REACTIVE TANDEM ION MOBILITY SPECTROMETRY WITH ELECTRIC FIELD FRAGMENTATION OF ALCOHOLS AT AMBIENT PRESSURE

Hossein Shokri, Maika Vuki,¹ Ben Gardner,² Hsein-Chi Niu,² Umesh Chiluwal, Bhupendra K. Gurung,

David B. Emery, and Gary A. Eiceman Department of Chemistry and Biochemistry New Mexico State University Las Cruces, NM 88003 ¹Chemistry Department University of Guam Mangilao, Guam 96913 ²Collins Aerospace, Pomona, CA 91767

Corresponding author: Gary A. Eiceman, email address: geiceman@nmsu.edu

Compound	t _d	Ko	t _d	Ko	t _d	Ko	Δt _d	ΔΚο	lon Mass(g/mol)
	MH ⁺ (H ₂ O) _n		M_2H^+		Fragment ion		$MH^+(H_2O)_n$ - Fragment ion		MH ⁺ (H₂O) _n
isopropyl acetate	4.85	1.80	6.35	1.38	4.14	2.11	0.71	0.31	139.13
butyl acetate	5.11	1.72	6.90	1.28	4.15	2.12	0.96	0.40	153.16
isopentyl acetate	5.46	1.61	7.54	1.17	4.10	2.15	1.36	0.54	167.19
pentyl acetate	5.52	1.60	7.60	1.16	4.14	2.13	1.38	0.53	167.19
hexanal	5.18	1.68	6.62	1.31	4.78	1.82	0.40	0.14	137.16
heptanal	5.50	1.58	7.22	1.21	4.88	1.79	0.62	0.21	151.18
octanal	5.80	1.50	7.78	1.12	5.25	1.66	0.55	0.16	165.21
nonanal	6.14	1.42	8.30	1.05	5.39	1.62	0.75	0.20	179.24
octane	4.91	1.77	-	-	3.89	2.24	1.02	0.47	151.23
nonane	5.16	1.69	-	-	4.02	2.17	1.14	0.48	165.20
decane	5.43	1.60	-	-	4.20	2.07	1.23	0.47	179.29

Table S1. Supporting information for Figure 5 (data supplement Table 1).

Drift Time, t_d , in ms.

Reduced mobility coefficient, $K_{o},$ in cm²/ Vs

	Percer	nt Fragme	Terms for Linear								
	69 Td	77 Td	90 Td	99 Td	112 Td	120 Td	Fragmentation vs E/N				
			Slope	Intercept							
1-propanol	0.0	0.6	2.0	1.9	5.1	16.5	0.181	-13.28			
1-butanol	0.0	2.5	12.2	15.6	25.8	42.5	0.772	-56.52			
1-pentanol	8.4	11.4	34.4	46.5	58.8	65.6	1.199	-75.76			
1-hexanol	7.6	7.4	26.0	35.0	51.4	54.6	1.029	-66.95			
1-heptanol	10.8	16.9	29.5	37.0	49.2	54.4	0.876	-49.81			
1-octanol	9.7	17.3	20.4	39.4	44.2	50.5	0.818	-47.03			
1-nonanol	0.2	1.3	8.2	30.0	27.9	33.7	0.663	-45.17			
cyclohexanol	23.6	38.8	51.3	70.4	80.4	93.8	1.332	-66.18			
2-butanol	7.6	13.8	26.0	35.0	42.1	51.1	0.818	-47.03			
isobutanol	3.1	14.5	25.6	28.3	45.2	56.1	0.973	-63.15			

Table S2. Influence of Electric Field Strength on Percent Fragmentation of Protonated Monomer

Figure S1. Mass spectra for 1-nonanol with a drift tube-mass spectrometer at 60°C. Spectra are shown without (A) and with (B) electric field fragmentation at 168 Td. In Frame C, an expanded mass axis is shown for ions of low abundance ions from 25 to 90 Da.

Figure S2. Enthalpy of fragmentation of normal alcohols in: A- a first step of water elimination from protonated monomer to a primary carbocation and B- a second step of charge migration to a secondary carbocation.