## **Supporting Information**

## Synthesis and solution self-assembly of poly(1,3-dioxolane)

Huan Qiu,<sup>†</sup> Zhening Yang,<sup>†</sup> Moritz Köhler,<sup>‡,§</sup> Jun Ling<sup>\*,†</sup>, Felix H. Schacher <sup>\*,‡,§</sup>

<sup>†</sup> MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

<sup>‡</sup> Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany.

§ Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany.

\* Correspondence authors: lingjun@zju.edu.cn; felix.schacher@uni-jena.de

| Run                   | Catalyst                    | M <sub>n.SEC</sub><br>(kDa) | $D_{ m SEC}$ | Ref. |
|-----------------------|-----------------------------|-----------------------------|--------------|------|
| 1 a                   | terephthaloyl ditriflate    | 6.7                         | 1.90         | 1    |
| 2 <sup><i>b</i></sup> |                             | 9.7                         | 2.00         |      |
| 3 <i>a</i>            | Maghnite-H <sup>+</sup>     | 2.2                         | 1.52         | 2,3  |
| 4 <sup><i>b</i></sup> |                             | 6.5                         | 2.16         |      |
| 5 <i>a</i>            | methacrylic acid/           | 2.5                         | 1.40         |      |
| 6 <sup><i>b</i></sup> | dicyclohexylcarbodiimide    | 9.2                         | 2.20         | 4    |
| 7 <sup>a</sup>        | dialkylformal               | 1.7                         | 1.60         | 5    |
| 8 <sup>b</sup>        |                             | 4.3                         | 1.95         |      |
| 9 <sup>b</sup>        | silver hexafluoroantimonate | 13.5                        | 1.67         | 6    |

 Table S1. Homopolymerization of DO by various catalysts.

<sup>*a*</sup> Value of *D* is the narrowest value in the corresponding literature examples.

 ${}^{b}$  Value of  ${\cal D}$  is attributed to the polymer of the highest molecular weight.

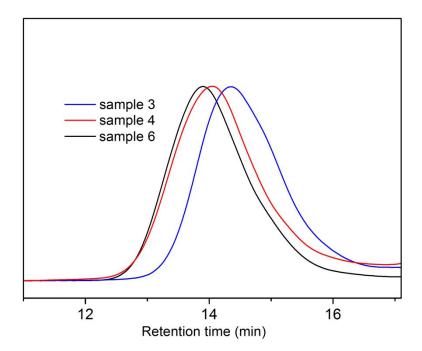



Figure S1. SEC elution traces of PDOs in Table 1.

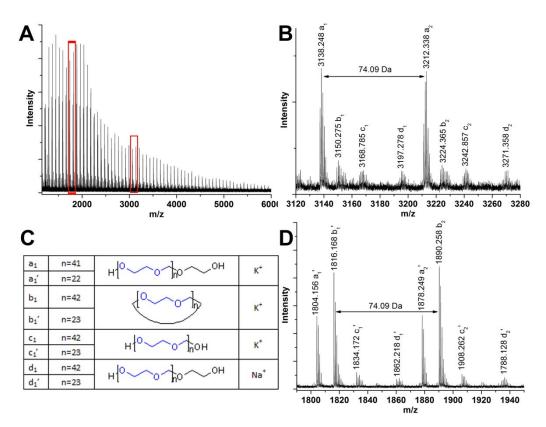



Figure S2. MALDI-ToF mass spectra of Sample 1 in Table 1 (A) with enlarged views (B & D) and the corresponding PDO structures (C). Polymers  $c_1$  ( $c_1$ ') represent PDO terminated by water with K<sup>+</sup>. Polymers  $a_1$  ( $a_1$ ') and  $d_1$  ( $d_1$ ') are PDO chains with ethyl alcohol at chain ends with K<sup>+</sup> and Na<sup>+</sup>, respectively which result from the degradation of formyl segments at chain ends. Polymers  $b_1$  ( $b_1$ ') are PDO rings caused by backbiting especially in low MW regions.

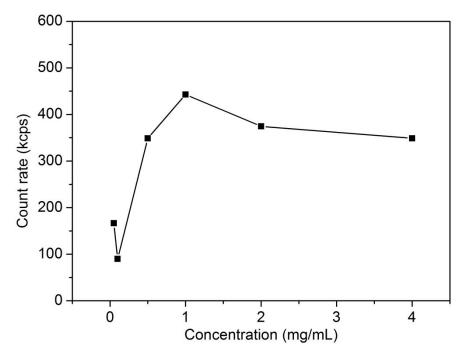
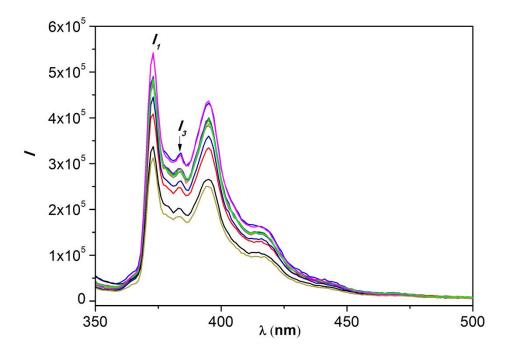
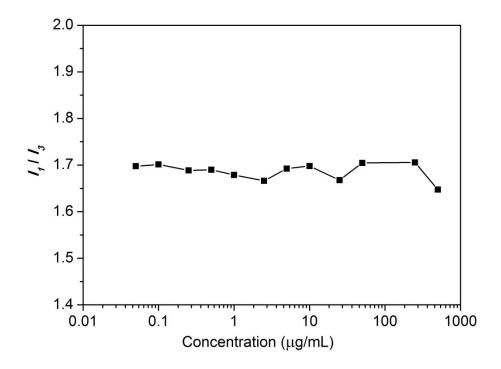





Figure S3. DLS count rates as a function of PDO concentration (Sample 6 in Table

1).



**Figure S4.** Fluorescence spectra of pyrene in the presence of PDO (Sample 6 in Table 1) at different concentrations ranging from  $5 \times 10^{-5}$  mg/mL to 0.5 mg/mL in aqueous solution.



**Figure S5.** Variation in  $I_1/I_3$  for pyrene as a function of PDO concentration (Sample 6 in Table 1) ranging from  $5 \times 10^{-5}$  mg/mL to 0.5 mg/mL.

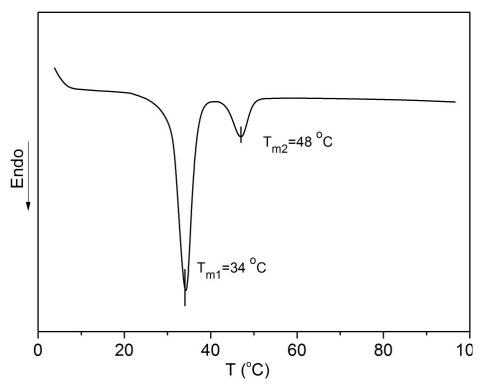



Figure S6. DSC thermogram of PDO (Sample 6 in Table 1).

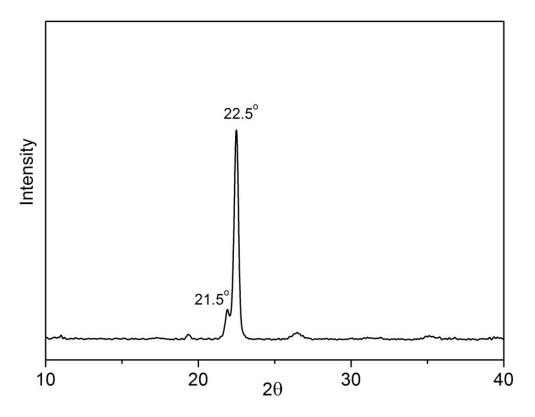
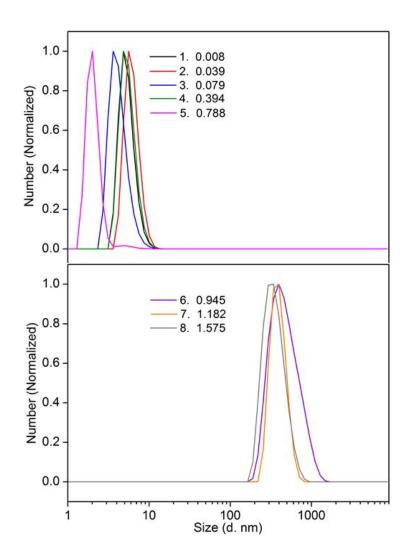
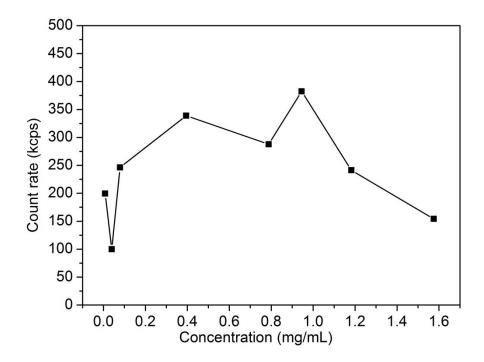
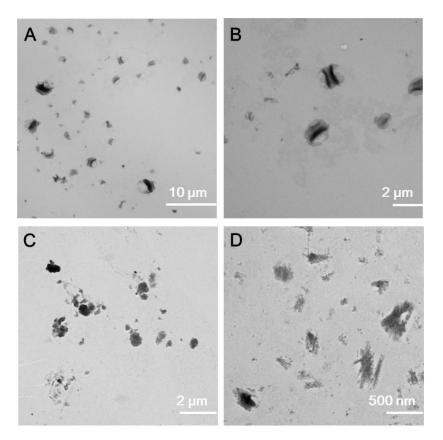
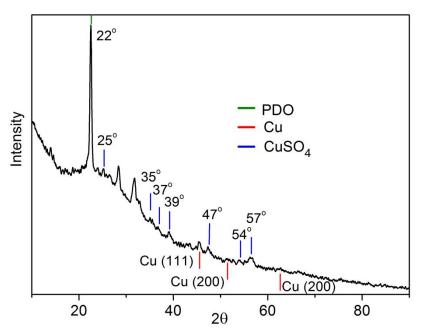
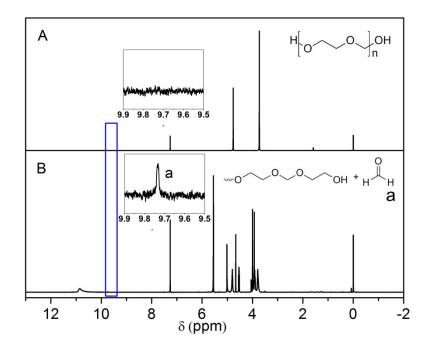




Figure S7. X-ray diffraction pattern of PDO (Sample 6 in Table 1).



**Figure S8.** DLS CONTIN plots of PDO nanoparticles (Sample 6 in Table 1) with KOTf at different molar ratios (KOTf / units of DO) ranging from 0.008 to 1.575.

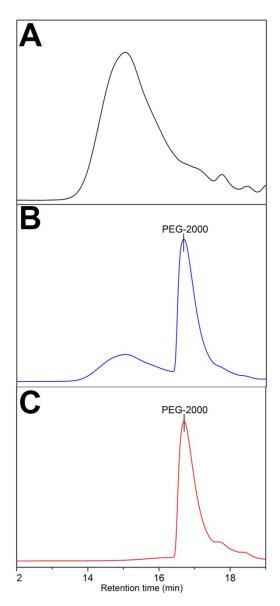






Figure S9. DLS count rates as a function of molar ratios (KOTf / units of DO).



**Figure S10.** TEM micrographs of PDO nanoparticles (Sample 6 in Table 1, 5 mg/mL) in water at different molar ratios (KOTf / units of DO): (A&B) 0.945, (C) 0.394, (D) 1.575.




**Figure S11.** X-ray diffraction pattern of Cu/PDO/CuSO<sub>4</sub> compound (Olive, blue and red labels represent diffractions assigned to PDO, Cu and CuSO<sub>4</sub>, respectively).



**Figure S12.** <sup>1</sup>H NMR spectra of PDO (Sample 6 in Table 1) without TFA treatment (A) and with TFA treatment (B), including the enlarged signals of methyl aldehyde after degradation in CDCl<sub>3</sub>.



**Figure S13.** DLS size distribution histograms of nanoparticles self-assembled by PDO (Sample 6 in Table 1) in pH 6.8 buffer solution at 0.5 mg/mL 25 °C within 0 and 6 days.



**Figure S14.** SEC elution traces of PDO (Sample 8 in Table 1, A), PDO (Sample 8 in Table 1) in buffer solution of pH 6.8 within 6 days (B) and PDO (Sample 8 in Table 1) in buffer solution of pH 5.5 within 4 days (C). PEG-2000 is used as a standard.

## References

(1) Meirvenne, D. V.; Goethals, E. J. Makromol. Chem. Suppl. 1989, 15, 61.

(2) Megherbi, R.; Belbachir, M.; Meghabar, R. J. Appl. Polym. Sci. 2006, 101, 78.

(3) Reguieg, F.; Sahli, N.; Belbachir, M.; Lutz, P. J. J. Appl. Polym. Sci. 2006, 99, 3147.

- (4) Clercq, R. R. D.; Goethals, E. J. Macromolecules 1992, 25, 1109.
- (5) Sahli, N.; Belbachir, M.; Lutz, P. J. Macromol. Chem. Phys. 2005, 206, 1257.
- (6) Reibel, L. C.; Durand, C. P.; Franta, E. Can. J. Chem. 1985, 63, 264.