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S1 Expressions of HP σ-SCF Fock matrices

In eqn (M23), (Fs
η)1 arises from differentiating σ2

1 and E1 in σ2
η,

(Fs
η)1 = Fs +

2ηD(E1 − E2)

1 + ηD
F s, (S1)

and (Fs
η)2 and its hermitian conjugate arise from differentiating σ2

2 , E2, and D in σ2
η,

(Fs
η)2 = Qss̄

[
F s̄s − 2(E1 − E2)

1 + ηD
F s̄s

]
P ss̄+

1

1 + ηD

[
σ2

2 − σ2
1 +

1− ηD
1 + ηD

(E1 − E2)2

]
P ss̄.

(S2)

In the equations above,

Fsµν = [F s(Qs − P s)F s]µν+

(µν|λσ)(Psσλ + P s̄σλ)− (µσ|λν)Psσλ+

(Qsλλ′P sσσ′Qsγγ′ − P sλλ′Qsσσ′P sγγ′)×
(µλ|σγ)[(νλ′|σ′γ′)− (νγ′|σ′λ′)]+
(Qsλλ′P s̄σσ′Qs̄γγ′ − P sλλ′Qs̄σσ′P s̄γγ′)×
(µλ|σγ)(νλ′|σ′γ′)

(S3)

are the σ-SCF Fock matrices, where Ps = P sF sQs + QsF sP s, and

Fss̄µν = [F s̄s(Qss̄ − P ss̄)F s̄s]µν+

(µν|λσ)(Pss̄σλ + P s̄sσλ)− (µσ|λν)Pss̄σλ+

(Qs̄sλλ′P ss̄σσ′Qs̄sγγ′ − P s̄sλλ′Qss̄σσ′P s̄sγγ′)×
(µλ|σγ)[(νλ′|σ′γ′)− (νγ′|σ′λ′)]+
(Qs̄sλλ′P s̄sσσ′Qss̄γγ′ − P s̄sλλ′Qs̄sσσ′P ss̄γγ′)×
(µλ|σγ)(νλ′|σ′γ′)

(S4)

are the cross σ-SCF Fock matrices with a similar definition for Pss̄ as above.
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S2 Expressions of HP σ-SCF DET Fock matrices

The DET Fock matrices of HP σ-SCF have the following form,

fsη (ω) = Fs
η + 2(Eη − ω)F s

η , (S5)

where Fs
η is the HP σ-SCF Fock matrix [eqn (M23)];

F s
η = F s + ηD[(F s

η )2 + (F s
η )†2] (S6)

is the HPHF Fock matrix, with

(F s
η )2 = F ss̄ +

E2 − E1

1 + ηD
P ss̄. (S7)

Note that eqn (S6) is consistent with the result obtained in Ref. [1].

S3 Some properties of HP methods

Here, we present formal discussion of some properties of HP methods, which complements our discussion
in Sec. M2.5.

As a HP method, HP σ-SCF improves upon the original σ-SCF in two ways: reducing the spin-
contamination and recovering some static correlation energy. To see the effect of half-projection on
spin-contamination, we first introduce the so-called corresponding orbitals,[2]

〈φ̃αi |φ̃
β
j 〉 = λiδij , λi ∈ [0, 1] (S8)

which are related to the occupied MOs by a unitary rotation determined from the singular value
decomposition of Sαβ [eqn (M13)], with {λi} being the singular values. In terms of these orbitals, D
has a simple product form,

D =

N∏
i=1

λ2
i . (S9)

With these orbitals, the total spin expectation can be readily computed for both the unprojected and
the HP wave functions:[1]

〈Φ|Ŝ2|Φ〉 = N −
N∑
i=1

λ2
i , (S10)

and

〈Ψη|Ŝ2|Ψη〉
〈Ψη|Ψη〉

= N − (1 + ηD)−1
N∑
i=1

(λ2
i + ηDλ−2

i ). (S11)

Since λi ≤ 1 for all i’s, 〈Ŝ2〉 of Ψη is always closer to the value of a pure spin state (i.e., 0 for singlet and
2 for triplet) compared to that of Φ, demonstrating that half-projection reduces spin-contamination.
The correlation energy, on the other hand, can be read directly from eqn (M6) if the orbitals are
assumed to be frozen,

Eη − E1 =
ηD(E2 − E1)

1 + ηD
, (S12)

which takes opposite signs for singlet (η = +1) and triplet (η = −1), hence capable of opening the
energy gap between them. Due to the two-determinant nature of the HP wave function, this correction
mainly affects the static correlation energy.

The magnitude of both the spin and the energy corrections induced by half-projection is controlled
by the magnitude of {λi} [and hence the magnitude of D due to eqn (S9)]. At one extreme where
all λi’s are equal to 1, the HP wave function reduces to a RHF/R σ-SCF state, which has no spin-
contamination but no energy correction either (E2 = E1 in this case). At the other extreme where
λi ∼ 0 for many i’s, the HP wave function tends to the unprojected UHF/U σ-SCF state, with both
the spin and the energy corrections tending to zero according to eqns (S10) – (S12). Note that when
there it only one λi ∼ 0, the singularity can be removed algebraically.[1]

We further note the limitation of half-projection by analysis of the NO occupation numbers. Suppose
the number of electrons is less than the size of basis functions (i.e., 2N < K, which is the case for
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moderate- and large-sized bases). Then for both the the unprojected and the HP wave functions,
there are exactly 2N NOs that are occupied; these NOs take the following paired form in terms of the
corresponding orbitals in eqn (S8),[1]

ψ±i =
1√

2(1± λi)
(φ̃αi ± φ̃

β
i ). (S13)

The effect of half-projection lies in altering the NO occupation numbers, with n±i = 1± λi before and

(n±i )η = (1 + ηD)−1[1± λi + ηD(1± λ−1
i )] (S14)

after the projection, without increasing the number of partially occupied NOs. Thus, the HP wave
function could fail in providing a qualitative description of the electronic structure if a large number
of NOs (e.g., > 2N) are populated in the exact solution. Nevertheless, as demonstrated in Sec. M4.1,
these strongly correlated states can be described by invoking a NOCI calculation based on the HP
σ-SCF solutions.

S4 σ-SCF solutions of 3-21G H2

Shown in Figure S1 are the unprojected σ-SCF excited-state solutions for Ms = 0 states of 3-21G H2.
R and U σ-SCF stand for spin-restricted and spin-unrestricted, respectively. One can see that

(i) the spin-contamination makes they U σ-SCF solutions a good approximation to neither the singlet
nor triplet FCI states;

(ii) several solutions disappear beyond some bond length;

(iii) the potential energy surface (PES) of one solution is kinked (d(H-H) ≈ 0.7 Å, Etot ≈ 1.0 Ha).

All three problems have been fixed after the half-projection (see Figure M1).
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Figure S1: Ms = 0 excited-state solutions found by σ-SCF for 3-21G H2 compared to FCI.
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S5 NOCI based on HP σ-SCF solutions of 3-21G H2

In the main text, we mention that several FCI states of 3-21g H2 are truly multi-reference at stretched
geometries, with all natural orbitals (NOs) displaying fractional occupation. In such cases, HP σ-SCF,
being a two-determinant theory, fails to capture the qualitative behavior of the FCI solutions, as can
be seen from the mismatch of the blue curves and black crosses in Figure S2.

Fortunately, since these HP σ-SCF solutions exist at all bond lengths, we can recover the missing
static correlation by invoking a non-orthogonal configuration interaction (NOCI) calculation using
them as bases. As shown in Figure S2, the four singlet HP σ-SCF solutions (all preserving the mirror
symmetry) are divided into two groups1, each containing two HP solutions (blue solid and blue dashed
curves, respectively). Two-state NOCI calculations are performed for each group and the results are
shown in green in Figure S2 (solid and dashed, respectively). From the figure, one can see that NOCI
manages to capture the behavior of the FCI solutions in a quantitative manner.
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Figure S2: PESs obtained by NOCI (green) using selected HP σ-SCF singlet states (blue) as quasi-
diabatic bases. FCI solutions (black) are also included for comparison.

1A more common way would be to include all four states in one NOCI calculation. However, for this specific case, the
matrix elements between states that belong to different groups vanish because of the orbitals symmetry. In other words,
our results here will be exactly equivalent to a four-state NOCI calculation.
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S6 σ-SCF solutions of 3-21G LiH

Shown in Figure S3 are the unprojected σ-SCF excited-state solutions for the first several Ms = 0
states of 3-21G LiH. One can see that

(i) R σ-SCF dissociates LiH into a high-energy, ionic state which has the incorrect asymptotic be-
havior;

(ii) there is a spurious σ-SCF solution in between the first two FCI triplet states that does not
correspond to any physical states;

(iii) several solutions disappear in the intermediate energy range.

As can be seen from the main text (FIG. M3), the first two problems are solved by HP σ-SCF, while
the last one is mitigated greatly by HP σ-SCF.
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Figure S3: First several Ms = 0 excited-state solutions found by σ-SCF for 3-21G LiH compared to
FCI.
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S7 σ-SCF solutions of STO-3G C2H4

Shown in Figure S4 are the unprojected σ-SCF excited-state solutions for the first several Ms = 0
states of STO-3G C2H4. One can see that

(i) for ground states, the R σ-SCF solution is in parallel to the FCI singlet solution for small θ but
curves upward for large θ, revealing its missing static correlation;

(ii) the U σ-SCF ground-state solution, on the other hand, has too flat of curvature due to the strong
spin-contamination from the first triplet state;

(iii) for excited states, the dense feature of the FCI spectrum is produced, but the σ-SCF solutions
disappear at several places.

As can be seen from the main text (FIG. M4), the first two problems are solved by HP σ-SCF, while
the last one is mitigated greatly by HP σ-SCF.
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Figure S4: First several Ms = 0 excited-state solutions found by σ-SCF for STO-3G C2H4 compared
to FCI.
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