₃₀NO₂ 340.2271, found 340.2272.

Tert-butyl (R)-3-(cyclohex-1-en-1-ylmethyl)-3-methylindoline-1-carboxylate (3am)

The compound was prepared according to the General Procedure from the reaction of **1x** (74.6 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol) in DMF. 30.1 mg, 46% yield, 83% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 284 nm, $t_{\rm R}({\rm major}) = 21.5 {\rm min}, t_{\rm R}({\rm minor}) = 24.2 {\rm min}.$

$$[\alpha]_{D}^{22} = -25 (c = 2.0, CH_2Cl_2).$$

¹**H NMR (400 MHz, CDCl₃, mixture of rotamers):** δ [7.81 (s), 7.42 (s), 1 H], 7.15 (t, *J* = 8.0 Hz, 1 H), 7.04 (d, *J* = 8.0 Hz, 1 H), 6.94 (t, *J* = 8.0 Hz, 1 H), 5.37 (s, 1 H), 3.97 (s, 1 H), 3.56 (s, 1 H), 2.22(s, 2 H), 1.96 (s, 2 H), 1.64-1.40 (m, 15 H), 1.30 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ 152.5, 142.1, 141.1, 140.2, 139.2, 134.6, 127.5, 125.8, 122.5, 122.1, 114.6, 81.3, 80.2, 59.7, 50.1, 43.1, 42.44, 30.1, 28.5, 27.3, 25.5, 23.0, 22.1.

IR (neat, cm⁻¹): 2927, 1704, 1600, 1485, 1393, 1291, 1147, 1017, 859, 750.

HRMS (ESI): [M+H] ⁺ calcd for C₂₁H₃₀NO₂ 328.2271, found 328.2277.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **3am** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl(R)-3-methyl-3-((1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)methyl)indoline-1-carboxylat e (3an)

The compound was prepared according to the General Procedure from the reaction of **1x** (74.6mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol) in DMF. 48.2 mg, 50% yield, 91% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 10/90, 1 mL/min, 280 nm, $t_R(major) = 15.2$ min, $t_R(minor) = 16.7$ min.

 $[\alpha]_{D}^{22} = -13 (c = 2.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃, mixture of rotamers):** δ [7.78 (s), 7.35 (s), 1 H], 7.62 (t, *J* = 8.0 Hz, 2 H), 7.30 (d, *J* = 8.0 Hz, 2 H), 7.15 (t, *J* = 8.0 Hz, 1 H), 7.04 (d, *J* = 4.0 Hz, 1 H), 6.94-6.91 (m, 1 H), 5.29 (d, *J* = 4.0 Hz, 1 H), 3.87 (s, 1 H), 3.50 (m, 3 H), 2.97 (d, *J* = 4.0 Hz, 2 H), 2.42 (s, 3 H), 2.23 (s, 2 H), 1.89-1.67 (m, 2 H), 1.51 (s, 9 H), 1.27 (d, *J* = 8.0 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ 152.2, 143.4, 141.9, 138.9, 133.5, 133.1, 129.6, 127.9, 127.6, 122.5, 122.2, 120.1, 114.7, 81.4, 59.3, 48.6, 44.7, 42.8, 42.5, 29.9, 28.4, 27.1, 21.5.

IR (neat, cm⁻¹): 2975, 2925, 1698, 1598, 1484, 1393, 1164, 1018, 951, 712.

HRMS (ESI): [M+H] ⁺ calcd for C₂₇H₃₅N₂O₄S 483.2312, found 483.2321.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **3an** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl(R)-3-((1,4-dioxaspiro[4.5]dec-7-en-8-yl)methyl)-3-methylindoline-1-carboxylate (3ao)

The compound was prepared according to the General Procedure from the reaction of **1x** (74.6mg, 0.2 mmol) and **2h** (57.6 mg, 0.2 mmol) in DMF. 29.3 mg, 38% yield, 84% ee, colorless oil.

Chiral HPLC: CHIRALPAK ID, 25 °C, ^{*i*}PrOH-hexanes 2/98, 1 mL/min, 280 nm, $t_R(major) = 9.7$ min, $t_R(minor) = 12.7$ min.

 $[\alpha]_{D}^{21} = -11 \text{ (c} = 1.0, \text{CH}_2\text{Cl}_2\text{)}.$

¹**H NMR (400 MHz, CDCl₃):** δ [7.81(s), 7.41 (s), 1 H], 7.16 (t, *J* = 8.0 Hz, 1 H), 7.09 (d, *J* = 8.0 Hz, 1 H), 6.95 (t, *J* = 4.0 Hz, 1 H), 5.30 (s, 1 H), 3.97-3.89 (m, 5 H), 3.59 (s, 1 H), 2.27-2.23 (d, *J* = 4.0 Hz), 1.89-176 (m, 2 H), 1.64-1.57 (m, 11 H), 1.32 (s, 3 H).

¹³C NMR (150 MHz, CDCl₃, mixture of rotamers): δ 152.5, 142.1, 139.9, 134.3, 127.7, 122.7, 122.1, 114.7, 107.6, 81.4, 80.4, 64.3, 59.9, 48.7, 43.1, 35.9, 31.3, 29.1, 28.5, 27.0.

IR (neat, cm⁻¹): 2925, 1703, 1599, 1485, 1393, 1256, 1147, 1080, 857, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₂₃H₃₂NO₄ 386.2326, found 386.2337.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **3ao** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl (R)-3-((1H-inden-2-yl)methyl)-3-methylindoline-1-carboxylate (3ap)

The compound was prepared according to the General Procedure from the reaction of **1x** (74.6 mg, 0.2 mmol) and **2m** (52.8 mg, 0.2 mmol) in DMF. 38.3 mg, 53% yield, 97% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 4/96, 1 mL/min, 284 nm, $t_R(major) = 5.4 \text{ min}, t_R(minor) = 6.1 \text{ min}.$

$$[\alpha]_{D}^{21} = -24 \ (c = 1.0, CH_2Cl_2).$$

¹**H NMR** (**400 MHz, CDCl₃, mixture of isomers):** δ [7.82 (s), 7.39 (s), 1 H], 7.37-7.07 (m, 6 H), 7.01-6.97 (m, 1 H), 6.51 (d, *J* = 4.0 Hz, 1 H), 4.04-3.98 (m, 1 H), 3.65 (s, 1 H), 3.12-2.89 (m, 2 H), 2.81 (s, 2 H), 1.50 (s, 9 H), 1.40 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃, mixture of isomers): δ 152.4, 145.8, 144.9, 143.4, 142.1, 139.1, 130.4, 127.9, 126.2, 123.9, 123.3, 122.7, 122.3, 120.2, 114.8, 81.8, 80.5, 59.4, 43.5, 42.8, 42.5, 28.4, 27.9.

IR (neat, cm⁻¹): 3424, 2975, 2928, 1700, 1599, 1460, 1392, 1147, 857, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₂₄H₂₈NO₂ 362.2125, found 362.2123.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **3ap** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

(R)-1-(3-(cyclohex-1-en-1-ylmethyl)-3-methylindolin-1-yl)ethan-1-one (3aq)

The compound was prepared according to the General Procedure from the reaction of **1y** (63.0 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol) in DMF. 24.7 mg, 46% yield, 92% ee, colorless oil.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 10/90, 1 mL/min, 280 nm, $t_R(major) = 6.7$ min, $t_R(minor) = 8.3$ min.

 $[\alpha]_{D}^{21} = -13 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 8.15 (d, *J* = 8.0 Hz, 1 H), 7.15 (t, *J* = 8.0 Hz, 1 H), 7.12 (d, *J* = 8.0 Hz, 1 H), 7.04 (d, *J* = 8.0 Hz, 1 H), 5.42 (s, 1 H), 4.03 (d, *J* = 8.0 Hz, 1 H), 3.64 (d, *J* = 8.0 Hz, 1 H), 2.26-1.97 (m, 5 H), 1.65 (s, 2 H), 1.57-1.36 (m, 6 H), 1.31 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 168.4, 142.1, 139.6, 134.9, 127.8, 125.9, 123.6, 122.4, 116.9, 60.8, 50.3, 43.8, 30.0, 27.4, 25.5, 24.2, 22.9, 22.1.

IR (neat, cm⁻¹): 2923, 1663, 1597, 1481, 1460, 1402, 1120, 1043, 753, 618.

HRMS (ESI): [M+H] ⁺ calcd for C₁₈H₂₃NO 270.1852, found 270.1859.

Tert-butyl (R)-3-(cyclohex-1-en-1-ylmethyl)-3,6-dimethylindoline-1-carboxylate (3ar)

The compound was prepared according to the General Procedure from the reaction of **1z** (77.4 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol) in DMF.

51.2 mg, 75% yield, 83% ee, colorless oil.

 $[\alpha]_{D}^{21} = -21 \ (c = 2.0, CH_2Cl_2).$

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, $t_{\rm R}$ (major) = 23.8 min, $t_{\rm R}$ (minor) = 25.4 min.

¹**H NMR (600 MHz, CDCl₃, mixture of rotamers):** δ [7.67 (s), 7.26 (s), 1 H], 6.97 (d, *J* = 6.0 Hz, 1 H), 6.77 (d, *J* = 6.0 Hz, 1 H), 5.37 (s, 1 H), 3.96 (s, 1 H), 3.59-3.53 (m, 1 H), 2.32 (s, 3 H), 2.21 (t, *J* = 12.0 Hz, 2 H), 1.97 (s, 2 H), 1.65-1.42 (m, 15 H), 1.28 (s, 3 H).

¹³C NMR (150 MHz, CDCl₃, mixture of rotamers): δ 152.5, 142.3, 137.5, 136.7, 134.8, 125.7, 122.8, 122.3, 115.4, 80.2, 60.1, 50.1, 42.8, 30.2, 28.5, 27.4, 25.5, 23.1, 22.2, 21.7.

IR (neat, cm⁻¹): 2926, 2836, 1705, 1592, 1498, 1389, 1243, 1161, 1027, 764.

HRMS (ESI): [M+H] ⁺ calcd for C₂₂H₃₂NO₂ 342.2428, found 342.2434.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **3ar** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

 ${\it Tert-butyl} (R) - 3, 6-dimethyl - 3-((1-tosyl - 1, 2, 3, 6-tetrahydropyridin - 4-yl) methyl) indoline - 1-carbox - 1$

ylate (3as)

The compound was prepared according to the General Procedure from the reaction of **1z** (77.4 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol) in DMF. 91.3 mg, 92% yield, 96% ee, colorless oil.

Chiral HPLC: CHIRALPAK IB, 25 °C, ^{*i*}PrOH-hexanes 2/98, 1 mL/min, 290 nm, $t_R(major) = 30.0$

min, $t_{\rm R}({\rm minor}) = 33.7$ min.

$$[\alpha]_{D}^{21} = -25 \ (c = 2.0, CH_2Cl_2).$$

¹**H NMR (400 MHz, CDCl₃, mixture of rotamers):** [δ 7.64 (s), 7.27 (s), 1 H], 7.63 (d, *J* = 8.0 Hz, 2 H), 7.30 (d, *J* = 8.0 Hz, 2 H), 6.91 (d, *J* = 7.6 Hz, 1 H), 6.74 (d, *J* = 7.6 Hz, 1 H), 5.29 (s, 1 H), 3.85 (s, 1 H), 3.51 (s, 3 H), 2.98 (s, 2 H), 2.41 (s, 3 H), 2.31 (s, 3 H), 2.22 (s, 2 H), 1.89-1.72 (m, 2 H), 1.51 (s, 9 H), 1.25 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ 152.3, 143.4, 142.0, 137.7, 135.6, 133.6, 133.1, 129.5, 127.6, 122.8, 122.1, 120.7, 115.4, 81.4, 80.3, 59.5, 48.6, 44.7, 42.8, 42.5, 29.9, 28.3, 27.2, 21.6, 21.4.

IR (neat, cm⁻¹): 3428, 2974, 1699, 1595, 1497, 1347, 1163, 1028, 890, 737.

HRMS (ESI): [M+H] ⁺ calcd for C₂₈H₃₇N₂O₄S 497.2477, found 497.2469.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **3as** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl (R)-3-(cyclohex-1-en-1-ylmethyl)-3,5-dimethylindoline-1-carboxylate (3at)

The compound wasprepared according to the General Procedure from the reaction of **1aa** (77.4 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol) in DMF. 49.1 mg, 72% yield, 85% ee, colorless oil.

 $[\alpha]_{D}^{21} = -7 \ (c = 1.5, CH_2Cl_2).$

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, $t_{\rm R}({\rm minor}) = 17.3 {\rm min}, t_{\rm R}({\rm major}) = 18.7 {\rm min}.$

¹**H NMR (400 MHz, CDCl₃, mixture of rotamers):** δ [7.67 (s), 7.28 (s), 1 H], 6.95 (d, *J* = 8.0 Hz, 1 H), 6.88 (s, 1 H), 5.38 (s, 1 H), 3.96 (s, 1 H), 3.53 (m, 1 H), 2.30 (s, 3 H), 2.21 (s, 2 H), 1.96 (s, 2 H), 1.55-1.44 (m, 15 H), 1.28 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ 152.5, 139.8, 134.7, 131.5, 128.0, 125.7, 123.3, 114.3, 81.0, 80.1, 59.8, 50.0, 43.1, 42.5, 30.1, 28.5, 27.2, 25.5, 23.0, 22.2, 21.0.

HRMS (ESI): [M+H] ⁺ calcd for C₂₂H₃₂NO₂ 342.2428, found 342.2434.

IR (neat, cm⁻¹): 3424, 2927, 1701, 1637, 1494, 1456, 1390, 1243, 1019, 858, 763.

HRMS (ESI): [M+H] ⁺ calcd for C₂₂H₃₂NO₂ 342.2428, found 342.2432.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **3at** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

Tert-butyl(R)-6-chloro-3-(cyclohex-1-en-1-ylmethyl)-3-methylindoline-1-carboxylate (3au)

The compound was prepared according to the General Procedure from the reaction of **1ab** (81.4 mg, 0.2 mmol) and **2a** (46.0 mg, 0.2 mmol) in DMF. 41.9 mg, 58% yield, 96% ee, colorless oil.

 $[\alpha]_{D}^{21} = -49 (c = 1.0, CH_2Cl_2).$

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, $t_{\rm R}({\rm minor}) = 13.8 {\rm min}, t_{\rm R}({\rm major}) = 16.3 {\rm min}.$

¹**H NMR (400 MHz, CDCl₃, mixture of rotamers):** δ [7.85 (s), 7.40 (s), 1 H], 6.97 (d, *J* = 8.0 Hz, 1 H), 6.91 (dd, *J* = 4.0 Hz, 1 H), 5.36 (s, 1 H), 3.98 (d, *J* = 8.0 Hz, 1 H), 3.57 (s, 1 H), 2.20-2.19 (m, 2 H), 1.96 (d, *J* = 8.0 Hz, 2 H), 1.60-1.44 (m, 15 H), 1.29 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ 152.2, 143.3, 137.8, 134.3, 133.1, 126.1, 123.3, 122.0, 115.0, 81.9, 80.7, 60.0, 50.0, 42.9, 42.2, 30.2, 28.4, 27.4, 25.5, 23.0, 22.1.

IR (neat, cm⁻¹): 2928, 2836, 1706, 1599, 1486, 1386, 1152, 1081, 921, 860.

HRMS (ESI): [M+H] ⁺ calcd for C₂₁H₂₉ClNO₂ 362.1881, found 362.1889.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **3au** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

(R)-8-((1-methyl-2,3-dihydro-1H-inden-1-yl)methyl)-1,4-dioxaspiro[4.5]dec-7-ene (3av)

The compound was prepared according to the General Procedure from the reaction of **1ac** (54.4 mg, 0.2 mmol) and **2h** (57.6 mg, 0.2 mmol).

43.2 mg, 76% yield, 90% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 273 nm, $t_R(major) = 7.1$ min, $t_R(minor) = 8.1$ min.

 $[\alpha]_{D}^{25} = +18 \text{ (c} = 0.78, \text{CH}_2\text{Cl}_2\text{)}.$

¹**H NMR (400 MHz, CDCl₃):** δ 7.18-7.10 (m, 4 H), 5.28 (d, *J* = 3.2 Hz, 1 H), 3.97-3.90 (m, 4 H), 2.93-2.78 (m, 2 H), 2.28-2.20 (m, 4 H), 2.14-2.08 (m, 1 H), 1.89-1.81 (m, 3 H), 1.66-1.59 (m, 2 H), 1.26 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 151.4, 143.1, 135.5, 126.2, 126.0, 124.4, 122.7, 122.0, 107.8, 64.2, 48.5, 47.7, 38.9, 35.8, 31.3, 30.3, 29.3, 27.5.

IR (neat, cm⁻¹): 2956, 2928, 1479, 1450, 11377, 1256, 1112, 1060, 863, 759.

HRMS (ESI): [M+H] ⁺ calcd for C₁₉H₂₅O₂ 285.1849, found 285.1851.

(R)-4-((1-methyl-2,3-dihydro-1H-inden-1-yl)methyl)-1-tosyl-1,2,3,6-tetrahydropyridine (3aw)

The compound was prepared according to the General Procedure from the reaction of **1ac** (54.4 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol) in DMF. 43.4 mg, 57% yield, 84% ee, colorless oil.

Chiral HPLC: CHIRALCEL AS-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 260 nm, $t_R(\text{minor}) = 29.1 \text{ min}, t_R(\text{major}) = 30.6 \text{ min}.$

 $[\alpha]_{D}^{22} = -4$ (c = 1.0, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃):** δ 7.64 (d, *J* = 8.0 Hz, 2 H), 7.30 (d, *J* = 8.4 Hz, 2 H), 7.26-7.04 (m, 4 H), 5.26 (s, 1 H), 3.63-3.45 (m, 2 H), 3.15-2.88 (m, 2 H), 2.83-2.80 (m, 2 H), 2.42 (s, 3 H), 2.26-2.18 (m, 2 H), 2.05-2.00 (m, 1 H), 1.98-1.74 (m, 3 H), 1.20 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 150.8, 143.4, 142.9, 134.7, 133.3, 129.5, 127.6, 126.4, 126.1, 124.5, 122.5, 120.0, 48.8, 47.6, 44.8, 42.9, 38.4, 30.3, 30.2, 27.6, 21.4.

IR (neat, cm⁻¹): 3386, 2924, 1600, 1458, 1346, 1162, 1096, 1039, 816, 761.

HRMS (ESI): [M+H] ⁺ calcd for C₂₃H₂₈NO₂S 382.1835, found 382.1842.

(R)-2-((1-methyl-2,3-dihydro-1H-inden-1-yl)methyl)-1H-indene (3ax)

The compound was prepared according to the General Procedure from the reaction of **1ac** (54.4 mg, 0.2 mmol) and **2m** (52.8 mg, 0.2 mmol) in DMF. 23.4 mg, 45% yield, 92% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 260 nm, $t_R(\text{minor}) = 8.0$ min, $t_R(\text{major}) = 10.6$ min.

 $[\alpha]_{D}^{21} = -1$ (c = 1.0, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃):** δ 7.23-7.18 (m, 2 H), 7.15-7.00 (m, 5 H), 6.99 (d, *J* = 1.2 Hz, 1 H), 6.43 (s, 1 H), 3.05-2.85 (m, 2 H), 2.79-2.65 (m, 4 H), 2.15-1.76 (m, 2 H), 1.26 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 151.0, 147.7, 145.3, 143.6, 143.2, 129.7, 126.5, 126.3, 126.1, 124.6, 123.6, 123.3, 122.6, 119.9, 48.1, 43.0, 42.8, 38.3, 30.2, 27.9.

IR (neat, cm⁻¹): 3440, 2962, 1636, 1459, 1416, 1316, 1260, 1094, 798, 755

HRMS (ESI): $[M+H]^+$ calcd for $C_{20}H_{21}$ 261.1644, found 261.1638.

100 [manually integrated] UV_VIS_1 WVL:260 nm			100 - 💆	[manually integrated]	UV_VIS	6_1 WVL:260 nm	
50 - -1 -1 -1 -1	1 - 7.850	12 - 10.510 00 12.0	0 14.00	50 -1 7.00	1 - 7.963 8.00 10.	00 12.0	0 14.00
Integra	ation Results			Integra	tion Results		
No.	Retention Time	Area	Relative Area	No.	Retention Time	Area	Relative Area
	min	mAU*min	%		min	mAU*min	%
1	7.850	13.595	50.12	1	7.963	1.054	4.07
2	10.510	13.527	49.88	2	10.603	24.852	95.93
Total:		27.122	100.00	Total:		25.906	100.00

(R)-4-((1-methyl-2,3-dihydro-1H-inden-1-yl)methyl)-1,2-dihydronaphthalene (3ay)

The compound was prepared according to the General Procedure from the reaction of **1ac** (54.4 mg, 0.2 mmol) and **2n** (55.6 mg, 0.2 mmol) in DMF.

25.2mg, 46% yield, 89% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 4/96, 1 mL/min, 260 nm, $t_R(\text{minor}) = 5.1$ min, $t_R(\text{major}) = 5.8$ min.

 $[\alpha]_{D}^{23} = -1$ (c = 1.0, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃):** δ 7.20-7.06 (m, 8 H), 5.66 (t, J = 4.8 Hz, 1 H), 2.88-2.60 (m, 6 H),

2.18-2.08 (m, 3 H), 1.76-1.69 (m, 1 H), 1.25 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 151.4, 143.2, 136.4, 136.1, 134.1, 128.8, 127.4, 126.3, 126.2, 125.9, 125.9, 124.4, 123.1, 123.0, 48.3, 42.3, 39.1, 30.2, 28.8, 27.1, 23.3.

IR (neat, cm⁻¹): 3023, 2930, 1945, 1600, 1478, 1311, 1109, 1023, 756, 670.

HRMS (ESI): [M+H] ⁺ calcd for C₂₁H₂₃ 275.1797, found 275.1794.

(R)-2-((1,5-dimethyl-2,3-dihydro-1H-inden-1-yl)methyl)-1H-indene (3az)

The compound was prepared according to the General Procedure from the reaction of **1ad** (57.2 mg, 0.2 mmol) and **2m** (57.6 mg, 0.2 mmol) in DMF. 18.6 mg, 34% yield, 95% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 260 nm, $t_R(\text{minor}) = 8.5$ min, $t_R(\text{major}) = 9.2$ min.

 $[\alpha]_{D}^{21} = +12 \ (c = 0.5, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.30-7.20 (m, 3 H), 7.09-7.00 (m, 4 H), 6.50 (s, 1 H), 3.14-2.96 (m, 2 H), 2.82-2.70 (m, 4 H), 2.33 (s, 3 H), 2.18-1.87 (m, 2 H), 1.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 147.9, 147.5, 145.3, 143.6, 143.4, 136.1, 129.6, 127.1, 126.1, 125.3,

123.6, 123.3, 122.4, 119.9, 47.7, 43.1, 42.8, 38.6, 30.1, 27.9, 21.3.

IR (neat, cm⁻¹): 2922, 1959, 1593, 1460, 1421, 1260, 1119, 1037, 831, 799.

HRMS (ESI): $[M+H]^+$ calcd for C₂₁H₂₃ 275.1794, found 275.1783.

(R)-8-((1,5-dimethyl-2,3-dihydro-1H-inden-1-yl)methyl)-1,4-dioxaspiro[4.5]dec-7-ene (3ba)

The compound was prepared according to the General Procedure from the reaction of **1ad** (57.2 mg, 0.2 mmol) and **2h** (57.6 mg, 0.2 mmol) in DMF. 22.1 mg, 37% yield, 90% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 271 nm, $t_R(major) = 6.0$ min, $t_R(minor) = 7.5$ min.

 $[\alpha]_D^{21} = +7 (c = 1.0, CH_2Cl_2).$

¹H NMR (400 MHz, CDCl₃): δ 7.02-6.96 (m, 3 H), 5.28 (s, 1 H), 3.97-3.93 (m, 4 H), 2.87-2.79 (m, 2 H), 2.31 (s, 3 H), 2.25-2.18 (m, 4 H), 2.13-2.07 (m, 1 H), 1.92 (s, 2 H), 1.90-1.79 (m, 1 H), 1.65-1.56 (m, 2 H), 1.24 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 148.7, 143.3, 135.9, 135.7, 126.8, 125.1, 122.5, 121.9, 107.9, 64.3, 48.5, 47.4, 39.2, 35.9, 31.4, 30.2, 29.4, 27.5, 21.2.

IR (neat, cm⁻¹): 3370, 2921, 1590, 1453, 1424, 1378, 1259, 1115, 862, 816.

HRMS (ESI): $[M+H]^+$ calcd for C₂₀H₂₇O 298.1933, found 298.1939.

ropyridine (3bb)

The compound was prepared according to the General Procedure from the reaction of **1ae** (63.2 mg, 0.2 mmol) and **2k** (77.0 mg, 0.2 mmol) in DMF. 42.5 mg, 50% yield, 94% ee, colorless oil.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 293 nm, $t_R(\text{minor}) = 29.0 \text{ min}, t_R(\text{major}) = 31.0 \text{ min}.$

 $[\alpha]_{D}^{21} = +14 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.64 (d, *J* = 8.4 Hz, 2 H), 7.31 (d, *J* = 8.0 Hz, 2 H), 6.61 (s, 1 H), 6.53 (s, 1 H), 5.90 (dd, *J* = 1.2 Hz, *J* = 7.2 Hz, 2 H), 5.27 (s, 1 H), 3.63-3.44 (m, 2 H), 3.17-2.88 (m, 2 H), 2.72-2.68 (m, 2 H), 2.42 (s, 3 H), 2.20-2.13 (m, 2 H), 2.06-1.99 (m, 1 H), 1.86-1.73 (m, 3 H), 1.15 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 146.5, 146.4, 143.9, 143.4, 135.5, 134.7, 133.3, 129.6, 127.6, 120.0, 105.0, 103.2, 100.9, 49.0, 47.4, 44.8, 43.0, 38.7, 30.3, 30.2, 30.0, 21.5.

IR (neat, cm⁻¹): 3435, 2086, 1638, 1474, 1417, 1349, 1162, 1097, 943, 711.

HRMS (ESI): $[M+H]^+$ calcd for $C_{24}H_{28}NO_4S$ 426.1734, found 426.1743.

(R)-5-((1H-inden-2-yl)methyl)-5-methyl-6,7-dihydro-5H-indeno[5,6-d][1,3]dioxole (3bc)

The compound was prepared according to the General Procedure from the reaction of **1ae** (63.2 mg, 0.2 mmol) and **2m** (77.0 mg, 0.2 mmol) in DMF.

31.0 mg, 51% yield, 94% ee, colorless oil.

Chiral HPLC: CHIRALCEL OJ-H, 25 °C, ^{*i*}PrOH-hexanes 10/90, 1 mL/min, 260 nm, $t_R(\text{minor}) = 13.0 \text{ min}, t_R(\text{major}) = 24.9 \text{ min}.$

 $[\alpha]_{D}^{21} = +55 \ (c = 1.0, CH_2Cl_2).$

3hc

¹**H NMR (400 MHz, CDCl₃):** δ 7.31-7.27 (m, 2 H), 7.20 (d, J = 8.0 Hz, 1 H), 7.08 (t, J = 8.0 Hz, 1 H), 6.65 (s, 1 H), 6.61 (s, 1 H), 6.49 (s, 1 H), 5.93 (d, J = 16.0 Hz, 2 H), 3.15-2.96 (m, 2 H), 2.77-2.65 (m, 4 H), 2.20-1.87 (m, 2 H), 1.28 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 147.6, 146.6, 146.5, 145.3, 144.0, 143.6, 135.8, 129.7, 126.1, 123.7, 123.3, 120.0, 105.0, 103.3, 100.9, 47.9, 43.2, 42.7, 38.7, 30.2, 28.2.

IR (neat, cm⁻¹): 2922, 1594, 1474, 1422, 1304, 1248, 1121, 1039, 941, 857.

HRMS (ESI): [M+H] ⁺ calcd for C₂₁H₂₁O₂ 305.1536, found 305.1552.

Tert-butyl ((S)-1-(((S)-3,3-dimethyl-1-(4-(((R)-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-

3,6-dihydropyridin-1(2*H*)-yl)-1-oxobutan-2-yl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate (4)

The compound was prepared according to the General Procedure from the reaction of **1a** (98.3 mg, 0.36 mmol) and **2w** (118.2 mg, 0.2 mmol).

91.9 mg, 78% yield, 97% de, white solid, mp: 66-68 °C.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 18/82, 0.2 mL/min, 280 nm, $t_R(\text{minor}) = 131.5 \text{ min}, t_R(\text{major}) = 138.2 \text{ min}.$

 $[\alpha]_{D}^{23} = -18 (c = 0.5, CH_2Cl_2).$

¹H NMR (400 MHz, CDCl₃, mixture of rotamers): δ 7.25-7.06 (m, 7 H), 6.89-6.71 (m, 3 H), 5.40-5.34 (m, 1 H), 5.15 (s, 1 H), 4.82-4.76 (m, 1 H), 4.46-4.33 (m, 2 H), 4.16-3.02 (m, 7 H), 2.39-2.31 (m, 2 H), 1.91-1.56 (m, 2 H), 1.40-1.33 (m, 12 H), 0.92-0.83 (m, 9 H).

¹³C NMR (100 MHz, CDCl₃, mixture of rotamers): δ 170.8, 170.6, 169.5, 169.4, 169.0, 159.28, 159.25, 159.22, 159.15, 155.1, 155.0, 136.5, 135.1, 134.8, 134.5, 134.4, 133.4, 133.2, 129.14, 129.10, 129.0, 128.5, 128.34, 128.25, 128.20, 128.15, 126.8, 126.6, 122.8, 122.7, 122.1, 121.2, 121.1, 120.33, 120.29, 109.6, 109.5, 81.8, 81.7, 81.6, 81.4, 79.8, 55.7, 54.6, 54.2, 54.0, 48.4, 48.0, 45.6, 45.43, 45.41, 45.3, 43.4, 43.3, 42.04, 42.00, 38.8, 38.7, 38.3, 38.0, 37.9, 35.80, 35.75, 35.7, 35.5, 30.2, 30.1, 29.7, 29.6, 28.13, 28.08, 26.4, 26.3, 26.1, 26.0, 25.9.

IR (neat, cm⁻¹): 2993, 2963, 1675, 1477, 1362, 1321, 1226, 1182, 1088, 754, 688.

HRMS (ESI): $[M+H]^+$ calcd for $C_{35}H_{48}N_3O_5$ 590.3588, found 590.3602.

2 00 -	2 00 _ 2 [manually integrated] UV_VIS_1 WVL:280 nm				[manually integrated]	UV_VIS	6_1 WVL:280 nm
2.00 1.50 1.00 0.35				10.0 5.0 -0.2			
125	.0 130.0	140.0	150.0	125.0	0 130.0	140.0	150.0
Integra	ation Results			Integra	tion Results		
No.	Retention Time	Area	Relative Area	No.	Retention Time	Area	Relative Area
	min	mAU*min	%		min	mAU*min	%
1	135.863	2.477	49.38	1	131.517	0.466	1.59
2	143.170	2.539	50.62	2	138.213	28.939	98.41
Total:		5.016	100.00	Total:		29.405	100.00

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **4** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

(R)-5-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)hex-5-en-1-yl 2-(1-(4-chlorobenzoyl)-5-

methoxy-2-methyl-1H-indol-3-yl)acetate (5)

The compound was prepared according to the General Procedure from the reaction of **1a** (164.4 mg, 0.6 mmol) and **2x** (115.6 mg, 0.2 mmol).

49.1 mg, 42% yield, 94% ee, colorless oil.

Chiral HPLC: CHIRALPAK IB, 25 °C, ⁱPrOH-hexanes 3/97,

1 mL/min, 203 nm, $t_R(minor) = 31.8 min$, $t_R(major) = 33.8 min$.

 $[\alpha]_{D}^{21} = +1 \ (c = 1.0, CH_2Cl_2).$

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 7.65 (d, *J* = 8.4 Hz, 2 H), 7.46 (d, *J* = 8.4 Hz, 2 H), 7.13-7.05 (m, 2 H), 6.96 (d, *J* = 2.4 Hz, 1 H), 6.87-6.82 (m, 2 H), 6.76 (d, *J* = 8.0 Hz, 1 H), 6.67-6.65 (m, 1 H), 4.80 (s, 1 H), 4.71 (s, 1 H), 4.47 (d, *J* = 8.8 Hz, 1 H), 4.14 (d, *J* = 8.4 Hz, 1 H), 4.03 (m, 2 H), 3.82 (s, 3 H), 3.65 (s, 2 H), 2.38 (s, 3 H), 2.34-2.27 (m, 2 H), 1.79-1.65 (m, 2 H), 1.54-1.44 (m, 2 H), 1.37-1.30 (m, 2 H), 1.34 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 170.9, 168.2, 159.3, 156.0 145.7, 139.2, 135.8, 135.2, 133.9, 131.1, 130.8, 130.6, 129.1, 128.1, 122.8, 120.3, 114.9, 113.9, 112.7, 111.6, 109.6, 101.3, 81.8, 64.8, 55.6, 46.3, 45.3, 36.3, 30.4, 28.1, 26.3, 24.1, 13.3.

IR (neat, cm⁻¹): 2943, 1735, 1687, 1597, 1480, 1321, 1224, 1167, 833, 755.

HRMS (ESI): [M+H] ⁺ calcd for C₃₅H₃₇ClNO₅ 586.2355, found 586.2361.

(*R*)-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)-1-(4-((3-methyl-2,3-dihydroben zofuran-3-yl)methyl)-3,6-dihydropyridin-1(2*H*)-yl)ethan-1-one (6)

The compound was prepared according to the General Procedure from the reaction of **1a** (98.6 mg, 0.36 mmol) and **2y** (114.0 mg, 0.2 mmol).

73.8 mg, 65% yield, >99% ee, white solid, mp: 66-68 °C.

Chiral HPLC: CHIRALCEL OD-H, 25 °C, ^{*i*}PrOH-hexanes 30/70, 1 mL/min, 260 nm, $t_R(\text{minor}) =$ 19.7 min, $t_R(\text{major}) = 33.2$ min. Approximate 1.25:1 ratio of rotamers.

 $[\alpha]_D^{23} = -6 \ (c = 0.5, CH_2Cl_2).$

¹**H NMR** (**400 MHz, CDCl₃**): δ 7.65 (d, *J* = 8.4 Hz, 2 H), 7.45 (d, *J* = 7.6 Hz, 2 H), 7.12-7.08 (m, 1 H), 7.02 (t, *J* = 6.4 Hz, 1 H), 6.98 (d, *J* = 2.4 Hz, 1 H), 6.86-6.81 (m, 2 H), 6.73 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.64 (dd, *J* = 2.4, 9.2 Hz, 1 H), [5.38 (s), 5.27 (s), 1 H], 4.39-4.34 (m, 1 H), 4.16-3.90 (m, 3 H), 3.80 (d, *J* = 2.8 Hz, 3 H), 3.68-3.32 (m, 4 H), 2.36-2.29 (m, 5 H), 1.89-1.54 (m, 2 H), 1.30-1.25 (m, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 168.71, 168.67, 168.1, 159.2, 155.8, 139.1, 139.0, 135.1, 135.0, 134.9, 134.7, 134.6, 133.81, 133.75, 132.9, 131.1, 130.70, 130.68, 130.62, 130.60, 128.98, 128.96, 128.20, 128.15, 122.7, 120.9, 120.31, 120.28, 114.7, 113.2, 111.4, 111.3, 109.6, 109.5, 101.4, 101.3, 81.70, 81.65, 55.54, 55.52, 48.2, 45.4, 45.3, 44.9, 42.8, 42.2, 38.7, 30.5, 30.4, 30.1, 29.6, 25.9, 25.8, 13.4, 13.3.

IR (neat, cm⁻¹): 3302, 2970, 1709, 1627, 1482, 1455, 1262, 1172, 1017, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₃₄H₃₄ClN₂O₄ 569.2202, found 569.2209.

NOTE: Because of the amide bond rotation equilibrium, the rotamers of **4** were observed on the NMR. This phenomenon is seen with many tertiary amides. For related references, see: ref. 19-20.

(8*S*,9*S*,13*S*,14*S*)-13-methyl-17-(((*R*)-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-7,8,9,11,12,1 3,14,15-octahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl acetate (7)

The compound was prepared according to the General Procedure from the reaction of **1a** (98.6 mg, 0.36 mmol) and **2z** (88.8 mg, 0.2 mmol). 75.1 mg, 85% yield, 99% de, white solid, mp: 123-125 °C.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 288 nm, $t_R(major) = 6.4$ min, $t_R(minor) = 7.8$ min.

 $[\alpha]_{D}^{20} = -61 \ (c = 1.36, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.26-7.23 (m, 1 H), 7.15-7.09 (m, 2 H), 6.90-6.78 (m, 4 H), 5.16 (d, *J* = 1.2 Hz, 1 H), 4.53 (d, *J* = 8.4 Hz, 1 H), 4.27 (d, *J* = 8.4 Hz, 1 H), 2.90-2.86 (m, 2 H), 2.46-2.11 (m, 8 H), 1.96-1.88 (m, 2 H), 1.76-11.73 (m, 1 H), 1.62-1.33 (m, 8 H), 1.33 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 169.8, 159.0, 150.8, 148.3, 138.2, 138.2, 136.2, 128.0, 126.0, 123.4, 122.6, 121.4, 120.4, 118.4, 109.5, 81.9, 55.3, 47.5, 44.5, 44.4, 37.2, 37.0, 34.4, 31.3, 29.4, 27.5, 26.9, 26.2, 21.1, 15.4.

IR (neat, cm⁻¹): 2930, 2851, 1765, 1597, 1482, 1370, 1207, 1016, 974, 751.

HRMS (ESI): [M+H] ⁺ calcd for C₃₀H₃₅O₃ 443.2581, found 443.2587.

(8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-dimethyl-3-(((*R*)-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl) -2,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl acetate (8)

The compound was prepared according to the General Procedure from the reaction of **1a** (98.6 mg, 0.36 mmol) and **2aa** (92.4 mg, 0.2 mmol). 49.7 mg, 54% yield, 94% de, white solid, mp: 47-49 °C.

Chiral HPLC: CHIRALPAK IA, 25 °C, ^{*i*}PrOH-hexanes 5/95, 1 mL/min, 280 nm, $t_{\rm R}$ (major) = 4.8 min, $t_{\rm R}$ (minor) = 8.2 min.

 $[\alpha]_{D}^{21} = -73 (c = 1.0, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.14-7.09 (m, 2 H), 6.86 (t, *J* = 7.2 Hz, 1 H), 6.75 (d, *J* = 8.0 Hz, 1 H), 5.75 (s, 1 H), 5.34 (d, *J* = 2.8 Hz, 1 H), 4.62-4.58 (m, 1 H), 4.49 (d, *J* = 8.8 Hz, 1 H), 4.16 (d, *J* = 8.4 Hz, 1 H), 2.38-2.33 (m, 2 H), 2.20-2.14 (m, 2 H), 2.04 (s, 3 H), 1.77-0.94 (m, 18 H), 0.85 (s, 3 H), 0.82 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 171.2, 159.4, 141.7, 135.4, 133.5, 128.5, 128.0, 123.0, 121.9, 120.3, 109.5, 82.7, 82.1, 51.2, 49.2, 48.2, 45.8, 42.5, 36.7, 34.7, 34.2, 31.6, 31.3, 27.9, 27.5, 26.4, 23.5, 21.2, 20.5, 18.7, 12.0.

IR (neat, cm⁻¹): 2963, 1735, 1481, 1459, 1373, 1247, 1034, 978, 751, 689.

HRMS (ESI): [M+H] ⁺ calcd for C₃₁H₄₁O₃ 461.3050, found 461.3068.

5. Mechanistic Investigation

5.1 Study of the Reaction of Alkenyl Triflate with Alkene

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with NiI₂ (6.3 mg, 0.020 mmol), **L1** (7.6 mg, 0.028 mmol), Mn (44.0 mg, 0.8 mmol), and DMF/THF (0.5 mL/0.5 mL). The reaction mixture was stirred for 5 min. Substrates **9** (29.6 mg, 0.2 mmol) and **2a** (46 mg, 0.2 mmol) were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at 25 °C for 24 h. The reaction mixture was diluted with ethyl acetate (10 mL), washed with water, brine, and dried over anhydrous Na₂SO₄. A 0.2 mL of solution was collected, diluted with ethyl acetate (2 mL), and analyzed by GC.

The reaction afforded alkenyl dimer **10** with 17% yield and trace of protonated product alkenyl-H. No cross product was observed, and substrate **9** remained intact.

5.2 The reactivity of alkene tethered Ar-I and alkenyl-OTf towards Ni(0)

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with $Ni(cod)_2$ (27.4 mg, 0.10 mmol), L1 (38.2 mg, 0.14 mmol), and DMF/THF (0.5 mL/0.5 mL). The reaction mixture was stirred for 5 min. Substrates 1a (54.8 mg, 0.2 mmol) and 2a (46 mg, 0.2 mmol) were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at 25 °C for 24 h. The reaction mixture was diluted with ethyl acetate (10 mL), washed with water, brine, and dried over anhydrous Na₂SO₄. A 0.2 mL of solution was collected, diluted with ethyl acetate (2 mL), and

analyzed by GC.

The reaction afforded dimer **11** with 21% yield, and trace of protonated product **12**. Alkenyl triflate **2a** remained intact.

1,2-Bis((R)-3-methyl-2,3-dihydrobenzofuran-3-yl)ethane (11, known³⁹)

¹³C NMR (100 MHz, CDCl₃): δ 159.5, 135.4, 128.0, 126.5, 120.1, 109.6, 82.2, 46.8, 39.2, 25.0.

5.3 Enantioselectivity of the Formation of Cross-product 3x and Protonated Byproduct 13

The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with NiI₂ (31.5 mg, 0.10 mmol), L1 (38.2 mg, 0.14 mmol), Mn (44.0 mg, 4.0 equiv.), and DMF/THF (0.5 mL/0.5 mL). The reaction mixture was stirred for 5 min. Substrates 1n (66.0 mg, 0.2 mmol), 2e (51.6 mg, 0.2 mmol) and MeOH (6.4 mg, 0.2 mmol) were then added. The reaction tube was sealed with a rubber septum, and removed from the glove box. The reaction mixture was stirred at 25 °C for 24 h. The reaction mixture was diluted with ethyl acetate (10 mL), washed with water, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford 3ah (22.4 mg, 36% yield, 93% ee) and 13 (13.9 mg, 32% yield, 93% ee).

(S)-3-methyl-3-pentyl-2,3-dihydrobenzofuran (13, known)

 C_5H_{11} 13.9 mg, 32% yield, 93% ee, colorless oil. The ¹H NMR and ¹³C NMR are consistent with that reported in ref.7.

Chiral HPLC: CHIRALPAK IB, 25 °C, ^{*i*}PrOH-hexanes 0.2/99.8, 0.75 mL/min, 280 nm, $t_R(major) =$ 7.6 min, $t_R(minor) = 8.3$ min.

 $[\alpha]_{D}^{22} = +2 (c = 0.5, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.14-7.10 (m, 1 H), 7.08-7.06 (m, 1 H), 6.87 (dt, J = 0.8, 7.2 Hz, 1

H), 6.78 (d, *J* = 8.0 Hz, 1 H), 4.35 (d, *J* = 8.4 Hz, 1 H), 4.15 (d, *J* = 8.4 Hz, 1 H), 1.62-1.20 (m, 8 H), 1.33 (s, 3 H), 0.85 (t, *J* = 7.2 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.5, 135.5, 127.9, 122.8, 120.4, 109.5, 82.5, 45.2, 40.9, 32.3, 25.6, 24.3, 22.5, 14.0.

6. Crystallographic Data for Compound 3z (CCDC 1890459)

tianzhx_1015

Table 1 Crystal data and structure refinement for tianzhx_1015.

Identification code	tianzhx_1015
Empirical formula	$C_{28}H_{29}NO_3S$
Formula weight	460.59
Temperature/K	295.6(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	8.5255(6)
b/Å	10.9187(9)
c/Å	26.122(3)
α/°	90.00
β/°	90.00
$\gamma/^{\circ}$	90.00
Volume/Å ³	2431.7(4)
Z	4
$\rho_{calc}g/cm^3$	1.258
μ/mm^{-1}	1.413
F(000)	980.0
Crystal size/mm ³	$0.21 \times 0.15 \times 0.14$
Radiation	CuKa ($\lambda = 1.54184$)

 2Θ range for data collection/° 8.78 to 133.18

Index ranges	$-6 \le h \le 10, -12 \le k \le 12, -31 \le l \le 29$
Reflections collected	7508
Independent reflections	4101 [$R_{int} = 0.0426$, $R_{sigma} = 0.0706$]
Data/restraints/parameters	4101/0/300
Goodness-of-fit on F^2	1.121
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0730, wR_2 = 0.1894$
Final R indexes [all data]	$R_1 = 0.1101, wR_2 = 0.2606$
Largest diff. peak/hole / e $Å^{-3}$	0.22/-0.57
Flack parameter	-0.07(5)

Table 2 Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for tianzhx_1015. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z.	U(eq)
S 1	-7953.1(18)	-5233.5(19)	-1431.7(7)	83.3(5)
01	-16535(6)	-5867(5)	-2890(2)	93.8(16)
O2	-6624(5)	-4766(8)	-1707(2)	124(2)
O3	-8104(7)	-6521(5)	-1341(2)	104.8(18)
N1	-9511(5)	-4815(5)	-1751(2)	74.0(14)
C1	-15865(6)	-1118(5)	-4366(2)	64.1(14)
C2	-15793(7)	-320(6)	-4773(3)	76.9(17)
C3	-16732(9)	-510(7)	-5196(3)	92(2)
C4	-17749(10)	-1480(7)	-5193(3)	100(3)
C5	-17808(8)	-2271(6)	-4788(3)	90(2)
C6	-16866(6)	-2107(5)	-4358(2)	57.5(12)
C7	-16885(6)	-3006(5)	-3934(2)	61.7(13)
C8	-18210(6)	-3694(6)	-3825(3)	83(2)
C9	-18188(7)	-4643(7)	-3454(3)	96(2)
C10	-16782(7)	-4917(6)	-3234(3)	78.0(18)

S71

C11	-15439(6)	-4256(5)	-3319(2)	60.5(14)
C12	-15497(5)	-3300(5)	-3677(2)	62.1(14)
C13	-14100(6)	-4756(5)	-3016(2)	60.2(13)
C14	-14910(8)	-5917(6)	-2782(3)	90(2)
C15	-12688(7)	-5088(6)	-3341(3)	80.5(18)
C16	-13666(7)	-3817(5)	-2590(2)	67.4(15)
C17	-12237(7)	-4108(5)	-2283(2)	60.4(13)
C18	-10875(8)	-3444(6)	-2329(3)	85(2)
C19	-9535(8)	-3563(7)	-1979(3)	97(3)
C20	-11012(7)	-5163(6)	-1526(3)	78.9(18)
C21	-12284(8)	-5084(9)	-1905(3)	100(3)
C22	-7990(7)	-4483(5)	-846(2)	67.2(15)
C23	-7293(8)	-3357(6)	-784(3)	83.2(19)
C24	-7248(10)	-2772(6)	-318(4)	99(3)
C25	-7870(10)	-3356(7)	108(3)	93(2)
C26	-8583(9)	-4458(7)	65(3)	90(2)
C27	-8636(7)	-5048(6)	-417(3)	79.9(18)
C28	-7765(14)	-2741(8)	635(4)	131(4)

Table 3 Anisotropic Displacement Parameters $(\text{\AA}^2 \times 10^3)$ for tianzhx_1015. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{\AA}^2a^{*2}U_{11}+2\text{\AA}a^{*b*}U_{12}+...]$.

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S 1	51.2(7)	111.1(13)	87.7(11)	-5.9(10)	-7.5(7)	15.6(8)
01	68(3)	88(3)	125(4)	18(3)	5(3)	-25(2)
O2	47(2)	229(7)	97(4)	-7(5)	6(2)	12(4)
03	101(4)	91(3)	122(4)	-17(3)	-26(3)	40(3)
N1	45(2)	82(3)	95(4)	0(3)	2(2)	0(2)
C1	50(3)	74(3)	68(3)	-12(3)	-13(2)	4(2)

C2	63(3)	72(4)	96(5)	1(4)	-6(3)	6(3)
C3	89(5)	85(4)	103(5)	-2(4)	-23(4)	27(4)
C4	106(6)	95(5)	101(6)	-12(4)	-55(5)	19(4)
C5	78(4)	74(4)	118(6)	-16(4)	-45(4)	6(3)
C6	41(2)	71(3)	61(3)	-8(3)	-10(2)	13(2)
C7	41(2)	66(3)	79(4)	-9(3)	-3(2)	4(2)
C8	37(3)	94(4)	118(6)	-4(4)	-13(3)	-5(3)
C9	42(3)	105(5)	141(7)	18(5)	1(3)	-22(3)
C10	51(3)	72(4)	111(5)	7(4)	9(3)	-14(3)
C11	36(2)	62(3)	83(4)	-5(3)	6(2)	-7(2)
C12	32(2)	65(3)	89(4)	-7(3)	-2(2)	-8(2)
C13	47(2)	62(3)	72(3)	-1(3)	4(2)	-7(2)
C14	68(4)	66(4)	134(7)	13(4)	-2(4)	-11(3)
C15	58(3)	88(4)	95(5)	-10(4)	5(3)	12(3)
C16	58(3)	68(3)	77(4)	-5(3)	2(3)	8(2)
C17	58(3)	59(3)	64(3)	-3(3)	4(3)	1(2)
C18	72(4)	81(4)	102(5)	24(4)	-17(4)	-21(3)
C19	67(4)	105(5)	120(6)	42(5)	-20(4)	-30(4)
C20	53(3)	82(4)	102(5)	18(4)	-2(3)	-2(3)
C21	55(3)	148(7)	97(5)	38(5)	-5(3)	-20(4)
C22	50(3)	70(3)	81(4)	-1(3)	-1(3)	4(3)
C23	83(4)	79(4)	88(5)	12(4)	-21(4)	-10(3)
C24	97(5)	64(4)	138(7)	2(4)	-38(5)	2(4)
C25	95(5)	81(5)	101(5)	-21(4)	-23(5)	23(4)
C26	84(4)	87(5)	99(5)	10(4)	-1(4)	13(4)
C27	63(3)	75(4)	102(5)	3(4)	0(3)	-1(3)
C28	162(10)	113(7)	118(7)	4(6)	-35(7)	32(7)

Table 4 Bond Lengths for tianzhx_1015.

Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
S 1	O2	1.436(6)	C10	C11	1.371(7)
S 1	O3	1.431(6)	C11	C12	1.401(8)
S 1	N1	1.633(5)	C11	C13	1.494(8)
S 1	C22	1.735(6)	C13	C14	1.566(8)
01	C10	1.390(8)	C13	C15	1.516(7)
01	C14	1.415(8)	C13	C16	1.557(8)
N1	C19	1.492(8)	C16	C17	1.493(8)
N1	C20	1.458(7)	C17	C18	1.374(8)
C1	C2	1.376(9)	C17	C21	1.452(9)
C1	C6	1.377(8)	C18	C19	1.468(9)
C2	C3	1.381(10)	C20	C21	1.471(9)
C3	C4	1.369(11)	C22	C23	1.376(9)
C4	C5	1.367(11)	C22	C27	1.394(9)
C5	C6	1.392(8)	C23	C24	1.376(10)
C6	C7	1.480(8)	C24	C25	1.389(12)
C7	C8	1.386(8)	C25	C26	1.353(10)
C7	C12	1.398(7)	C25	C28	1.533(11)
C8	C9	1.421(10)	C26	C27	1.415(10)
C9	C10	1.362(9)			

Table 5 Bond Angles for tianzhx_1015.

Ator	n Aton	n Atom	Angle/°	Aton	n Aton	n Atom	Angle/°
02	S 1	N1	106.7(3) C12	C11	C13	130.8(4)
02	S 1	C22	106.7(4) C7	C12	C11	121.4(5)
03	S 1	O2	120.2(4) C11	C13	C14	99.5(5)
03	S 1	N1	106.6(3) C11	C13	C15	113.4(5)

03	S 1	C22	108.5(3) C11	C13	C16	108.7(5)
N1	S 1	C22	107.6(3) C15	C13	C14	112.0(5)
C10	01	C14	107.8(5) C15	C13	C16	111.7(5)
C19	N1	S1	118.2(4) C16	C13	C14	111.0(5)
C20	N1	S1	115.8(5) O1	C14	C13	108.9(6)
C20	N1	C19	112.8(5) C17	C16	C13	115.9(5)
C2	C1	C6	122.5(5) C18	C17	C16	122.0(6)
C1	C2	C3	119.8(7) C18	C17	C21	118.1(6)
C4	C3	C2	118.6(8) C21	C17	C16	119.9(5)
C5	C4	C3	121.1(7) C17	C18	C19	123.8(6)
C4	C5	C6	121.4(6) C18	C19	N1	109.9(5)
C1	C6	C5	116.5(6) N1	C20	C21	111.2(6)
C1	C6	C7	122.6(5) C17	C21	C20	118.6(6)
C5	C6	C7	120.8(6) C23	C22	S1	121.2(5)
C8	C7	C6	121.4(5) C23	C22	C27	118.2(6)
C8	C7	C12	117.8(6) C27	C22	S1	120.5(5)
C12	C7	C6	120.2(5) C24	C23	C22	122.1(7)
C7	C8	C9	121.7(6) C23	C24	C25	119.1(7)
C10	C9	C8	117.3(5) C24	C25	C28	119.7(8)
C9	C10	01	124.7(5) C26	C25	C24	120.9(8)
C9	C10	C11	123.5(7) C26	C25	C28	119.4(9)
C11	C10	01	111.8(6) C25	C26	C27	119.6(8)
C10	C11	C12	118.1(5) C22	C27	C26	120.1(6)
C10	C11	C13	111.1(5)			

Table 6 Torsion Angles for tianzhx_1015.

A B	C D	Angle/°	Α	B	C D	Angle/°
S1 N1	C19C18	169.1(6)	C10C) 1	C14C13	9.7(8)

S1 N1 C20C21	-162.9(6) C10C11C12C7 1.2(9)	
S1 C22 C23 C24	-177.1(6) C10C11C13C14 5.4(7)	
S1 C22 C27 C26	176.5(5) C10C11C13C15 124.5(6)	
O1C10C11C12	177.2(5) C10C11C13C16 -110.8(6)	
O1C10C11C13	0.1(8) C11C13C14O1 -9.1(8)	
O2S1 N1 C19	-39.6(7) C11C13C16C17 -173.8(5)	
O2S1 N1 C20	-178.0(6) C12C7 C8 C9 2.0(10)	
O2S1 C22C23	23.9(6) C12C11C13C14 -171.3(6)	
O2S1 C22C27	-151.6(5) C12C11C13C15 -52.2(9)	
O3S1 N1 C19	-169.2(6) C12C11C13C16 72.6(8)	
O3S1 N1 C20	52.4(6) C13C11C12C7 177.7(6)	
O3S1 C22C23	154.7(5) C13C16C17C18 109.4(7)	
O3S1 C22C27	-20.9(6) C13C16C17C21 -73.5(8)	
N1S1 C22C23	-90.3(6) C14O1 C10C9 175.3(8)	
N1S1 C22C27	94.2(5) C14O1 C10C11 -6.3(9)	
N1C20C21C17	-36.0(10) C14C13C16C17 77.8(6)	
C1 C2 C3 C4	1.7(11) C15C13C14O1 -129.2(6)	
C1C6 C7 C8	155.2(6) C15C13C16C17 -48.0(7)	
C1 C6 C7 C12	-33.5(8) C16C13C14O1 105.3(7)	
C2C1 C6 C5	0.5(9) C16C17C18C19 169.6(7)	
C2C1 C6 C7	176.6(5) C16C17C21C20 -165.6(6)	
C2C3C4C5	-2.0(12) C17C18C19N1 27.0(11)	
C3C4 C5 C6	1.5(12) C18C17C21C20 11.7(11)	
C4C5 C6 C1	-0.7(10) C19N1 C20C21 56.6(9)	
C4C5 C6 C7	-176.9(6) C20N1 C19C18 -51.3(9)	
C5 C6 C7 C8	-28.8(9) C21C17C18C19 -7.6(12)	
C5 C6 C7 C12	142.5(6) C22 S1 N1 C19 74.6(6)	
C6C1 C2 C3	-1.0(9) C22 S1 N1 C20 -63.8(6)	
C6C7 C8 C9	173.5(6) C22C23C24C25 2.7(12)	

C6C7 C12C11	-171.8(5) C23 C22 C2'	7 C26 0.8(10))
C7 C8 C9 C10	-4.9(12) C23C24C2	5C26 -3.3(12	!)
C8C7 C12C11	-0.2(9) C23C24C2	5C28 177.3(7	')
C8C9 C10O1	-175.7(7) C24 C25 C20	6C27 2.7(11	.)
C8C9 C10C11	6.1(12) C25C26C2	7 C22 -1.5(10))
C9 C10 C11 C12	-4.4(11) C27 C22 C23	3C24 -1.4(10))
C9 C10 C11 C13	178.5(7) C28C25C2	6C27 -177.9(7	')

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for tianzhx_1015.

Atom	x	У	Z.	U(eq)
H1	-15214	-985	-4086	77
H2	-15113	346	-4763	92
H3	-16676	11	-5477	111
H4	-18411	-1603	-5471	121
H5	-18493	-2934	-4800	108
H8	-19136	-3530	-4000	99
H9	-19098	-5061	-3364	115
H12	-14593	-2852	-3744	74
H14A	-14459	-6652	-2930	107
H14B	-14743	-5939	-2415	107
H15A	-13018	-5592	-3622	121
H15B	-11943	-5529	-3136	121
H15C	-12211	-4354	-3469	121
H16A	-13519	-3023	-2748	81
H16B	-14549	-3749	-2357	81
H18	-10797	-2887	-2597	102
H19A	-9615	-2956	-1709	117

H19B	-8567	-3418	-2165	117
H20A	-11245	-4627	-1240	95
H20B	-10945	-5994	-1397	95
H21A	-12318	-5856	-2089	120
H21B	-13265	-5010	-1719	120
H23	-6836	-2979	-1067	100
H24	-6808	-1996	-289	119
H26	-9035	-4825	351	108
H27	-9104	-5815	-447	96
H28A	-8182	-3282	891	197
H28B	-8359	-1994	632	197
H28C	-6689	-2562	712	197

7. References

- (1) Armarego, W. L. F.; Chai, C. C. L. *Purification of laboratory chemicals*, 5th ed., Butterworth- Heinemann, 2003.
- (2) Gao, Y.; Xiong, W.-F.; Chen, H.-J.; Wu, W.-Q.; Peng, J.-W.; Gao, Y.-L.; Jiang, H.-F. Pd-Catalyzed Highly Regio- and Stereoselective Formation of C–C Double Bonds: An Efficient Method for the Synthesis of Benzofuran-, Dihydrobenzofuran-, and Indoline-Containing Alkenes. J. Org. Chem. 2015, 80, 7456.
- (3) Ramesh, K.; Basuli, S.; Satyanarayana, G. Microwave-Assisted Domino Palladium Catalysis in Water: A Diverse Synthesis of 3, 3'-Disubstituted Heterocyclic Compounds. *Eur. J. Org. Chem.* **2018**, 2171.
- (4) Yao, T.-L.; He, D. Palladium-Catalyzed Domino Heck/Aryne Carbopalladation/C-H Functionalization: Synthesis of Heterocycle-Fused 9, 10-Dihydrophenanthrenes. *Org. Lett.* **2017**, *19*, 842.
- (5) Wu, X.-X.; Chen, W.-L.; Shen, Y.; Chen, S.; Xu, P.-F.; Liang, Y.-M. M. Palladium-Catalyzed Domino Heck/Intermolecular C-H Bond Functionalization: Efficient Synthesis of Alkylated Polyfluoroarene Derivatives. *Org. Lett.* **2016**, *18*, 1784.
- (6) Hu, M.; Gao, Y.; Wu, W. Q.; Li, J. X.; Li, C. S.; Zhang, H.; Jiang, H. F. Efficient assembly of ynones via palladium-catalyzed sequential carbonylation/alkynylation. *Org. Biomol. Chem.*, **2018**, *16*, 7383.
- (7) Zhang, Z.-M.; Xu, B.; Qian, Y.-Y.; Wu, L.-Z.; Wu, Y.-Q.; Zhou, L.-J.; Liu Y.; Zhang, J.-L. Palladium-Catalyzed Enantioselective Reductive Heck Reactions: Convenient Access to 3,3-Disubstituted 2,3-Dihydrobenzofuran. *Angew. Chem. Int. Ed.* **2018**, *57*, 10373.
- (8) Thapa, S.; Basnet, P.; Giri, R. Copper-Catalyzed Dicarbofunctionalization of Unactivated Olefins by Tandem Cyclization/Cross-Coupling. *J. Am. Chem. Soc.* **2017**, *139*, 5700.
- (9) Jaimes, M. C. B.; Weingand, V.; Rominger, F.; Hashmi, A. S. K. From Ynamides to Highly Substituted Benzo[b]furans: Gold(I)-Catalyzed 5-endo-dig-Cyclization/Rearrangement of Alkylic Oxonium Intermediates. *Chem. Eur. J.* 2013, 19, 12504.
- (10) Rueping, M.; Leiendecker, M.; Das, A.; Poissona, T.; Bui, L. Potassium tert-butoxide mediated Heck-type cyclization/isomerization-benzofurans from organocatalytic radical cross-coupling reactions. *Chem. Commun.* 2011, 47, 10629.
- (11) Revol, G.; McCallum, T.; Morin, M.; Gagosz, F.; Barriault, L. Photoredox Transformations with Dimeric Gold Complexes. *Angew. Chem. Int. Ed.* **2013**, *52*, 13342.
- (12) Lockner, J. W.; Dixon, D. D.; Risgaard, R.; Baran, P. S. Practical Radical Cyclizations with Arylboronic Acids and Trifluoroborates. *Org. Lett.* **2011**, *13*, 5628.
- (13) Zheng, H.-J.; Zhu, Y.-G.; Shi, Y. Palladium(0)-Catalyzed Heck Reaction/C-H Activation/Amination Sequence with Diaziridinone: A Facile Approach to Indoline. *Angew. Chem. Int. Ed.* **2014**, *53*, 11280.
- (14) (a) Sol é, D.; Mariani, F.; Fern ández, I.; Sierra, M. A. Intramolecular Pd(0)-Catalyzed Reactions of (2-Iodoanilino)-aldehydes: A Joint Experimental–Computational Study. J. Org. Chem. 2012, 77, 10272. (b) Hédouin, J.; Schneider, C.; Gillaizeau, I.; Hoarau, C. Palladium-Catalyzed Domino Allenamide Carbopalladation/Direct C–H Allylation of Heteroarenes: Synthesis of Primprinine and Papaverine Analogues.

Org. Lett. 2018, 20, 6027.

- (15) Iain, D. G. W.; Stefanie. R.; Toste, F. D. Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation. J. Am. Chem. Soc. 2009, 131, 2056.
- (16) Mariusz, J. B. A Convenient Synthesis of 2-Arylbenzo[b]furans from Aryl Halides and 2-Halophenols by Catalytic One-Pot Cascade Method. Acs. Catal. 2016, 6, 2429.
- (17) Stephen, G. N.; Jennifer, K. H.; Norman, N.; Mark, L. Palladium-Catalyzed Carbohalogenation: Bromide to Iodide Exchange and Domino Processes. J. Am. Chem. Soc. 2011, 133, 14916.
- (18) Luo, Z.-S.; Mohamed, N. A synthetic approach for (S)-(3-benzyl-3-methyl-2,3-dihydro-benzofuran-6-yl)-piperidin-1-yl-methanone, a Selective CB2 Receptor Agonist. *Tetrahedron Letters.* 2012, 53, 3316.
- (19) Croft, A. K.; Foley, M. K. Proline-rich Proteins-deriving a Basis for Residue-based Selectivity in Polyphenolic Binding. Org. Biomol. Chem., 2008, 6, 1594.
- (20) Alt, I. T.; Guttroff, C.; Plietker, B. Fe-catalyzed Intramolecular Aminations of C(sp3)-H-bonds of alkylarylazides. *Angew. Chem. Int. Ed.* 2015, *54*, 10545.
- (21) Shan, X. H.; Yang, B.; Zheng, H. X.; Qu, J. P.; Kang, Y. B. Phenanthroline-tBuOK Promoted Intramolecular C–H Arylation of Indoles with ArI under Transition-Metal-Free Conditions. *Org. Lett.* **2018**, *20*, 7898.
- (22) Su, X.-L.; Huang, H.-G.; Yuan, Y.-F.; Li, Y. Radical Desulfur-Fragmentation and Reconstruction of Enol Triflates: Facile Access to α-Trifluoromethyl Ketones. *Angew. Chem. Int. Ed.* **2017**, *56*, 1338.
- (23) (a) Overman, L. E.; Tanis, P. S. Origin of Stereocontrol in the Construction of the 12-Oxatricyclo[6.3.1.02,7]dodecane Ring System by Prins Pinacol Reactions. J. Org. Chem., 2010, 75, 455. (b) Crisp, G. T.; Scott, W. J. A Convenient One-Pot Procedure for the Conversion of Terminal Acetylenic Alcohols (and O-Derivatives) into (E)-Olefinic Alcohols (or Derivatives). Synthesis. 1985, 335.
- (24) Dürr, A. B.; Yin, G.; Kalvet, I.; Napolya, F.; Schoenebeck, F. Nickel-catalyzed trifluoromethylthiolation of Csp2–O bonds. *Chem. Sci.* 2016, 7, 1076.
- (25) Lippincott, D. J.; Linstadt, R. T. H.; Maser, M. R.; Lipshutz, B. H. Synthesis of Functionalized [3], [4], [5] and
 [6]Dendralenes through Palladium-Catalyzed Cross-Couplings of Substituted Allenoates. *Angew. Chem. Int. Ed.* **2017**, *56*, 847.
- (26) Navendu, J.; Quyen, N.; Tom, G. D. Development of a Suzuki Cross-Coupling Reaction between 2-Azidoarylboronic Pinacolate Esters and Vinyl Triflates To Enable the Synthesis of [2,3]-Fused Indole Heterocycles. J. Org. Chem. 2014, 79, 2781.
- (27) Si, T.-D.; Li, B.-W.; Xiong, W.-R.; Xu, B.; Tang, W.-J. Efficient cross-coupling of aryl/alkenyl triflates with acyclic secondary alkylboronic acids. *Org. Biomol. Chem.* **2017**, *15*, 9903.
- (28) Tsuyoshi, U.; Hideyuki, K.; Kei, M. Trichlorophenyl Formate: Highly Reactive and Easily Accessible Crystalline CO Surrogate for Palladium-Catalyzed Carbonylation of Aryl/Alkenyl Halides and Triflates. *Org. Lett.* 2012, *14*, 5370.
- (29) Clark, J. R.; Feng, K.-B.; Sookezian, A.; White, M. C. Manganese-Catalysed Benzylic C(sp3)–H Amination for Late-stage Functionalization. *Nat. Chem.* 2018, *10*, 583.

- (30) Jigajinni, V. B.; Wightman, R. H. Hydrogenolysis of Enol Triflates; A New Method for the Reduction of Ketones to Methylene Compounds. *Tetrahedron Letters*, **1982**, 23, 117.
- (31) Patel, H. H.; Sigman, M. S. Enantioselective Palladium-Catalyzed Alkenylation of Trisubstituted Alkenols To Form Allylic Quaternary Centers. *J. Am. Chem. Soc.* **2016**, *138*, 14226.
- (32) Peter, J. S.; Thomas, E. D. Preparation of Vinyl Trifluoromethanesulfonates: 3-Methyl-2-Buten-2-yl Triflate. *Org. Synth.* **1974**, *54*, 79.
- (33) Hu, J. T.; Zheng, B.; Chen, Y. C.; Xiao, Q. Expedient synthesis of 9,10-phenanthrenes via LiOPiv-promoted and palladium-catalysed aryne annulation by vinyl triflates. *Org. Chem. Front.*, **2018**, *5*, 2045.
- (34) Huang, H.; Ash, J.; Kang, J. Y. Tf₂O-Promoted Activating Strategy of Phosphate Analogues: Synthesis of Mixed Phosphates and Phosphinate. Org. Lett. 2018, 20, 4938.
- (35) Zhang, X.-J.; Xie, X.; Liu, Y.-H. Nickel-Catalyzed Highly Regioselective Hydrocyanation of Terminal Alkynes with Zn(CN)₂ Using Water as the Hydrogen Source. *J. Am. Chem. Soc.* **2018**, *140*, 7385.
- (36) Goh, S. S.; Baars, H.; Gockel, B.; Anderson, E. A. Metal-Catalyzed Syntheses of Abridged CDE Rings of Rubriflordilactones A and B. Org. Lett., 2012, 14, 6278.
- (37) Odriozola, A.; Oiarbide, M.; Palomo, C. Enantioselective Synthesis of Quaternary Δ 4-and Δ 5-Dehydroprolines Based on a Two-Step Formal [3+2] Cycloaddition of α -Aryl and α -Alkyl Isocyano(thio)acetates with Vinyl Ketones. *Chem. Eur. J.* **2017**, *23*, 12758.
- (38) Bischo, A. J.; Nelson, B. M.; Niemeyer, Z. L.; Sigman, M. S.; Movassaghi, M. Quantitative Modeling of Bis(pyridine)silver(I) Permanganate Oxidation of Hydantoin Derivatives: Guidelines for Predicting the Site of Oxidation in Complex Substrates. J. Am. Chem. Soc. 2017, 139, 15539.
- (39) Wang, W.; Zhou, R.; Jiang, Z.-J.; Wang, X.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Palladium-Catalyzed Domino Mizoroki-Heck/Intermolecular C(sp³)-H Activation Sequence: An Approach to the Formation of C(sp³)-C(sp³) Bonds. *Eur. J. Org. Chem.* **2015**, 2015, 2579.

1c-1; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

--0.00

1ae; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 ppm

2w; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3d; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3m; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3s; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3u; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3v; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 ppm

3ag; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3an; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3aq; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3ar; ¹H NMR (600MHz, CDCl₃); ¹³C NMR (150MHz, CDCl₃)

3at; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

3au; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

4; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

8; ¹H NMR (400MHz, CDCl₃); ¹³C NMR (100MHz, CDCl₃)

