Supporting Information for

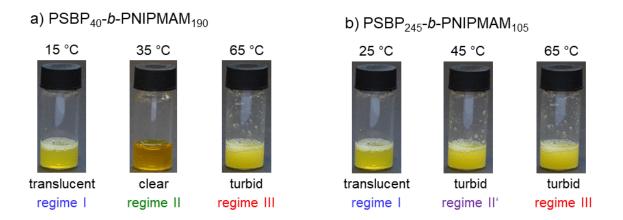
All-in-One "Schizophrenic" Self-assembly of Orthogonally Tuned Thermo-responsive Diblock Copolymers

Natalya S. Vishnevetskaya,[†] Viet Hildebrand,[‡] Noverra M. Nizardo,^{‡,§} Chia-Hsin Ko,[†] Zhenyu Di,[§] Aurel Radulescu,[§] Lester C. Barnsley,[§] Peter Müller-Buschbaum,^{†,1}, André Laschewsky,^{‡,⊥,*}, Christine M. Papadakis^{†,*}

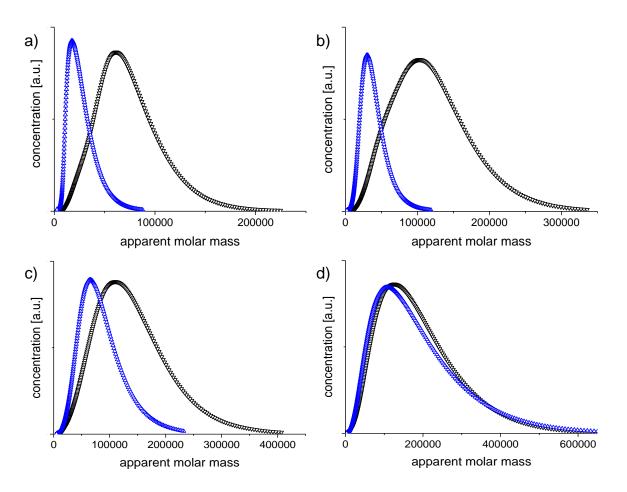
[†]Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany

[‡]Institut für Chemie, Universität Potsdam, Karl-Liebknecht- Straße 24-25, 14476 Potsdam-Golm, Germany

Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany


Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748 Garching, Germany

[⊥]Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany


^{\$}Permanent address N.M.N.: Department of Chemistry, University of Indonesia, Kampus UI Depok, Depok 16424, West-Java, Indonesia

14 pages, 4 figures and 5 tables.

Photographs of solutions

Figure S1. Photographs of 50 g L⁻¹ solutions of (a) PSBP₄₀-*b*-PNIPMAM₁₉₀ in H₂O, showing a dissolved intermediate regime II, and of (b) PSBP₂₄₅-*b*-PNIPMAM₁₀₅, showing an insoluble intermediate regime II'.

Figure S2. SEC elugrams of macro RAFT agents $PSBP_x$ (blue Δ), and of the derived block copolymers $PSBP_x$ -*b*-PNIPMAM_y (black ∇): (a) $PSBP_{40}$ and $PSBP_{40}$ -*b*-PNIPMAM₁₉₀; (b) $PSBP_{50}$ and $PSBP_{50}$ -*b*-PNIPMAM₁₅₅; (c) $PSBP_{245}$ and $PSBP_{245}$ -*b*-PNIPMAM₁₀₅; (d) $PSBP_{425}$ and $PSBP_{425}$ -*b*-PNIPMAM₁₁₀.

Conditions: eluent hexafluoroisopropanol (HFIP) containing 50 mM CF₃COONa, 40 °C, calibration with narrowly distributed poly(methyl methacrylate) standards 500 - 520,000 D.

Models used for fitting the SANS data

The SANS data were analyzed by fitting the following function:

$$I(q) = I_0 P(q) S(q) + I_{agg}(q) + I_{fluct}(q) + I_{bg}$$
(S1)

 I_{bg} denotes the constant background, which was in all cases fixed at 0.45-0.6 cm⁻¹, I_0 a scaling factor and P(q) the micellar form factor.

For P(q), the form factor of polydisperse, homogeneous spheres was used with a Schulz distribution for the radii:¹

$$P_{sphere}(q) = \left(\frac{4\pi}{3}\right)^2 N_0(\Delta\rho)^2 \int_0^\infty f(r) r^6 F^2(q) dr$$
(S2)

where N_0 is the total number of particles per unit volume. $\Delta \rho$ is the difference in scattering length density of the sphere and the solvent: $\Delta \rho = \rho_{\text{sphere}} - \rho_{\text{solvent}}$ (values used see below). f(r) is the normalized Schulz distribution:²

$$f(r) = (z+1)^{z+1} u^z \frac{\exp[-(z+1)u]}{r_{avg} \Gamma(z+1)}$$
(S3)

 $u = r/r_{avg}$, where r_{avg} denotes the average radius, $\Gamma(n)$ is the Gamma function, and z is related to the polydispersity p by $z = 1/(p^2-1)$: $p = \sigma/r_{avg}$, where σ^2 is the variance of the distribution. F(q) is the scattering amplitude of a sphere having a radius r:

$$F(q) = \frac{3[\sin(qr) - qr\cos(qr)]}{(qr)^3}$$
(S4)

For the structure factor S(q), we used the Percus-Yevick hard-sphere structure factor:³

$$S(q) = \frac{1}{1 + 24\eta G(2R_{HS}q)/2R_{HS}q}$$
(S5)

where R_{HS} is the hard-sphere radius, i.e. half the center-to-center distance between the particles. η is the hard sphere volume fraction, i.e. the fraction of micelles which are correlated, and

$$G(x) = \gamma \frac{\sin x - x \cos x}{x^2} + \delta \frac{2x \sin x + (2 - x^2) \cos x - 2}{x^3} + \varepsilon \frac{-x^4 \cos x + 4[3x^2 - 6\cos x + (x^3 - 6x) \sin x + 6]}{x^5}$$
(S6)
where $\gamma = (1 + 2\eta)^2 / (1 - \eta)^4$, $\delta = -6\eta (1 + \eta/2)^2 / (1 - \eta)^4$ and $\varepsilon = \gamma \eta/2$.

For PSBP₅₀-*b*-PNIPMAM₁₅₅ at 40 °C and for PSBP₂₄₅-*b*-PNIPMAM₁₀₅ at 20-50 °C, no structure factor was necessary, and S(q) was set to unity.

 $I_{agg}(q)$ denotes the scattering from large aggregates. We used the Porod form factor:⁴

$$I_{agg}(q) = \frac{I_P}{q^{\alpha}} \tag{S7}$$

which comprises its amplitude I_P and the Porod exponent α . α is characteristic of the surface roughness of the aggregates: for particles with a smooth surface, $\alpha = 4$; for rough surfaces, $\alpha < 4$, and for a concentration gradient near the aggregate surface, $\alpha > 4$.⁵ This term was not needed for PSBP₂₄₅-*b*-PNIPMAM₁₀₅ at 90 °C.

 $I_{\text{fluct}}(q)$ describes concentration fluctuations. We used the Ornstein-Zernike term to model the scattering from concentration fluctuations in solutions of non-charged polymers:⁶

$$I_{OZ}(q) = \frac{I_{OZ}}{1 + q^2 \xi^2}$$
(S8)

which comprises an amplitude I_{OZ} and a correlation length, ξ_{OZ} . For PSBP₅₀-*b*-PNIPMAM₁₅₅ at 50-60 °C and for PSBP₂₄₅-*b*-PNIPMAM₁₀₅ in 24 mM NaBr in D₂O at 55 °C, instead of the Ornstein-Zernike term, the solvation term, $I_{solv}(q)$, was used:

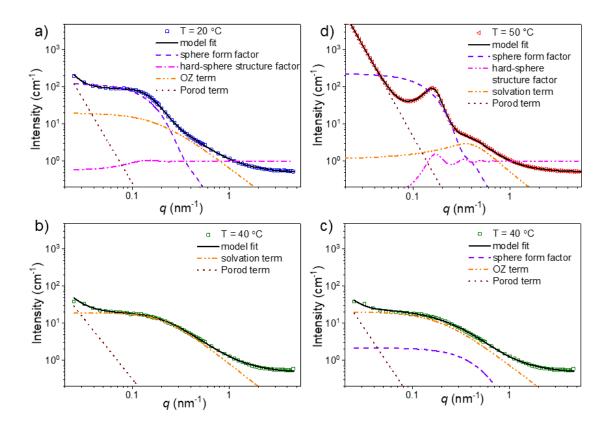
$$I_{solv}(q) = CF_{solv}(q) \tag{S9}$$

The parameter C characterizes the solvation intensity, which reads:

$$C = A \frac{k_B T (\Delta \rho)^2}{\kappa},\tag{S10}$$

where A is a scaling factor related to the volume fraction, K is the osmotic compressibility, $(\Delta \rho)^2$ is the contrast factor with ρ being the scattering length densities of the polymers and the solvent, k_B is Boltzmann's constant and T the absolute temperature. $F_{solv}(x)$ is the scaling function, which is given by:

$$F_{solv}(q) = \frac{1}{1 + ([q-q_0]\xi_{solv})^m}.$$
(S11)

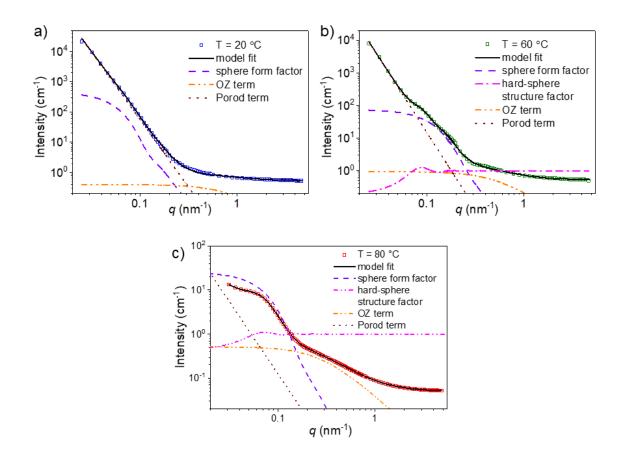

 $I_{solv}(q)$ was previously used to model concentration fluctuations in semidilute solutions of polyelectrolytes.⁷ It features the parameter *C* characterizing the solvation intensity and the correlation length ζ_{solv} . The average distance $d_0 = 2\pi/q_0$ between the charged domains is calculated from the position of maximum intensity, q_0 . For non-charged polymers, the solvation Porod exponent *m* is 5/3 in a good solvent or 2 in a theta solvent, respectively.⁸

The scattering length densities (SLD) of PSBP, PNIPMAM and D₂O were calculated at 7.3×10^{-5} nm⁻², 6.8×10^{-5} nm⁻², and 6.3×10^{-4} nm⁻², assuming mass densities of 1.0 g cm⁻³ for PSBP and 1.1 g cm⁻³ for PNIPMAM. In all fits of Eq. 1, the SLD values of the particles in regimes I and III were fixed at 7.1×10^{-5} nm⁻².

For the solution of PSBP₅₀-*b*-PNIPMAM₁₅₅ at 30 and 40 °C as well as the one of PSBP₂₄₅-*b*-PNIPMAM₁₀₅ at 40 °C, the curves were additionally modelled by:

$$I(q) = I_{agg}(q) + I_{solv}(q) + I_{bg}$$
(S12)

Modeling was performed using the SANS Data Reduction and Analysis software provided by the NIST Center for Neutron Research within the IGOR Pro software environment.⁹


Figure S3. Details of model fitting to the SANS data of the 50 g L⁻¹ PSBP₅₀-*b*-PNIPMAM₁₅₅ solution in salt-free D₂O in the 3 regimes (I: 20 °C, II: 40 °C, III: 50 °C), temperatures are given in the graphs. Symbols: data points, only every second point is shown. Full lines: Fits of Eq. 1 (a,c,d) and of Eq. 2(b). Broken lines: Contributions to the fits as described in the legends. OZ stands for Ornstein-Zernike.

	Regi	me I	Regime II	Regime III		
	20 °C	30 °C	40 °C	50 °C	60 °C	
r _{avg} [nm]	11.1 ± 1.0	10.7 ± 1.1	1.7 ± 0.2	12.6 ± 0.1	12.9 ± 0.1	
p	0.26 ± 0.03	0.23 ± 0.02	0.59 ± 0.05	0.20 ± 0.01	0.13 ± 0.01	
R _{HS} [nm]	20 ± 2	19 ± 2		18.8 ± 0.1	17.9 ± 0.1	
η	0.07 ± 0.01	0.08 ± 0.01		0.31 ± 0.02	0.32 ± 0.03	
<i>I</i> _P ×10 ⁹	3.5 ± 0.3	0.6 ± 0.1	0.8 ± 0.1	1.8 ± 0.1	0.62 ± 0.01	
α	4.4 ± 0.2	3.9 ± 0.2	3.6 ± 0.2	4.7 ± 0.1	4.9 ± 0.1	
I_{OZ} [cm ⁻¹]	20 ± 2	33 ± 3	20 ± 2			
<i>ξοz</i> [nm]	5.4 ± 0.5	6.5 ± 0.6	5.1 ± 0.4			
<i>C</i> [cm ⁻¹]				3.0 ± 0.1	0.9 ± 0.1	
ζsolv [nm]				3.8 ± 0.1	6.3 ± 0.1	
m				1.7 ± 0.1	1.0 ± 0.1	
d ₀ [nm]				17.9 ± 0.3	11.1 ± 1	
SLD sphere [nm ⁻²]	$(7.1 \pm 0.3) \times 10^{-5}$					

Table S1. Best fit parameters of Eq. 1 for the SANS data of a 50 g L^{-1} PSBP₅₀-*b*-PNIPMAM₁₅₅ solution in salt-free D₂O in regimes I, II and III.

	Regime I	Regime II
	30 °C	40 °C
I _P	$(1.4 \pm 0.1) \times 10^{-8}$	$(9.7\pm0.8) imes10^{-8}$
α	3.8 ± 0.2	3.3 ± 0.2
<i>C</i> [cm ⁻¹]	42 ± 4	19 ± 2
<i>ξsolv</i> [nm]	9.9 ± 0.3	4.8 ± 0.2
т	1.82 ± 0.02	2.01 ± 0.02
$d_{ heta}$ [nm]	8 ± 1	15 ± 2

Table S2. Best fit parameters of Eq. 2 for the SANS data of a 50 g L^{-1} PSBP₅₀-*b*-PNIPMAM₁₅₅ solution in salt-free D₂O in regime I at 30 °C and regime II.

Figure S4. Details of model fitting to the SANS data of the 50 g L⁻¹ PSBP₂₄₅-*b*-PNIPMAM₁₀₅ solution in salt-free D₂O in the 3 regimes (I: 20 °C, II': 60 °C, III: 80 °C), temperatures are given in the graphs. Symbols: data points, only every second point is shown. Full lines: Fits of Eq. 1. Broken lines: Contributions to the fits as described in the legends. OZ stands for Ornstein-Zernike.

	20 °C	30 °C	40 °C	50 °C	60 °C	60 °C	70 °C	80 °C	90 °C
r _{avg} [nm]	32 ± 3	33 ± 3	42 ± 4	9 ± 1	13 ± 1	15 ± 1	19 ± 2	21 ± 2	12 ± 1
p	0.23 ± 0.02	0.23 ± 0.02	0.10 ± 0.01	0.26 ± 0.03	0.29 ± 0.03	0.25 ± 0.03	0.23 ± 0.03	0.27 ± 0.03	0.79 ± 0.08
<i>R_{HS}</i> [nm]					35 ± 3	37 ± 3	41 ± 4	41 ± 4	40 ± 4
η					0.22 ± 0.01	0.20 ± 0.02	0.19 ± 0.01	0.11 ± 0.01	0.15 ± 0.01
$I_P \times 10^8$	7.1 ± 0.6	6.2 ± 0.1	5.7 ± 0.5	3.2 ± 0.2	7.7 ± 0.7	14.1 ± 1.2	9.8 ± 0.9	3.5 ± 0.4	
α	4.5 ± 0.2	4.5 ± 0.2	4.5 ± 0.1	4.9 ± 0.3	4.6 ± 0.2	4.5 ± 0.2	3.6 ± 0.2	3.3 ± 0.2	
<i>I_{OZ}</i> [cm ⁻¹]	0.4 ± 0.1	0.6 ± 0.1	0.8 ± 0.2	1.6 ± 0.3	0.9 ± 0.2	0.2 ± 0.2	0.3 ± 0.1	0.5 ± 0.1	0.6 ± 0.2
<i>ξoz</i> [nm]	1.2 ± 0.1	1.5 ± 0.1	1.6 ± 0.1	2.6 ± 0.2	1.9 ± 0.2	2.1 ± 0.2	2.3 ± 0.2	3.5 ± 0.3	3.2 ± 0.3
SLD sphere [nm ⁻²]				(7.1 ± 0.3) × 10	-5			

Table S3. Best fit parameters of Eq. 1 for the SANS data of a 50 g L^{-1} PSBP₂₄₅-*b*-PNIPMAM₁₀₅ solution in salt-free D₂O.

$R_{HS} [nm]$ 7 $I_P \times 10^{11}$		23.92 ± 0.05 0.224 ± 0.002 31.06 ± 0.04 0.255 ± 0.001 112.7 ± 0.4	
$R_{HS} [nm]$ 7 $I_P \times 10^{11}$	4.03 ± 0.06	31.06 ± 0.04 0.255 ± 0.001	
η $I_P \times 10^{11}$		0.255 ± 0.001	
$I_P \times 10^{11}$			
		112.7 ± 0.4	
~	5 00 × 0 00		
α	5.20 ± 0.03	4.5	
<i>I_{oz}</i> [cm ⁻¹]	2.08 ± 0.02		
5 <i>oz</i> [nm]	4.7 ± 0.3		
C [cm ⁻¹]		1.26 ± 0.01	
5solv [nm]		$4.30\pm\!\!0.03$	
m		1.91 ± 0.01	
do [nm]		32.3 ±0.5	
SLD sphere [nm ⁻²]	$7.1 imes 10^{-5}$		

Table S4. Best fit parameters of Eq. 1 for the SANS data of a 50 g L^{-1} PSBP₂₄₅-*b*-PNIPMAM₁₀₅ solution in 24 mM NaBr in D₂O.

Table S5. Best fit parameters of Eq. 2 for the SANS data of a 50 g L^{-1} PSBP₂₄₅-*b*-PNIPMAM₁₀₅ solution in 24 mM NaBr in D₂O in regime II at 40 °C.

	Regime II
	40 °C
<i>C</i> [cm ⁻¹]	5.38 ± 0.02
ξ _{solv} [nm]	4.78 ± 0.01
m	2.406 ± 0.003
d ₀ [nm]	

(1) Kotlarchyk, M.; Chen, S-H. Analysis of Small Angle Neutron Scattering Spectra from Polydisperse Interacting Colloids. *J. Chem. Phys.* **1983**, *79*, 2461-2469.

(2) Schulz, G. V. Über die Kinetik der Kettenpolymerisationen. Z. Phys. Chem. 1935, 43, 25-46.

(3) Percus, J. K.; Yevick, G. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. *J. Phys. Rev.* **1958**, *110*, 1-13.

(4) Porod, G. Die Röntgenkleinwinkelstreuung von dicht gepackten kolloiden Systemen. *Kolloid-Z.* **1951**, *123*, 83-114.

(5) Koberstein, J. T.; Morra, B.; Stein, R. S. The Determination of Diffuse-Boundary Thicknesses of Polymers by Small-Angle X-ray Scattering. *J. Appl. Crystallogr.* **1980**, *13*, 34–45.

(6) Shibayama, M.; Tanaka, T. Small Angle Neutron Scattering Study on Poly(N-isopropyl acrylamide) Gels Near their Volume-Phase Transition Temperature. *J. Chem. Phys.* **1992**, *97*, 6829-6841.

(7) Horkay, F.; Hammouda, B. Small-angle Neutron Scattering from Typical Synthetic and Biopolymer Solutions. *Colloid Polym. Sci.* **2008**, *286*, 611–620.

(8) Feuz, L.; Strunz, P.; Geue, T.; Textor, M.; Borisov, O. Conformation of Poly(L-lysine)-graftpoly(ethylene glycol) Molecular Brushes in Aqueous Solution Studied by Small-Angle Neutron Scattering. *Eur. Phys. J.* **2007**, *23*, 237–245.

(9) Kline, S. R. Reduction and Analysis of SANS and USANS Data Using IGOR Pro. J. Appl. Crystallogr. 2006, 39, 895.