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S2. Materials and methods

Unless otherwise specified, all reagents were purchased from commercial sources and used
as received without further purification. Flash column chromatography was performed
using Silica Gel high purity grade (pore size 60 A, 230-400 mesh particle size, Sigma-Aldrich).
TLC analyses were performed on Merck TLC Silica Gel 60 F254 Glass plates. Product spots
were visualized under UV light (Amax= 254 nm). Phosphine oxide trianiline S2 was
synthesised in two steps according to modified literature procedures. Nickel(ll) triflimide
was synthesised according to literature procedures.?

$2.1 Nuclear Magnetic Resonance (NMR)

NMR spectra were recorded using a 400 MHz Avance Ill HD Smart Probe (routine *H and 2D
NMR experiments), DCH 500 MHz dual cryoprobe (high-resolution *H and **C NMR and 2D
NMR experiments) and DPX S5 500 MHz BB ATM (variable temperature NMR) NMR
spectrometers. Coupling constants (/) are reported in hertz (Hz). The following abbreviations
are used to describe signal multiplicity *H, 3C and *°F NMR spectra: s: singlet, d: doublet, t:
triplet, dd: doublet of doublets; dt: doublet of triplets; m: multiplet, br: broad. DOSY NMR
experiments were performed on a 400 MHz Avance Il HD Smart Probe NMR spectrometer.
Maximum gradient strength was 6.57 G/cm A. The standard Bruker pulse program,
ledbpgp2s, employing a stimulated echo and longitudinal eddy-current delay (LED) using
bipolar gradient pulses for diffusion using 2 spoil gradients was utilised. Rectangular
gradients were used with a total duration of 1.5 ms. Gradient recovery delays were 875-
1400 ps. Individual rows of the S4 quasi-2D diffusion databases were phased and baseline
corrected.

$2.2 Mass spectrometry (MS)

Low resolution electrospray ionisation (LR-ESI) mass spectrometry was undertaken on a
Micromass Quattro LC mass spectrometer (cone voltage 5-30 eV; desolvation temp. 313 K;
ionisation temp. 313 K) infused from a Harvard syringe pump at a rate of 10 pL min. High-
resolution mass spectra were acquired using a Thermofisher LTQ Orbitrap XL or performed
by the EPSRC facility at Swansea.

S3



S3. in situ Functionalization Studies
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Figure S1: in situ oxidation of phosphine cage 2 to phosphine oxide cage 3. a) Phosphine
oxide cage 3 formed from phosphine oxide ligand S1. b) Phosphine oxide cage 3 formed in

situ from the oxidation of phosphine cage 1 after 16 hours ar r.t.. c) Intermediate state
during oxidation reaction, 10 minutes after addition of 16 eq. of H,0,. Multiple triazole
peaks were observed indicative of cages with varying ratios of 2:51 incorporated. d)
Phosphine cage 2 prior to oxidation.
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Figure S2: in situ Auration of phosphine cage 2. a) Aurated cage 5 formed from phosphine

cage 2 in situ after heating to 70 °C for 16 hours. b) Phosphine cage 2 prior to addition of
(DMS)AUCI (6.8 mg) to a solution of cage 2 (3.8 mg) in MeCN-d3 (500 uL).
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Figure S3: Addition of H,0; to Aurated cage 5. a) Aurated Cage 5 before addition of H,0;. b)
Phosphine oxide cage 3. c) Aurated cage 5 10 minutes after addition of H,0,. d) Aurated

cage 5 16 hours after addition of 16 eq. H;0.
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Figure S4: in situ Methylation of phosphine cage 2. a) Phosphonium salt cage 4 formed from
isolated ligand S4. b) Phosphine cage 2 prior to addition of Mel. c) Phosphonium salt cage 4

formed from in situ methylation. To phosphine cage 1 (3.8 mg) and LiNTf; (5 mg) in MeCN-
d3 (500 pL), Mel (10 uL) was added, and the reaction heated to 70 °C for 1 hour.
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Figure S5: in situ oxidation of Iron phosphine cage 6 to Iron phosphine oxide cage 7. a)

Phosphine oxide cage 7 formed from phosphine oxide ligand S1. b) Phosphine oxide cage 7
formed in situ from the oxidation of phosphine cage 6 after 16 hours ar r.t. c) 10 minutes
after addition of 6 eq. of H,0,. d) Phosphine cage 6 prior to oxidation.
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Figure S6: in situ oxidation of Iron phosphine cage 6 to Iron phosphine oxide cage 7. LRMS of
sample after oxidation, showing Iron phosphine oxide cage 7.
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Figure S7: LRMS of Iron phosphine cage 6, prior to oxidation, for comparison.
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Figure S8: in situ oxidation of Nickel phosphine sandwich complex 8 and cage 9 to Nickel
phosphine oxide cage 10. a) Phosphine oxide cage 10 formed from phosphine oxide ligand
S1. b) Phosphine oxide cage 10 formed in situ from the oxidation of phosphine sandwich
complex 8 and cage 9 after 16 hours at r.t. ¢) Phosphine sandwich complex 8 and cage 9
prior to oxidation.
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Figure S9: in situ oxidation of Nickel phosphine sandwich complex 8 and cage 9 to Nickel
phosphine oxide cage 10. LRMS of sample after oxidation, showing Nickel phosphine oxide
cage 10. Oxidation was less clean when using the nickel system, with by-products observed.
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Figure S10: LRMS of sample of nickel phosphine sandwich complex 8 and cage 9, prior to
oxidation, for comparison.
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Figure S11: LRMS of Nickel phosphine oxide cage 10, for comparison.
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Figure S12: Addition of TBAI to phosphonium salt cage 4, causing cage disassembly. a. Cage
4 prior to addition of TBAI. b. Product of addition of TBAI after 15 minutes at r.t..
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S4. Host Guest Studies

- | U

UV

|

© J\ do o e
) WY

& J M

" k e o e

95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 7.7 76 7.
ppm

Figure S13: a) Phosphine oxide cage 3. b) Phosphine oxide cage 3 after addition of TBACIOa.
c) Phosphine oxide cage 3 after addition of TBANOs. d) Phosphine oxide cage 3 after
addition of TBABFa. e) Phosphine oxide cage 3 after addition of TBAOTf. f) Phosphine oxide
cage 3 after addition of TBAOTSs. g) Phosphine oxide cage 3 after addition of TBAPFs. h)
Phosphine oxide cage 3 after addition of TBAReOa.
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Figure S14: a) Phosphine oxide cage 3. b) Phosphine oxide cage 3 after addition of TBACI. c)
Phosphine oxide cage 3 after addition of TBABr. d) Phosphine oxide cage 3 after addition of
TBAI. e) Phosphine oxide cage 3 after addition of NaTFA. f) Phosphine oxide cage 3 after
addition of TBABPh4 (note, a significant increase in spectra complexity was observed with
this anion due to slow exchange binding).
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Figure S15: a) Phosphonium salt cage 4. b) Phosphonium salt cage 4 after addition of
NaBPha. ¢c) Phosphonium salt cage 4 after addition of TBACIO4. d) Phosphonium salt cage 4
after addition of TBANOs. e) Phosphonium salt cage 4 after addition of TBABF.. f)
Phosphonium salt cage 4 after addition of TBAOTf. g) Phosphonium salt cage 4 after
addition of TBAOTSs. h) Phosphonium salt cage 4 after addition of TBAPFs. i) Phosphonium

salt cage 4 after addition of TBAReOa.
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Figure S16: a) Aurated cage 5. b) Aurated cage 5 after addition of TBAReOs. c) Aurated cage
5 after addition of TBANOs. d) Aurated cage 5 after addition of TBAOTSs. e) Aurated cage 5
after addition of TBABF4. f) Aurated cage 5 after addition of TBAOTf. g) Aurated cage 5 after

addition of TBACIOa. h) Aurated cage 5 after addition of TBAPFs.
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Figure S17: a) 16 hours after addition of NaBPhs to Aurated cage 5. The tetraphenylborate
anion was bound in slow exchange by cage 5, leading to the more complex spectra

observed. b) Aurated cage 5 prior to addition of NaBPha.
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Figure S18: Addition of TBACN to aurated cage 5. a) Aurated cage 5 after 16 hr at r.t. and an
additional 24 hours at 50 °C. b) Aurated cage 5 after 16 hr at r.t.. c) Aurated cage 10 minutes
after addition of 16 eq. TBACN. d) Aurated cage 5 prior to addition of TBACN. Signals most

affected relate to the P-Aryl ring signals, supporting chloride displacement by cyanide.
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Figure $19: Addition of TBA'3CN to aurated cage 5 in MeCN-ds. Peaks corresponding to P-
Au-CN bound cyanide (*3C labelled) were observed, and a 3'P-Au-3C coupling constant of
128.9 Hz was seen, confirming external binding of the cyanide anion, and explaining the
changing in cage behavior regarding cyanide binding/cage destruction with respect to cages
3and 4.
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S5. Determination of Guest Binding Affinity

Procedure for NMR titrations: A 0.55 mL solution of host in MeCN-dz was titrated with a
concentrated solution of guest. The total change in concentration of the host was >15 % over
the course of the titration, and the error involved was assumed to be negligible. Upon each
addition, the solution was manually stirred for 1 min before acquiring the spectrum, which
allowed equilibrium to be reached between the host and guest. Binding isotherms for all
titrations were calculated using BINDFIT.? Data from the titration experiments showed 1:1
binding for all anions which could be fitted. Cages 3, 4 and 5 showed no binding to triflimide
up to the addition of 400 equiv. of TBANTf,. This allowed us to disregard competitive binding
by NTf, in these systems when calculating binding affinities. Sufficient points were taken in
the titration to ensure a binding isotherm could be calculated. Below we show the full data
for binding of ReO4™ (from titration of TBAReOa4), and summarise binding affinity calculations
for other anions in Table S1.
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Figure S20: Addition of TBAReO4 to phosphine oxide cage 3. Titration starts at bottom
spectra (0 equiv.).
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Figure S21: Binding data for addition of TBAReO4 to phosphine oxide cage 3.
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Figure S22: Addition of TBAReO4 to methylated cage 4. Titration starts at bottom spectra (0
equiv.).
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Figure S23: Binding data for addition of TBAReO4 to methylated cage 4.
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Figure S24: Addition of TBAReO, to aurated cage 5. Titration starts at bottom spectra (0

equiv.).
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Figure S25: Binding data for addition of TBAReO4 to aurated cage 5.
Phos;z:l:;:?f)mde Pho(s:g::r:um Aurated Cage 5
Binding Constant Error Binding Constant Error Binding Constant Error
TBAReO4 4485.52M™" +9.9949% 827.04 M~ +3.3076% 2488.54M™" +4.8514%
TBACIO4 296.52 M~ +2.4451% 4233 M™ +2.0337% 100.78 M +4.6369%
TBAOTf 233.39 M’ +2.1935% 52.90 M™ +1.8695% 59.21 M™ +2.4163%
TBABF4 235.00 M~ +3.2962% 32.93 M™ +2.4644% 103.62 M™ +2.7851%
TBANO3 $ $ $ $ s s
TBAOTs $ $ $ $ s S
TBAPF6 11.56 M~ +16.0167% ~ ~ 37.25 M™ +9.0590%
NaBPh4 * * 26.96 M™ +10.6283% * *
NaTFA § § No Binding No Binding No Binding No Binding
TBACI 58.03 M™ 1+ 15.6298% No Binding No Binding No Binding No Binding
TBABr § § No Binding No Binding No Binding No Binding
TBAI § § No Binding No Binding No Binding No Binding

Table S1: Results of anion binding titrations. Errors calculated from residuals after fitting data
to a 1:1 binding isotherm. $ = The cage was observed to precipitate upon addition of larger
guantities of anion, preventing determination of a binding isotherm. * = The cage bound BPh,
in fast and slow exchange simultaneously preventing determination of a binding isotherm. §
= The cage was observed to disassemble upon addition of larger quantities of anion,
preventing determination of a binding isotherm.
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$6. Synthesis and characterization

Tris(4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)phenyl)phosphine oxide S1

100 M
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Phosphine oxide triamine $2 (0.580 g, 1.80 mmol) was dissolved in aqueous HCI (4M, 16 mL),
and the resulting solution cooled to 0 °C. Sodium nitrite (0.60 g, 8.70 mmol) was dissolved in
H,O (5 mL) and cautiously added dropwise over 10 minutes. The reaction was stirred
vigorously for 15 minutes, before sodium azide (0.70 g, 10.8 mmol) in H20 (5 mL) was added
dropwise over 5 minutes (CARE — ACIDIFIED NaN3; PRODUCES TOXIC HNs). The reaction was
stirred for 15 minutes, then extracted with EtOAc (200 mL), dried over MgSOs, and
concentrated in vacuo (n.b. the water bath of the rotary evaporator was maintained below
10 °C during this process). The crude triazide S3 was immediately used to prevent
decomposition. The crude was taken up in DMF (10 mL) and sparged with nitrogen for 15
minutes. Pyridyl acetylene (0.80 mL, 7.92 mmol) was added, and the reaction sparged for a
further 5 minutes. Copper sulfate (180 mg, 1.13 mmol) and sodium ascorbate (400 mg, 2.02
mmol) were added, and the reaction stirred at r.t. for 16 hours. EDTA(aq) (0.1 M, 50 mL)
followed by CH2Cl; (200 mL) were added, and the reaction stirred at r.t. for 2 hours. The
phases were separated, the aqueous layer washed with CH,Cl; (50 mL), and the organic
phases combined. The organic phases were washed with NaOHaq) (1 M, 100 mL), brine (100
mL) followed by H,O (2 x 100 mL). The organic phase was dried over Na;SOas, then
concentrated in vacuo after the addition of toluene (10 mL). The crude was purified by flash
column chromatography (CH2Cl,:MeOH 20:1) to furnish phosphine oxide ligand S1 (0.901 g,
1.27 mmol, 71%) as an off-white powder.

'H NMR (500 MHz, CD3CN) &: 8.91 (s, 3H, Hs), 8.66 (d, J = 4.6 Hz, 3H, H12), 8.20 (d, J = 7.9 Hz,
3H, Hy), 8.16 (dd, J = 8.6, 2.0 Hz, 6H, H4), 7.99 (dd, J = 11.3, 8.7 Hz, 6H, H3), 7.91 (td, J = 7.6,
1.7 Hz, 3H, Hio), 7.37 (ddd, J = 7.6, 4.9, 0.9 Hz, 3H, Hi1). 3C NMR (126 MHz, CD,Cl,) 6: 150.2,
150.0, 140.5 (d, J = 2.4 Hz), 137.5, 134.4 (d, / = 10.6 Hz), 132.9 (d, J = 105.3 Hz), 123.9, 120.9
(d,J=12.4 Hz), 120.8, 120.5. 3P NMR (162 MHz, CDsCN) &: 24.0. HRMS (ESI*): m/z = 711.2237
[M+H]*, calculated for CsgH2sN1,0P = 711.2241.
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Figure $26: *H NMR (CD3CN, 500 MHz, 298 K) spectrum of S1.
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Figure $27: 3C NMR (CDsCN, 126 MHz, 298 K) Spectrum of S1.
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Figure $28: 3P NMR (CDsCN, 162 MHz, 298 K) spectrum of S1
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Tris(4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)phenyl)phosphane 1

10 M

ol )2
s)y—N
N N: 6=
/__\ \N\C 3 . 5N~N
1 2
P‘ :
\N:N
N
N=
\ /

Phosphine oxide S1 (86 mg, 0.121 mmol) was suspended in toluene (10 mL) and thoroughly
sparged with nitrogen. Trichlorosilane (1.5 mL, 14.8 mmol) and sparged, dry, EtsN (1 mL, 7.2
mmol) were added simultaneously with vigorous stirring. The reaction was immediately
heated to reflux for 2.5 h. The reaction was cooled to r.t. and sparged MeOH (5 mL) was added
with caution until all solids had dissolved. Silica was then added and the solvent removed in
vacuo. The crude residue was purified by flash column chromatography under an atmosphere
of N3, with all solvents and glassware thoroughly sparged with N prior to use (EtOAc:MeOH
50:1) to furnish 1 (77 mg, 0.111 mmol, 92%) as a colourless oil. 1 was stored in matrix of
sparged benzene until required.

1H NMR (500 MHz, CDsCN) &: 8.86 (s, 3H, Hs), 8.65 (d, J = 4.6 Hz, 3H, H12), 8.19 (d, J = 7.9 Hz,
3H, He), 8.01 (d, J = 8.2 Hz, 6H, Ha), 7.91 (td, J = 7.8, 1.8 Hz, 3H, H1o), 7.64 (dd, J = 8.3, 7.2 Hz,
6H, Hs), 7.36 (ddd, J = 7.4, 4.8, 1.2 Hz, 3H, H11). 3C NMR (126 MHz, CDsCN) &: 150.9, 150.8,
149.8, 138.7, 138.1 (J = 12.8 Hz), 138.0, 135.9 (J = 20.7 Hz), 124.2, 121.8 (J = 7.0 Hz), 121.6,
120.9. 3'P NMR (162 MHz, CDsCN) &: - 7.6. HRMS (ESI*): m/z = 695.2288 [M+H]*, calculated
for CaoHasN12P = 695.2292.
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Figure $29: *H NMR (CD3CN, 500 MHz, 298 K) spectrum of 1.
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Figure $30: 3C NMR (CDsCN, 126 MHz, 298 K) spectrum of 1.
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Figure S31: 3P NMR (CDs;CN, 162 MHz, 298 K) spectrum of 1.
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Methyltris(4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)phenyl)phosphonium
bis((trifluoromethyl)sulfonyl)amide S4

ol N\
8y—N
; N N 6 =
\ \ \ 4 .
7y 2
@
G)N'I'fg
\N:N
N
N=
\ /

Phosphine ligand 1 (12 mg, 0.0173 mmol) was dissolved in MeCN (3 mL). Methyl iodide (40
pL, 0.643 mmol) was added after being filtered through basic alumina. The reaction was
heated at 70 °C for 1 hour before being cooled to r.t.. Benzene (15 mL) was added and the
precipitate formed collected by centrifugation. The precipitate was washed with benzene
(10 mL) and Et20 (10 mL) before being taken up in MeCN (5 mL). LiNTf, (50 mg, 0.173 mmol)
was added as a solution in MeCN (5 mL). The reaction was stirred for 15 minutes, and
concentrated in vacuo. The residue was taken up in CH,Cl; (3 mL) and centrifuged to remove
insoluble material. The filtrate was azeotroped with toluene (3 x 5 mL) and concentrated in
vacuo to furnish phosphonium salt ligand S4 (14.2 mg, 0.0144 mmol, 83%).

'H NMR (500 MHz, CDsCN) &: 9.02 (s, 3H, Hg), 8.67 (br, 3H, H12), 8.35 (dd, J = 8.6, 2.4 Hz, 6H,
Ha4), 8.21 (d, J = 8.0 Hz, 3H, Hy), 7.96 (dd, J = 13.4, 8.8 Hz, 6H, H3), 7.93 (td, J = 7.4, 1.3 Hz, 3H,
Hio), 7.39 (dd, J= 7.2, 5.1 Hz, 3H, H11), 2.93 (d, J = 14.0 Hz, 3H, H13). 3*C NMR (126 MHz, CDsCN)
8:150.9, 150.3, 142.9, 138.2, 136.5 (d, J = 11.7 Hz), 122.5 (d, J = 13.7 Hz), 122.1, 120.8 (q, J =
320.3 Hz), 120.0, 119.6, 119.3, 9.4*. 3P NMR (162 MHz, CDsCN) &: 22.0. *F NMR
(376 MHz, CD3sCN) &: — 80.2. HRMS (ESI*): m/z = 709.2444 [M+H]*, calculated for CaoH30N12P =
709.2449.

* Denotes signal extracted from HSQC data.
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Figure $32: 'H NMR (CD3CN, 500 MHz, 298 K) spectrum of S4.
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Figure $33: 3C NMR (CDsCN, 126 MHz, 298 K) spectrum of S4.
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Figure S34: °F NMR (CDsCN, 376 MHz, 298 K) spectrum of S4.
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Figure $35: 3P NMR (CDsCN, 162 MHz, 298 K) spectrum of S4.
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Phosphine Paneled Cage 2

R

Phosphine ligand 1 (2.0 mg, 2.88 umol) was dissolved in thoroughly sparged MeCN-ds (0.5
mL). Zn(NTf2)2 (2.16 mg, 3.46 umol) was added and the reaction heated to 70 °C for 1 houir,

under Nz. The formed cage was used as synthesised.

1H NMR (500 MHz, CDsCN) &: 9.24 (s, 3H, He), 8.26 (t, J = 8.0 Hz, 3H, H11), 8.12 (d, J = 8.0 Hz,
3H, Hs), 8.00 (d, J = 5.1 Hz, 3H, H12), 7.85 (d, J = 8.2 Hz, 6H, Ha), 7.58 (t, J = 6.4 Hz, 3H, H1o),
7.53 (d, J = 7.6 Hz, 6H, Hs). 3C NMR (126 MHz, CDsCN) &: 149.2, 145.5, 144.2, 143.0, 139.2 (d,
J=12.8 Hz), 137.6, 136.1 (d, J = 20.7 Hz), 127.6, 123.8, 123.1, 121.2 (d, J = 7.2 Hz), 120.8 (q, J

=320.8 Hz). 3P NMR (162 MHz, CDsCN) &: - 6.0. 19F NMR (376 MHz, CD3CN) &: - 80.2.

S27



1.5e+07
1.2e+07 —
9.0e+06
6.0e+06- @

3.06+06 - o

T T
600 900 1200
m/z

b.

a.i.

1.5e+07

1.2e+07

9.0e+06 |

6.0e+06 |

3.0e+06

T T T T T T T T T
590 595 600 605 610 615 620 625 630 635
m/z

Figure S36: a. LRMS spectrum of 2, showing partial oxidation during ionisation (peaks
observed for 0-4 additional oxygen atoms per cage). b. Single cage charge species showing 0-
4 additional oxygen atoms per cage.
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Figure S37: HRMS spectrum of 2, 7+ cation.
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Figure S38: HRMS spectrum of 2, 3+ cation.
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Figure $39: 'H NMR (CD3CN, 500 MHz, 298 K) spectrum of 2.
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Figure S40: 3C NMR (CDsCN, 126 MHz, 298 K) spectrum of 2.
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Figure S41: Partial COSY spectrum of 2.
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Figure S43: °F NMR (CDsCN, 376 MHz, 298 K) spectrum of 2.

230 250  -270

S31



—-6.01

m

280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180
ppm
Figure S44: 3P NMR (CDsCN, 162 MHz, 298 K) spectrum of 2.
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Figure S45: DOSY NMR spectrum of 2. Diffusion coefficient: 4.62 x 1071 m?s~%. Ry from DOSY:

13.8 A. Calculated Ry: 12.1 A.
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Phosphine Oxide Paneled Cage 3

Phosphine oxide ligand S1 (2.0 mg, 2.82 mmol) was dissolved in MeCN-ds (0.5 mL). Zn(NTf,),
(2.16 mg, 3.46 mmol) was added and the reaction heated to 70 °C for 1 hour. The formed

cage was used as synthesised.

1H NMR (500 MHz, CDsCN) &: 9.25 (s, 3H, He), 8.27 (td, J = 7.8, 1.4 Hz, 3H, H11), 8.13 (d, /= 7.9
Hz, 3H, Hs), 8.02 (d, J = 5.2 Hz, 3H, H12), 7.95 (dd, J = 8.5, 1.6 Hz, 6H, Ha), 7.86 (d, J = 11.5, 8.7
Hz, 6H, Hs), 7.61 (dd, J = 8.1, 5.0 Hz, 3H, Hio). 3C NMR (126 MHz, CDsCN) &: 149.3, 145.5,
144.3,143.1,139.8 (d, J = 2.5 Hz), 134.8 (d, J = 11.1 Hz), 134.6 (d, J = 104.7 Hz), 127.7, 123.9,
123.8, 121.8 (d, J = 12.5 Hz), 120.8 (q, J = 319.8 Hz). 3!P NMR (162 MHz, CDsCN) &: 24.2.

19F NMR (376 MHz, CDsCN) 6: - 81.0.
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Figure S46: LRMS spectrum of 3.
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Figure S47: HRMS spectrum of 3, 5+ cation.
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Figure S48: HRMS spectrum of 3, 4+ cation.
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Figure $53: °F NMR (CD3CN, 376 MHz, 298 K) spectrum of 3.
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Figure S54: 3P NMR (CDsCN, 162 MHz, 298 K) spectrum of 3.
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Figure S55: DOSY NMR spectrum of 2. Diffusion coefficient: 6.34 x 1071° m?s~%. Ry from DOSY:
10.0 A. Calculated Ru: 12.1 A,

Phosphonium Paneled Cage 4

Phosphonium salt ligand S4 (2 mg, 2.02 umol) was dissolved in MeCN-d3 (0.5 mL). Zn(NTf,)2
(1.52 mg, 2.42 umol) was added and the reaction heated to 70 °C for 1 hour. The formed
cage was used as synthesised.
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1H NMR (500 MHz, CDsCN) 8: 9.37 (s, 3H, He), 8.28 (td, J = 7.9, 1.5 Hz, 3H, H11), 8.15 (d, J = 8.1
Hz, 3H, Hs), 8.13 (dd, J = 9.0, 2.5 Hz, 6H, Ha), 8.07 (d, J = 8.1 Hz, 3H, H12), 7.83 (d, J = 13.3, 8.9
Hz, 6H, Hs), 7.62 (dd, J = 7.9, 0.8 Hz, 3H, H1o), 2.89 (d, J = 14.2 Hz, 3H, H13). 3C NMR (126 MHz,
CDsCN) 6: 149.4,145.3, 144.4, 143.2, 141.7 (d, J = 3.5 Hz), 136.7 (d, J = 11.9 Hz), 127.8, 123.9,
123.5, 122.2 (d, J = 14.5 Hz), 120.8 (q, J = 320.9 Hz), 120.5 (d, J = 91.7 Hz), 8.19*. 3P NMR
(162 MHz, CDsCN) &: 23.2. °F NMR (376 MHz, CDsCN) &: - 80.1.

* Denotes signal extracted from HSQC data.
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Figure S56: LRMS spectrum of 4. Phosphonium derived cages required gentle ionisation
conditions, and extensive fragmentation was still observed under the best conditions.
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Figure S58: HRMS spectrum of 4, 5+ cation.
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Figure S59: HRMS spectrum of 4, 4+ cation.
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Figure $62: °F NMR (CD3CN, 376 MHz, 298 K) spectrum of 4.
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Figure $63: 3P NMR (CDsCN, 162 MHz, 298 K) spectrum of 4.
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Figure $65: DOSY NMR spectrum of 4. Diffusion coefficient: 4.42 x 1071° m2s7%, Ry from
DOSY: 14.4 A. Calculated Ry: 12.3 A.
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Aurated Phosphine Paneled Cage 5

12
S 1"

N
Zn V' o

N~ 8NTf,

CIAU 2 3 7n

(DMS)AUCI (6.8 mg, 23.0 umol) was added to phosphine cage 2 (3.80 mg, 2.88 umol) in MeCN-
ds (0.5 mL). The reaction was heated to 70 °C for 16 hours, and the precipitate formed
removed by centrifugation. The filtrate was washed with benzene (5 mL) then dried under a
flow of N,. Aurated cage 5 was then used directly from the filtrate.

'H NMR (500 MHz, CDsCN) 6:9.30 (s, 3H, He), 8.26 (td, J= 7.8, 1.3 Hz, 3H, H11), 8.13 (d, /= 7.9
Hz, 3H, Hq), 8.02 (d, J = 5.2 Hz, 3H, H12), 7.99 (dd, J = 8.9, 1.7 Hz, 6H, H4), 7.78 (d, J = 13.1, 8.7
Hz, 6H, Hs), 7.59 (dd, J = 7.5, 5.6 Hz, 3H, Hio). 3C NMR (126 MHz, CDsCN) &: 149.3, 145.3,
144.3,143.1, 139.7 (d, J = 2.4 Hz), 136.9 (d, J = 15.0 Hz), 130.3 (d, J = 62.8 Hz), 127.7, 123.8,
123.4, 121.8 (d, J = 12.5 Hz), 120.8 (d, J = 320.1 Hz). 3P NMR (162 MHz, CDsCN) 6: 32.0.
15 NMR (376 MHz, CDsCN) &: - 81.1.
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Figure S66: LRMS spectrum of 5. Light grey represents Cages having lost a single AuCl unit.
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Figure S67: HRMS spectrum of 5, 5+ cation.
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Figure S68: HRMS spectrum of 5, 6+ cation.
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'H NMR (CD3CN, 500 MHz, 298 K) spectrum of 5.
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Figure S71: °F NMR (CDsCN, 376 MHz, 298 K) spectrum of 5.
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Figure S72: 3P NMR (CDsCN, 162 MHz, 298 K) spectrum of 5.
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Figure S73: Partial COSY NMR spectrum of 5.
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Figure S74: Partial HSQC NMR spectrum of 5.
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Figure S75: DOSY NMR spectrum of 5. Diffusion coefficient: 4.58 x 1071° m?s~%. Ry from DOSY:

13.9 A. Calculated Ry: 13.6 A.
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Sandwich Complex 8 and Phosphine Cage 9 formed from Ni(NTf;), with 1

\ .

Phosphine ligand 1 (2.0 mg, 2.88 umol) was dissolved in MeCN-d3 (0.5 mL). Ni(NTf,)2 (1.78
mg, 2.88 umol) was added and the reaction heated to 70 °C for 1 hour. The formed cage
system was used as synthesised. Sandwich complex shown above is a MM3 optimised
molecular model, please see the main text for a discussion the proposed tetrahedral
geometry of the nickel centre.
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Figure S76: LRMS of complexes formed from Ni(NTf;). and phosphine ligand 1. Peaks
correlating with sandwich complex 8 marked in black, trace peaks for cage 9 marked in grey.
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Figure S79: HRMS of cage 9.
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Figure $80: *H NMR (CD3CN, 500 MHz, 298 K) of sandwich complex 8 and cage 9.
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Figure S81: 'H NMR (CDsCN, 500 MHz, 298 K) stack of sandwich complex 8 and cage 9

(bottom) and phosphine oxide cage 10. Note the splitting of peaks around 16 ppm and 48

ppm, lending support the MS evidence for two architectures being present.
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Figure $82: °F NMR (CDsCN, 376 MHz, 298 K) of sandwich complex 8 and cage 9.
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Phosphine Oxide Cage formed from Ni(NTf,); 10
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Phosphine oxide ligand S1 (2.0 mg, 2.82 umol) was dissolved in MeCN-d3 (0.5 mL). Ni(NTf);
(1.75 mg, 2.82 umol) was added and the reaction heated to 70 °C for 1 hour. The formed cage

was used as synthesised.
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Figure S83: LRMS spectrum of 10.

I
1500
m/z

S54



1492.3974 NL:
100 z=3 6.32E5
] CAMNIT_97MRL_50774#37-53 RT:
1 0.66-1.05 AV: 16 T: FTMS + p NSI Full ms
1493.0632
o 80— 1491.7314 \ 7-3 [120.00-1935.00]
e z=3 Observed Data
s - | 1493.3955
= 60i z=3
< o Tee1%9m ‘ ‘ 1493.7288
2 40+ ] 2=3
 SERER A
e - | ‘ H | 1494.3952
= ]
| I
1 ) \ ';
0 _J‘_J‘L_JLJL‘)LJ;JWWLJ@LJLJ‘L’L_J NL
100-. 1492.3974 2.95E3
: C156H10304N48Ni4 P4(Cg Fe NO4Sg)5Z
1493.0635 Theoretical Isotope Profile: C166 H108 O24 N5z Nia P4 S10Fao
80— 14917316 | | [C156H10804N48Ni4P4(C2F6NO4S2)5]3+ p (gss, s /p:40) Chrg 3
| 1493.3964 R: 60000 Res .Pwr . @ FWHM
60~ 1491.3978 h ‘ 1493.7203
40 ‘ ‘ | 14‘94.0623
1 - ‘ H | 1494.3054
20 \‘ \ ‘ ‘ ‘ H ‘\ " 1494.7286
- |
‘\‘ “‘ h ‘\ “‘ . \ I || 1495.3945
SN I
1492 1494 1496 1498
m/z
Figure S84: HRMS spectrum of 10.
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Figure $85: HRMS spectrum of 10.
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Figure $86: *H NMR (CD3CN, 500 MHz, 298 K) of Cage 10.
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Figure $87: °F NMR (CD3CN, 376 MHz, 298 K) of Cage 10.
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Phosphonium Salt Cage formed from Ni(NTf;), 12
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Phosphonium salt ligand S4 (2.0 mg, 2.02 umol) was dissolved in MeCN-d3 (0.5 mL). Ni(NTf,);

(1.25 mg, 2.02 umol) was added and the reaction heated to 70 °C for 1 hour. The formed cage
was used as synthesised.
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Figure $88: 'H (CD3CN, 500 MHz, 298 K) spectrum of 12.
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Figure $89: °F NMR (CDsCN, 376 MHz, 298 K) spectrum of 12.

'S 1.5+06 -
1.2¢+06
9.0e+05 -
6.06+05 -
o
3.0e+05 - °
L ¢
o TR § "
L T T T T
300 600 900 1200 1500

m/z
Figure $90: LRMS spectrum of 12. Black dots denote relevant peaks. Soft ionisation conditions
were required with all phosphonium salt cages, and extensive decomposition was still
observed under the best conditions found. Presumably this is due to increased repulsion
between phosphonium salts decreasing stability.
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Figure S91: HRMS spectrum of 12.

Further evidence for this structure was provided by the crystal structure obtained (vide infra).
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Phosphine Cage formed from Fe(NTf;), 6

12
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Phosphine ligand 2 (2.0 mg, 2.88 umol) was dissolved in thoroughly sparged MeCN-ds (0.5
mL). Fe(NTf,)2 (1.78 mg, 2.88 umol) was added and the reaction heated to 70 °C for 1 hour,
under Nz. The formed cage was used as synthesised.

1H NMR (500 MHz, CDsCN) 8: 9.23 (s, 3H, He), 8.16 (t, J = 7.4 Hz, 3H, H11), 8.10 (d, J = 7.3 Hz,
3H, Ho), 7.73-7.67 (9H, m, Hi> + Ha), 7.43-7.38 (9H, m, Hio + H3). 3C NMR: Line broadening
prevented acquisition of a 13C NMR spectrum for this compound. 3P NMR (162 MHz, CDsCN)
6: - 5.65. %F NMR (376 MHz, CD3CN) 6: - 81.2.
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Figure S92: LRMS spectrum of 6 (showing in situ oxidation within the MS - cage with 0-4
oxygen atoms).
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Figure S93: Expansion of LRMS spectrum of 6 showing in situ oxidation within the MS (cage +

0-4 oxygen atoms).
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Figure S94: HRMS spectrum of 6.
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Figure S95: HRMS spectrum of 6.
[s2] MNONOXXT—DNDOM— OO 9
N TTLTONQOSE YT OM P
» OWOWWOMNNMNMNMNMNMNNMNN .
l e N e
1
T s
o ~ < N o
< - o
T — T T — ‘_\ m I<v> T T T T T T T T T T T T
9.5 9.0 8.5 8.0 75 7.0 6.5 6.0 55 5.0 4.5 4.0 3.5 3.0 25 2.0 1.8
ppm

Figure $96: *H NMR (CD3CN, 500 MHz, 298 K) spectrum of 6.
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Figure S97: °F NMR (CDsCN, 376 MHz, 298 K) spectrum of 6.
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Figure $98: 3P NMR (CDsCN, 162 MHz, 298 K) spectrum of 6.
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Figure S99: Partial COSY spectrum of 6.
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Figure $100: Partial HSQC spectrum of 6.
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Figure $101: DOSY spectrum of 6. Diffusion coefficient: 4.61 x 1071° m?s™1. Ry from DOSY: 13.8
A. Calculated Ry: 12.1 A.
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Phosphine Oxide Paneled Cage formed from FeSO, 11

Phosphine oxide ligand $1 (2.0 mg, 2.82 umol) was added to MeCN-d3 (0.25 mL) and DO (0.25
mL). FeS04.7H,0 (0.78 mg, 2.82 umol) was added and the reaction heated to 70 °C for 1 hour.
The formed cage was used as synthesised.

1H NMR (500 MHz, CDsCN) &: 9.58 (s, 3H, He), 8.26 (d, J = 7.4 Hz, 3H, H11), 8.12 (d, J = 7.3 Hz,
3H, Ho), 7.89 (t, J = 7.4 Hz, 6H, Ha), 7.71-7.62 (m, 12H, Hs + H12), 7.43 (t, J = 6.6 Hz, 3H, H11).
13C NMR (126 MHz, CDsCN) 6: 155.5, 152.8, 151.9, 140.7, 139.9, 134.8 (d, J = 10.5 Hz), 131.0
(d, J = 106.1 Hz), 127.5, 123.7, 121.3 (d, J = 12.0 Hz), 121.2. 3P NMR (162 MHz, CDsCN) &:
28.1.
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Figure $102: 'H NMR (CD3sCN, 500 MHz, 298 K) spectrum of 11.
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Figure $103: 3C NMR (CD3CN, 126 MHz, 298 K) spectrum of 11.
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Figure S104: Partial COSY NMR spectrum of 11.
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Figure S105: Partial HSQC NMR spectrum of 11.
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Figure $106: 3P NMR (CD3CN, 162 MHz, 298 K) spectrum of 11.
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Figure $107: DOSY NMR spectrum of 11. Diffusion coefficient: 1.61 x 107® m2s7%, Ry from
DOSY: 15.2 A. Calculated Ru: 12.1 A.
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No mass spectrometry data could be recorded for cage 11. To confirm the identity of the cage
anion exchange was performed.

Anion exchange to form Iron Phosphine Oxide Cage 7 as Triflimide salt

12
N 1
Fe'y /710
NN ) 4 = 9
N~
5
4
~ O.'PZ ’ Fe
Fe NN N_N
< N
Fe
<N
\ 7

To Cage 11 in H,0:MeCN (0.5 mL, as synthesised, assumed 2.82 umol) was added LiNTf; (13.1
mg, 45.1 umol). A precipitate was formed and collected by centrifugation. The precipitate was
washed three times with H,0 (1 mL) and dried under a flow of nitrogen. The precipitate was
dissolved in MeCN-d3 (0.5 mL) and characterised without further purification (assumed
guantitative). This compound could also be formed from direct assembly with Fe(NTf,),.

1H NMR (500 MHz, CDsCN) &: 9.28 (s, 3H, He), 8.21 (d, J = 7.7 Hz, 3H, H11), 8.15 (5, J = 7.7 Hz,
3H, Hio), 7.84 (d, J = 7.7 Hz, 6H, Ha), 7.76 (dd, J = 11.6, 9.0 Hz, 6H, Hs), 7.72 (d, J = 5.5 Hz, 6H,
Hi2), 7.46 (t, J = 6.5 Hz, 3H, H11). 3C NMR (126 MHz, CDsCN) &: 155.9, 153.3, 151.6, 140.6,
139.8,134.7 (d, J = 11.7 Hz), 143.2 (d, J = 106.1 Hz), 127.4, 123.7, 123.5, 121.4 (d, J = 12.7 Hz),
120.8 (g, J = 320.7 Hz). 3P NMR (162 MHz, CDsCN) &: 25.2. 1°F NMR (376 MHz, CDsCN) &: —
80.2.
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Figure $S108: LRMS spectrum of 7.
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Figure $109: HRMS spectrum of 7.
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Figure $110: HRMS spectrum of 7.
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Figure $113: °F NMR (CDsCN, 376 MHz, 298 K) spectrum of 7.
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Figure S114: 3P NMR (CD3CN, 162 MHz, 298 K) spectrum of 7.
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Figure S115: Partial COSY NMR spectrum of 7.
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Figure S116: Partial HSQC NMR spectrum of 7.
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7. X-Ray Crystallography

Data were collected at Beamline 119 of Diamond Light Source employing silicon double crystal
monochromated synchrotron radiation (0.6889 A) with w and ¢ scans at 100(2) K.* Data
integration and reduction were undertaken with Xia2.>”’ Subsequent computations were
carried out using the WinGX-32 graphical user interface.® Multi-scan empirical absorption
corrections were applied to the data using the AIMLESS® tool in the CCP4 suite.l® The
structures were solved by direct methods using SHELXT!! then refined and extended with
SHELXL.*? In general, non-hydrogen atoms with occupancies greater than 0.5 were refined
anisotropically. Carbon-bound hydrogen atoms were included in idealized positions and
refined using a riding model. Disorder was modelled using standard crystallographic methods
including constraints, restraints and rigid bodies where necessary. Crystallographic data along
with specific details pertaining to the refinement follow. Crystallographic data have been
deposited with the CCDC (1900370-1900372).

11 - [Fesle]-0.667(L)-4S04:7MeCN-16.5H,0 [+ solvent]
Formula C1ggH180Fe4Ng3037.17P4 6754, M 4508.85, Trigonal, space group R -3 ¢ (#167), a

o o 3
42.04600(10), b 42.04600(10), c 107.4786(4) A, y120°, V 164551.5(10) A3, D.0.819gcm™,Z
18, crystal size 0.020 by 0.020 by 0.015 mm, colour orange, habit block, temperature 100(2)
Kelvin, A(Synchrotron) 0.6889 A, u(Synchrotron) 0.228 mm'l, T(Analytical) in max

0.965032575515, 1.0, 26,5 42.52, hkl range -44 44, -44 44, -113 113, N 201649, N;q

22355(R 0.0377), Np« 15823(1 > 20(1)), Ny, 1422, residuals R1(F) 0.1045, wR2(F)

merge obs

0.3396, GoF(all) 1.306, Ap1in max -0-539, 0.830 e” A3,

var

*
R1=3||Fo| - |Fc| I/51Fo | for Fy>20(F); wR2 = (sw(F 42 - F.2)2/5(wF 2)2)Y/2 all reflections

w=1/[0%(F,2)+(0.2000P)?+100.0000P] where P=(F 2+2F.2)/3

Specific refinement details:

The crystals of [Fesls]-0.667(L)-4504:7MeCN-16.5H,0 were grown by diffusion of acetonitrile
into an aqueous solution of [Fesls]-4S04. The observation of additional free ligand in the
sample was an artefact of crystallisation and was not observed in the bulk sample. The crystals
employed immediately lost solvent after removal from the mother liquor and rapid handling
prior to flash cooling in the cryostream was required to collect data. Despite these measures
and the use of synchrotron radiation few reflections at greater than 0.95 A resolution were
observed. Nevertheless, the quality of the data is far more than sufficient to establish the
connectivity of the structure. The asymmetric unit was found to contain one half of a Fesls
assembly, one third of an uncoordinated ligand molecule and associated counterions and
solvent molecules.

Due to the less than ideal resolution, bond lengths and angles within the two chemically
identical organic ligands were restrained to be similar to each other. One phenyl ring was
modelled as disordered over two locations; the disordered atoms were modelled with
isotropic thermal parameters and bond length and angle restraints were employed to ensure
a reasonable refinement. Several solvent molecules were also modelled as disordered over
two locations. The hydrogen atoms of the water molecules and some disordered acetonitrile
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solvent molecules could not be located in the electron density map and were not included in
the model.

Only one sulfate anion (per asymmetric unit) could be located in the electron density map.
The remaining anion (included as sulfate in the formula) was highly disordered and no
satisfactory model for it could be obtained despite numerous attempts at modelling, including
with rigid bodies. Therefore the SQUEEZE®3 function of PLATON'* was employed to account
for this highly disordered anion and further disordered solvent molecules, which gave a
potential solvent accessible void of 74186 A3 per unit cell (a total of approximately 13720
electrons). Since the diffuse solvent molecules could not be assigned conclusively to
acetonitrile or water they were not included in the formula. Consequently, the molecular
weight and density given above are likely to be underestimated.

CheckCIF gives two A and twenty three B level alerts. These alerts (both A and B level) result
from the limited data resolution, water molecules for which hydrogens were not modelled
and thermal motion and/or unresolved disorder of some anions and solvent molecules as
described above.

12 - [NisLa]-2.25(NT2)-1.1(Nils)-4.1(1)-2.75MeCN-9.75C¢Hg [+ 3.45 anions + solvent]
P-1 (#2), a 21.1855(2), b 24.1723(2), ¢ 33.8253(3) A, a 89.9610(10), B 84.2150(10), y

65.8950(10)°, V 15715.3(3) A?’, D.1.209 g cm'3, Z 2, crystal size 0.02 by 0.02 by 0.01 mm,
colour green brown, habit block, temperature 100(2) Kelvin, A(Synchrotron) 0.6889 A,
u(Synchrotron) 1.133 mm'l, T(Analytical) in max 0-97710440761, 1.0, 26,5, 48.42, hkl

range -25 25, -28 28, -40 40, N 148944, N;_ | 53682(R 0.0479), N 35894(1 > 20(1)),
ind

merge obs

. * 2
Ny or 3084, residuals  R1(F) 0.0901, wR2(F“) 0.3003, GoF(all) 1.004, Apmin,max -1.032, 1.573

e A3,
"RL=3|1F, | - [Fel /5] Fy | for Fo>20(F); wR2 = (sw(Fo 2 - F 2)2/3(wF 2)2) Y2 all reflections

w=1/[0%(F,2)+(0.2000P)?+10.0000P] where P=(F 2+2F 2)/3

Specific refinement details:

The crystals of [NisLa]-2.25(NTf;)-1.1(Nils)-4.1(1)-2.75MeCN-9.75CsHs were grown by diffusion
of benzene into an acetonitrile solution of [NisLs]-8NTf,. The observation of Nils>~ and iodide
and was not observed in the bulk sample and is assumed to be an artefact of crystallisation,
caused by the used of crude reaction material in the crystallisation. The crystals employed
immediately lost solvent after removal from the mother liquor and rapid handling prior to
flash cooling in the cryostream was required to collect data. Data were obtained to 0.84 A
resolution. The asymmetric unit was found to contain one complete NisLs assembly and
associated counterions and solvent molecules. Bond lengths and angles within pairs of
chemically identical organic ligands were restrained to be similar to each other and thermal
parameter restraints (SIMU, RIGU) were applied to all atoms except for nickel and iodine.
The anions and solvent molecules within the structure show evidence of substantial disorder.
Two of the triflimide anions were modelled as disordered over two locations with bond length
and thermal parameter restraints applied to facilitate a reasonable refinement. The
disordered atoms were modelled with isotropic thermal parameters with the exception of
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the sulfur atoms. Bond length restraints were also applied to some solvent molecules and the
benzene solvent molecules were modelled as rigid groups (AFIX 66).

The occupancies of all anions were freely refined and then fixed at the obtained values. A
further 3.45 anions per NisLs assembly remain unaccounted for and no satisfactory model for
these anions could be obtained despite numerous attempts at modelling, including with rigid
bodies. Therefore the SQUEEZE!® function of PLATON!* was employed to account for the
highly disordered anions and further disordered solvent molecules, which gave a potential
solvent accessible void of 2711 A3 per unit cell (a total of approximately 864 electrons). Since
the identity of the diffuse anions and solvent molecules could not be assigned conclusively
they were not included in the formula. Consequently, the molecular weight and density given
above are underestimated.

CheckCIF gives three A and ten B level alerts. These alerts (both A and B level) all result from
thermal motion and/or unresolved disorder of some anions and solvent molecules as
described above.

4 - [Zn4l4]-0.75(NTf2)-1.25(Znls)-0.75(ZnlI3H20)-1.75(1):0.5MeCN-2.5CsH6-0.5H.0 [+ 6.25
anions + solvent]
Formula C177.50H139.50F4.50'9N49 2504 50P451 50Zng M 4826.17, Triclinic, space group

P-1(#2),a21.1660(4), b 21.8072(4), ¢ 35.8636(7) A, 0 90.804(2), B 102.438(2), y 104.311(2)°,
V15623.8(5) /33, D.1.026g cm'3, Z 2, crystal size 0.05 by 0.04 by 0.03 mm, colour pale yellow,

habit block, temperature 100(2) Kelvin, A(Synchrotron) 0.6889 A, pu(Synchrotron) 1.291 mm”

L, T(Analytical) i, max 0-97067650853, 1.0, 26, 36.50, hk/ range -19 19, -19 19, -32 32,

N 40437, Ninq 23203(R 0.0511), Ny 14475(1 > 20(1)), Nyg, 2523, residuals R1(F)

merge obs

0.1265, wR2(F?) 0.3638, GoF(all) 1.031, Ap i, ay -0-665, 0.881 e A3,
"RL=3|1F, | - [Fcl /5] Fy | for Fo>20(F); wR2 = (sw(Fo 2 - F 2)2/3(wF 2)2) Y2 all reflections

w=1/[0%(F,2)+(0.2000P)?+75.0000P] where P=(F 2+2F 2)/3

Specific refinement details:

The crystals of [Znala]-0.75(NTf;)-1.25(Znl4)-0.75(Znl3H20)-1.75(1)-0.5MeCN-2.5CsHs:0.5H,0
were grown by diffusion of benzene into an acetonitrile solution of [Zn4lL4]-8NTf,. The
observation of zinc iodides and iodide was not consistent with the bulk sample and is assumed
to be an artefact of crystallisation, caused by the used of crude reaction material in the
crystallisation. The crystals employed immediately lost solvent after removal from the mother
liguor and rapid handling prior to flash cooling in the cryostream was required to collect data.
Despite these measures and the use of synchrotron radiation few reflections at greater than
1.1 A resolution were observed. The crystals were subject to rapid beam damage during data
collection using synchrotron radiation; consequently only 94 % data completeness could be
achieved and the quality of the integration was lower than ideal. Nevertheless, the quality of
the data is far more than sufficient to establish the connectivity of the structure. The
asymmetric unit was found to contain one complete ZnslLs assembly and associated
counterions and solvent molecules.

Due to the limited resolution, bond lengths and angles within pairs of chemically identical
organic ligands were restrained to be similar to each other and thermal parameter restraints
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(SIMU, RIGU) were applied to all atoms except for zinc and iodine. The occupancies of all
anions and solvent molecules were freely refined and then fixed at the obtained values. A
further 6.25 anions per ZnsLs assembly remain unaccounted for and no satisfactory model for
them could be obtained despite numerous attempts at modelling, including with rigid bodies.
Therefore the SQUEEZE'? function of PLATON* was employed to account for the highly
disordered anions and further disordered solvent molecules, which gave a potential solvent
accessible void of 5725 A3 per unit cell (a total of approximately 1368 electrons). Since the
identity of the diffuse anions and solvent molecules could not be assigned conclusively they
were not included in the formula. Consequently, the molecular weight and density given
above are underestimated. The hydrogen atoms of the water molecules could not be located
in the electron density map and were not included in the model.

CheckCIF gives eight A and thirteen B level alerts. These alerts (both A and B level) all result
from the limited data resolution, beam damage and thermal motion and/or unresolved
disorder of some anions and solvent molecules as described above.
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$8. Organic Guests Screened for Host Guest Binding
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An excess of organic guest was added to each cages 3, 4, and 5, and the solution heated at
70 °C overnight prior to NMR. No evidence of guest binding was observed for any of the
above molecules.
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$9. Metal Salts Screened for Binding to Cage 2

Metal Salt

Binding Observed?

Chloro(dimethylsulfide) gold Yes
Triruthenium dodecacarbonyl No
Tris(dibenzylideneacetone)dipalladium No
Bis(dibenzylideneacetone)palladium No
Bis(acetonitrile)dichloropalladium No

Tetrakis(acetonitrile) palladium
No

terafluoroborate

Tetrakis(acetonitrile) copper triflate No

Table S2: Metal salts screened for binding to cage 2.

S81



$10. Effect of EtsNHCI on Assembly of Cage 2
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Figure $118: 'H NMR (CDsCN, 500 MHz, 298 K) spectrum of 7. Top: Assembly (4 equiv
Zn(NTf2)2, 70 °C, 1 hour) after removal of EtsNHCI from phosphine 1. Bottom: Assembly (4
equiv Zn(NTf,)2, 70 °C, 1 hour) in the presence of EtsNHCI. Note the assembly in the presence

of EtsNHCl is significantly cleaner.
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Figure $119: Investigation into the effect of EtsNHCl on cage assembly. Top: Cage 2 assembled

from phosphine 1 containing EtsNHCI from the reduction of phosphine oxide S1. Middle: Cage

2 assembled from phosphine 1 with the addition of 4 equiv. TBACI. Bottom: Cage 2 assembled

from phosphine 1 with post-assembly addition of EtsNHCI. Cleanest assembly was found

when EtsNHCI was present during cage synthesis.
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