# **Supplementary information**

## Dextran-Conjugated Caged siRNA Nanoparticles for Photochemical Regulation of RNAi-Induced Gene Silencing in Cells and Mice

Changmai Chen<sup>†, ‡</sup>, Zhongyu Wang<sup>†, ‡</sup>, Jinhao Zhang<sup>†</sup>, Xinli Fan<sup>†</sup>, Luzheng Xu<sup>§</sup> and Xinjing Tang<sup>†, \*</sup>

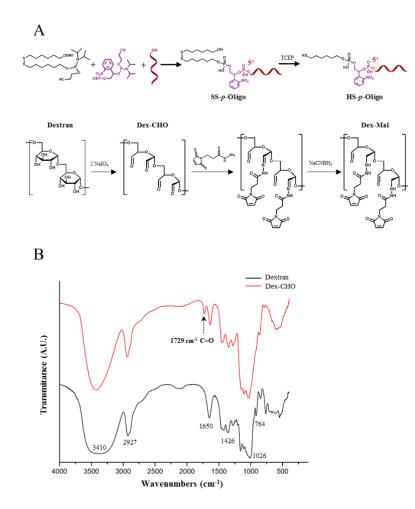
<sup>†</sup> State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Phar-maceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China

§ Medical and Health Analytical Center, Peking University, Beijing, 100191, China

<sup>‡</sup>These authors have equal contributions

\* Correspondence

Prof. Xinjing Tang, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.


Tel: +86-010-82805635

E-mail: xinjingt@bjmu.edu.cn

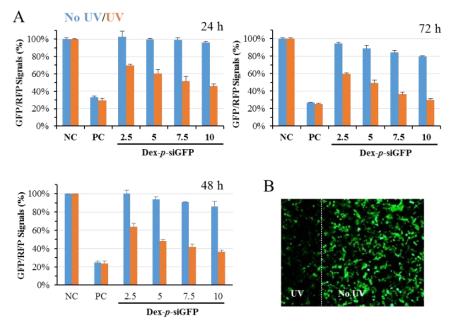
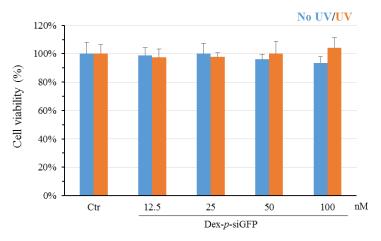
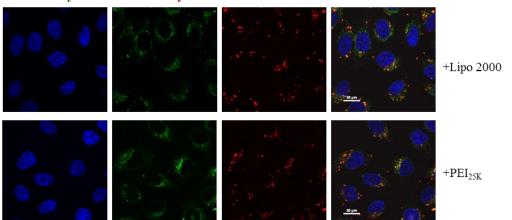

| Target | Name             | Sequence (5')                     |  |  |
|--------|------------------|-----------------------------------|--|--|
| GFP    | SG               | GAA CGG CAU CAA GGU GAA CTT       |  |  |
|        | AG               | GUU CAC CUU GAU GCC GUU CTT       |  |  |
|        | SS-p-SG          | SS-PL-GAA CGG CAU CAA GGU GAA CTT |  |  |
|        | SS- <i>p</i> -AG | SS-PL-GUU CAC CUU GAU GCC GUU CTT |  |  |
| Eg5    | SE               | CAA CAA GGA UGA AGU CUA UTT       |  |  |
|        | AE               | AUA GAC UUC AUC CUU GUU GTT       |  |  |
|        | SS-p-SE          | SS-PL-CAA CAA GGA UGA AGU CUA UTT |  |  |
|        | SS-p-AE          | SS-PL-AUA GAC UUC AUC CUU GUU GTT |  |  |

Table S1. The sequences of native and caged thiol-modified oligonucleotides used in this study

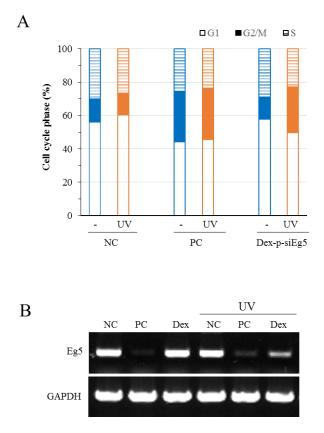

S, sense RNA strand; A, antisense RNA strand; G, GFP; E, Eg5; SS, 5'-thiol modifier C6 S-S; p or PL, photolinker



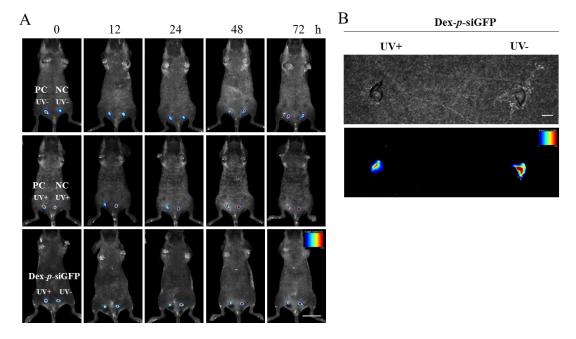

**Figure S1.** Synthesis of thiol-modified caged siRNAs and maleimide-functionalized of dextran (A) and analysis of the aldehyde groups of dextran (Dex-CHO) by FTIR (B).



**Figure S2.** Photoregulation of GFP gene silencing using the caged Dex-*p*-siGFP nanoparticles. Time- and dosedependent photomodulation GFP expression quantified using flow cytometry (A). Patterning experiments revealed that Dex-*p*-siRNA could spatial control of gene expression via simple light irradiation(B). PC, positive control siGFP (AG/SG)




**Figure S3.** The effect of dextran-conjugated caged siGFP on cell proliferation for 48 h at the concentration of 12.5-100 nM.



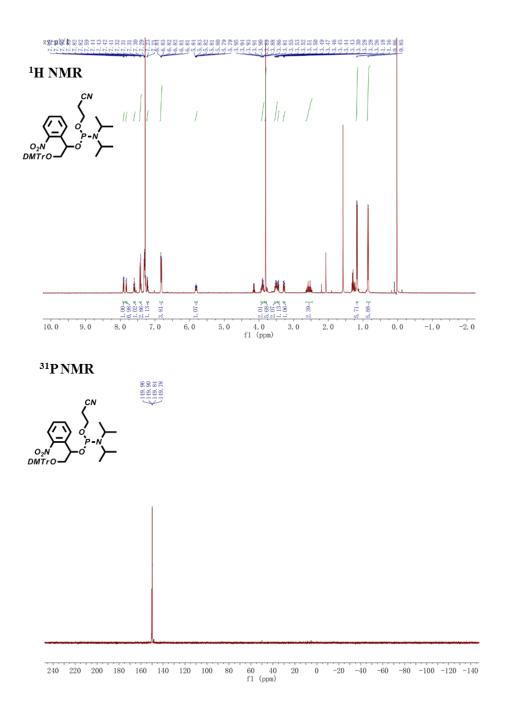

Hoechst/Lysotracker/Dex-Cy3

**Figure S4.** Subcellular localization of Cy3-labeled dextran-conjugated caged siGFP (Dex-Cy3). The cells were stained with Lysotracker green and Hoechst 33342 after 5 h transfection with Lipo 2000 or PEI <sub>25K</sub> agent.

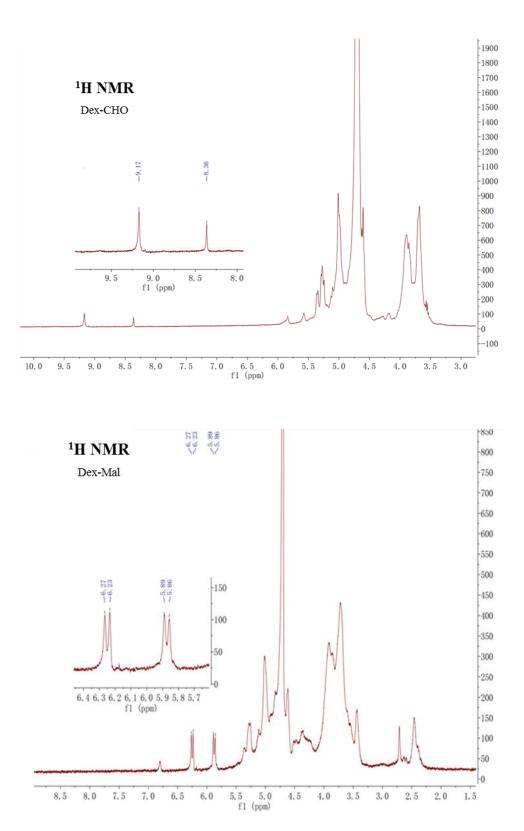


**Figure S5.** Photochemical regulation of Eg5 gene expression with the caged Dex-*p*-siEg5 nanoparticles. Cell cycle perturbation and analysis of mitotic arrest stained with propidium iodide (A). Photochemical regulation of Eg5 gene expression by RT-PCR (B). PC, positive control siEg5 (AE/SE); NC, negative control.



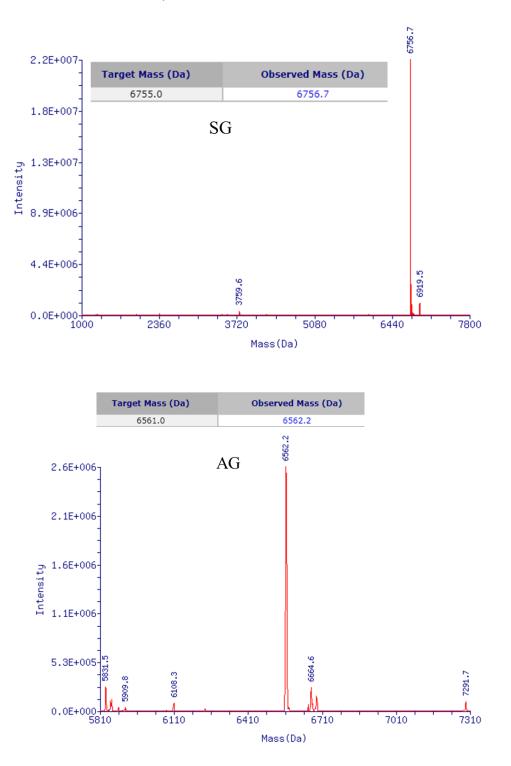

**Figure S6.** Photochemical regulation of GFP gene expression *in vivo* with the caged Dex-*p*-siGFP nanoparticles. *In vivo* real-time fluorescence images of tumor-bearing mice at different time points after intratumoral administration of 3 nmol of the native siRNA or caged Dex-*p*-siRNA nanoparticles. Scale bar = 1.5 cm. (A). Representative images of sectioned tumors injected with caged Dex-*p*-siRNA nanoparticles and left tumor was subjected to light irradiation (UV+). Bright field image (Up) and Overlapped image (down) (B). PC, positive control siGFP (AG/SG); NC, negative control, PBS buffer injection. Scale bar = 4 mm.

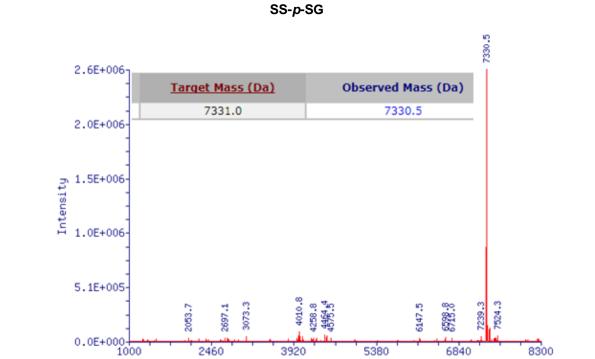
| Time | NC UV-      | NC UV+    | PC UV-    | PC UV+    | Dex UV-   | Dex UV+   |
|------|-------------|-----------|-----------|-----------|-----------|-----------|
| 0 h  | 7536666.6±  | 12686667± | 16733333± | 21200000± | 12800000± | 17566667± |
|      | 355574      | 4588740   | 1650253   | 1272792   | 3026549   | 3111270   |
| 12 h | 7790000±    | 13866667± | 6000000±  | 5573333±  | 11053333± | 5750000±  |
|      | 427200      | 4219400   | 3613475   | 2673431   | 3022339   | 1414214   |
| 24 h | 7873333.3±  | 15733333± | 5956667±  | 7910000±  | 14370000± | 7910000±  |
|      | 816843      | 5896892   | 4422401   | 3496613   | 4989760   | 4313351   |
| 48 h | 11113333.3± | 18900000± | 7949000±  | 12410000± | 15403333± | 8343333±  |
|      | 2358502     | 3459769   | 5805894   | 4261842   | 4545881   | 3323402   |
| 72 h | 10566666.6± | 18533333± | 13076667± | 16966667± | 15733333± | 11396667± |
|      | 472581      | 4384442   | 6742895   | 8197764   | 3000556   | 2757716   |


Table S2. The fluorescence intensity of tumor was quantified at different time points

#### <sup>1</sup>H NMR and <sup>31</sup>P NMR spectras of photolinker phosphoramidite

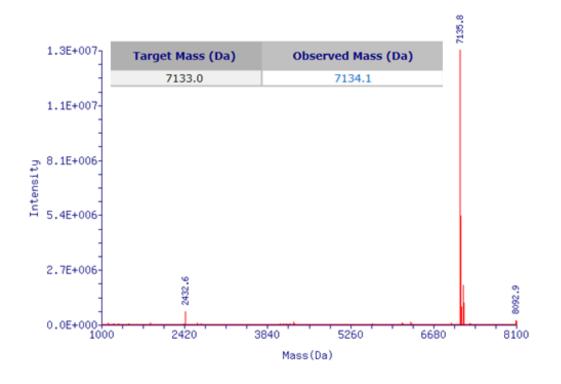
The phosphoramidite of photolablie linker (PL or p) was synthesized according to standard phosphoramidite synthetic protocol<sup>1, 2</sup>. <sup>1</sup>H NMR(400 MHz) and <sup>31</sup>P NMR(162 MHz) spectras were taken on Bruker AVANCE III-400 spectrometers and standardized to the NMR solvent peak, chemical shifts were reported in parts per million (ppm). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\overline{0}$  7.91 (dd, J = 8.2, 1.3 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.42 (td, J = 8.0, 7.5, 1.5 Hz, 3H), 7.33 – 7.29 (m, 3H), 7.21 (t, J = 7.2 Hz, 1H), 6.82 (dd, J = 9.0, 2.8 Hz, 4H), 5.81 (ddd, J = 10.6, 6.8, 3.2 Hz, 1H), 3.94 – 3.85 (m, 2H), 3.81 (s, 6H), 3.50 (dt, J = 10.4, 6.8 Hz, 1H), 3.45 (dd, J = 9.5, 3.2 Hz, 1H), 3.28 (dd, J = 9.5, 6.9 Hz, 1H), 2.65 – 2.46 (m, 2H), 1.17 (d, J = 6.8 Hz, 6H), 0.85 (d, J = 6.8 Hz, 6H). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\overline{0}$  149.85 (d, J = 9.6 Hz).



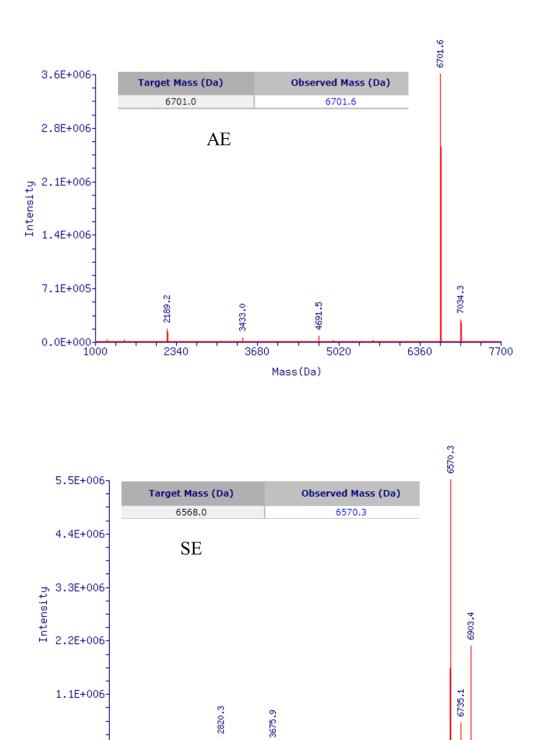


The partial oxidation of dextran (Dex-CHO) and maleimide-functionalized of dextran (Dex-Mal) were prepared according to the previous reported procedures<sup>3</sup>. The aldehyde groups of dextran (Dex-CHO) <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  9.17 (s, 1H),  $\delta$  8.36 (s, 1H). The maleimide groups of dextran (Dex-Mal) <sup>1</sup>H NMR (400 MHz, Deuterium Oxide)  $\delta$  6.25 (d, J = 13.2 Hz, 1H), 5.87 (d, J = 12.9 Hz, 1H).



### ESI-MS of native or thiol-modifier RNA oligonucleotides


These native or 5' thiol-modified caged RNA oligonucleotides targeting GFP and Eg5 (SS-*p*-oligos) were further purified using reversed-phase HPLC and characterized by ESI-MS. The sequences of caged thiol-modified oligonucleotides used in this study.

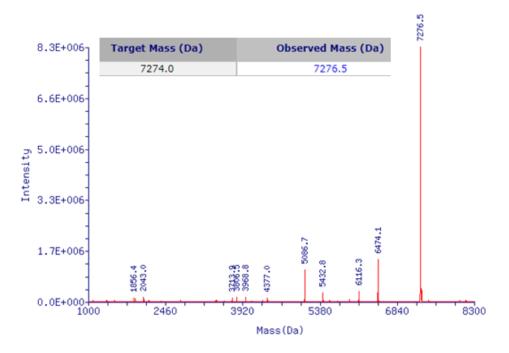




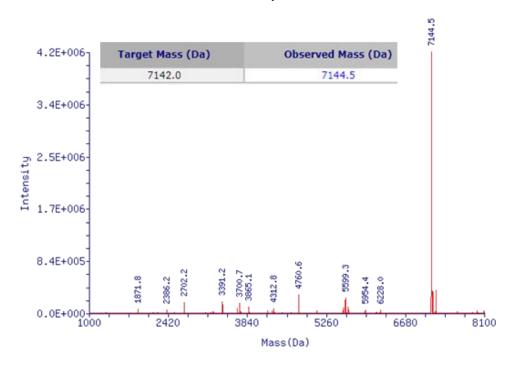



Mass(Da)




9




Mass(Da)

0.0E+000 









#### References

- (1) Yang, J., Chen, C., and Tang, X. (2018) Cholesterol-Modified Caged siRNAs for Photoregulating Exogenous and Endogenous Gene Expression. *Bioconjugate Chem* 29, 1010-1015.
- (2) Ji, Y., Yang, J., Wu, L., Yu, L., and Tang, X. (2016) Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. *Angew Chem Int Ed Engl* 55, 2152-6.
- (3) Pan, J.-f., Yuan, H.-f., Guo, C.-a., Liu, J., Geng, X.-h., Fei, T., Li, S., Fan, W.-s., Mo, X.-m. *et al.* (2015) One-step cross-linked injectable hydrogels with tunable properties for space-filling scaffolds in tissue engineering. *RSC Adv. 5*, 40820-40830.