Supporting Information

Nanocomposites of Ag₃PO₄ and Phosphorous-Doped Graphitic Carbon Nitride for Ketamine Removal

Changsheng Guo, [†], ^{*} Miao Chen, [†], [‡], ^{*} Linlin Wu, [†] Yingying Pei, [†] Chunhua Hu, [‡] Yuan Zhang, [†] and Jian Xu [†], ^{*}

[†] State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China

[‡] Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China

* Corresponding author, Email: <u>xujian@craes.org.cn</u> (J. Xu)

* The first two authors contributed equally to this work.

(Text S1 ~ Text S3) (Figure S1 ~ Figure S10)

(Table S1 \sim Table S4)

Additional Details on Analytical Methods

Text S1. Measurement of KET concentration

The concentration of KET was quantified by UPLC-MS/MS, which was consisted of a Xevo TQ-S triple quadrupole mass spectrometer (Waters, MA, USA) and a Waters ACQUITY liquid chromatography. The MS was in a multiple-reaction monitoring (MRM) mode with an electrospray ionization (ESI) in the positive mode. A Waters C 18 column (50 mm×2.1 mm, 1.7 μ m) maintained at 40°C was used to guarantee the separation of target compounds. Milli Q water containing 0.1% formic acid (v/v) (phase A) and acetonitrile (phase B) were used as the mobile phase. The gradient elution condition was as follows: 0 ~ 0.5 min, 10% B; 0.5 ~ 3 min, 10% ~ 40% B; 3.0 ~ 3.2 min, 40% ~ 95% B; 3.2 ~ 4.0 min, 95% B; 4.0 ~ 4.2 min, 95% ~ 10% B, 4.2 ~ 5.7 min, 10%B. The retention time of KET was 1.52 min. The sample injection volume was set at 5 μ L and the flow rate of mobile phase was 0.45 mL·min⁻¹. The mass spectrometer conditions were as follows: Capillary voltage was 670 V, desolvation temperature was 450°C, and source gas flow was 1000 (L/Hr).

Text S2. Identification of KET intermediates

KET intermediates were identified by a Thermo Scientific Q Exactive LC-MS system (Thermo fisher, USA), which was equipped with a C18 column (100×2.1 mm, 5μ m, Hypersil GOLD, USA). An ESI source in positive mode was used and a full mass scan mode was carried out to detect the intermediates, with the scanning range of m/z 50 ~ 500. Acetonitrile and Milli Q water with 0.1% formic acid (v/v) were used as the mobile phase

A and B, respectively, and the mobile phase flow rate was 0.2 mL·min⁻¹. The gradient elution program was as follows: $0 \sim 2 \text{ min}$, 10% A; $2 \sim 30 \text{ min}$, $10\% \sim 95\% \text{ A}$; $30 \sim 35 \text{ min}$, 95% A; $35 \sim 40 \text{ min}$, $95\% \sim 10\% \text{ A}$; $40 \sim 45 \text{ min}$, 10% A. The column temperature was 35° C and the injection volume was 20μ L. The capillary voltage was 3 kV, and the drying gas temperature was 320° C.

Text S3. Detection of \cdot OH and \cdot O₂⁻ by Electron spin resonance (ESR) technique

The reactive species of \cdot OH and \cdot O₂⁻ were investigated by a Magnet Tech MS400 spectrometer with that 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was used as the spin trap. A 300 W Xenon lamp (Institute of Electric Light Source, Beijing) was used as the simulated visible light. ESR spectra of P-g-C₃N₄ and Ag₃PO₄/P-g-C₃N₄ (1:1) were investigated in darkness and under visible light irradiation. The generation of \cdot OH and \cdot O₂⁻ were detected in deionized water and methanol, respectively.

Figure S1. SEM images of the synthesized samples. (a) P-g-C₃N₄; (b) A/CN (1:2); (c) A/CN (1:1); (d) A/CN (2:1); (e) A/CN (10:1); (f) Ag₃PO₄.

Figure S2. SEM image of A/CN (1:1) (a), and corresponding energy-dispersive X-ray spectroscopy (EDX) elemental analysis spectrum for C (b), N (c), O (d), P (e), Ag (f).

Figure S3. HRTEM images of A/CN (1:1) composite.

Figure S4. N_2 adsorption-desorption isotherms and the corresponding pore size distribution curve (inside).

Figure S5. PL spectra (a) and transient photocurrent responses (b) of the synthesized samples.

Figure S6. The pseudo-first-order plots of $-\ln (C_t/C_0)$ vs. time of KET degradation at different pH value (a) and in the presence of HOC₃⁻ (b); DOM (c) and NO₃⁻ (d).

Figure S7. PL spectra observed during irradiation of A/CN (1:1) in TA solution (a) and absorbance spectra observed during irradiation of A/CN (1:1) in NBT solution (b).

Figure S8. ESR signals of DMPO adduct with \cdot OH (a-b) and \cdot O₂⁻ (c-d) in the suspension of P-g-C₃N₄ (a, c) and A/CN (1:1) (b, d) with or without visible light irradiation.

Figure S9. LC-MS/MS total ion chromatograms of KET at different time. (a) 2 min; (b) 10 min; (c) 15 min; (d) 30 min; (e) 45 min. (Conditions: $[KET]_0=10 \text{ mg/L};$ $[catalyst]_0=1g/L$).

Figure S10. Mass spectra detected during the photodegradation of KET by Ag_3PO_4/P -g- C_3N_4 composite under visible light irradiation.

Table S1. The dosage of reagents used for the preparation of Ag_3PO_4 and Ag_3PO_4/P -g- C_3N_4 .

Table S2. Electrical energy per order of the synthesized samples.

Table S3. Water quality parameters of different water matrices.

Table S4. The possible degradation intermediates of KET over Ag_3PO_4/P -g- C_3N_4 composite under visible light irradiation.

Figure S1. SEM images of the synthesized samples. (a) P-g-C₃N₄; (b) A/CN (1:2); (c) A/CN (1:1); (d) A/CN (2:1); (e) A/CN (10:1); (f) Ag₃PO₄.

Figure S2. SEM image of A/CN (1:1) (a), and corresponding energy-dispersive X-ray spectroscopy (EDX) elemental analysis spectrum for C (b), N (c), O (d), P (e), Ag (f).

Figure S3. HRTEM images of A/CN (1:1) composite.

Figure S4. N_2 adsorption-desorption isotherms and the corresponding pore size distribution curve (inside).

Figure S5. PL spectra (a) and transient photocurrent responses (b) of the synthesized samples.

Figure S6. The pseudo-first-order plots of $-\ln (C_t/C_0)$ vs. time of KET degradation at different pH value (a) and in the presence of HCO₃⁻ (b); DOM (c) and NO₃⁻ (d).

Figure S7. PL spectrum observed during irradiation of A/CN (1:1) in TA solution (a) and absorbance spectrum observed during irradiation of A/CN (1:1) in NBT solution (b).

Figure S8. ESR signals of DMPO adduct with \cdot OH (a-b) and \cdot O₂⁻ (c-d) in the suspension

of P-g-C₃N₄ (a, c) and A/CN (1:1) (b, d) with or without visible light irradiation.

Figure S9. LC-MS/MS total ion chromatograms of KET at different time. (a) 2 min; (b) 10 min; (c) 15 min; (d) 30 min; (e) 45 min. (Conditions: $[KET]_0=10 \text{ mg} \cdot \text{L}^{-1}$; $[\text{catalyst}]_0=1\text{g} \cdot \text{L}^{-1}$.

P1 m/z 224; P2 m/z 222

10 #2337-2354 RT: 22.35-22.50 AV: 9 SB: 2 22.61 , 22.65 NL: 2.83E7 T: FTMS + p ESI Full ms [50.00-500.00]

10 #2478-2501 RT: 23.71-23.92 AV: 12 SB: 51 22.49-22.85 , 24.57-25.16 NL: 1.41E8 T: FTMS + p ESI Full ms [50.00-500.00]

P4 m/z 254; P5 m/z 256

10 #1963-1989 RT: 18.77-19.02 AV: 14 SB: 96 16.63-17.59 , 19.57-20.43 NL: 3.68E8 T: FTMS + p ESI Full ms [50.00-500.00]

10 #2689-2729 RT: 25.71-26.10 AV: 21 SB: 71 24.51-25.12 , 26.33-27.04 NL: 2.58E7 T: FTMS + p ESI Full ms [50.00-500.00]

P7 m/z 240; P11 m/z 241

10 #1232-1274 $\,$ RT: 11.79-12.17 $\,$ AV: 21 $\,$ SB: 86 $\,$ 9.65-10.47 , 12.47-13.28 $\,$ NL: 1.13E8 $\,$ T: FTMS + p ESI Full ms [50.00-500.00] $\,$

P8 m/z 225; P9 m/z 226; P10 m/z 243

10 #2198-2226 RT: 21.03-21.28 AV: 14 SB: 68 19.59-20.35 , 21.61-22.14 NL: 3.17E7 T: FTMS + p ESIFull ms [50.00-500.00]

Figure S10. Mass spectra detected during the photodegradation of KET by Ag₃PO₄/P-g-C₃N₄ composite under visible light irradiation.

P12 m/z 279

Photocatalysts	$P-g-C_{3}N_{4}\left(mg\right)$	AgNO ₃ (g)	$Na_2HPO_4 (mol \cdot L^{-1})$
Ag ₃ PO ₄ /P-g-C ₃ N ₄ (1:10)	500	0.0609	0.0024
$Ag_{3}PO_{4}/P$ -g- $C_{3}N_{4}(1:5)$	500	0.1216	0.0048
Ag ₃ PO ₄ /P-g-C ₃ N ₄ (1:2)	500	0.3044	0.0119
Ag ₃ PO ₄ /P-g-C ₃ N ₄ (1:1)	500	0.6087	0.0239
Ag ₃ PO ₄ /P-g-C ₃ N ₄ (2:1)	250	0.6087	0.0239
Ag ₃ PO ₄ /P-g-C ₃ N ₄ (5:1)	100	0.6087	0.0239
Ag ₃ PO ₄ /P-g-C ₃ N ₄ (10:1)	100	1.2175	0.0478
Ag ₃ PO ₄	0	1.0182	0.0400

Table S1. The dosage of reagents used for the preparation of Ag_3PO_4 and Ag_3PO_4/P -g- C_3N_4 .

Photocatalysts	Lamp (kW)	k (min ⁻¹)	volume (L)	E_{EO} (kWh·m ⁻³ order ⁻¹)
P-g-C ₃ N ₄	0.8	0.00529	0.05	116144
A/CN(1:10)	0.8	0.00597	0.05	102915
A/CN(1:5)	0.8	0.00992	0.05	61935
A/CN(1:2)	0.8	0.01162	0.05	52874
A/CN(1:1)	0.8	0.03259	0.05	18852
A/CN(2:1)	0.8	0.02406	0.05	25536
A/CN(5:1)	0.8	0.02856	0.05	21513
A/CN(10:1)	0.8	0.01524	0.05	40315
Ag ₃ PO ₄	0.8	0.01157	0.05	53103

Table S2. Electrical energy per order of the synthesized samples.

Parameters	Milli-Q water	Tap water	Secondary Effluent water	Surface water
T(°C)	24.40	22.00	26.20	28.60
pH	6.93	7.57	7.73	8.08
DO(mg·L ⁻¹)	5.85	6.93	5.38	6.02
ORP(mV)	35.00	26.80	-39.00	-57.00
Conductivity	2 90	346.00	980.00	562.00
$(\mu S \cdot cm^{-1})$	2.70	540.00	900.00	502.00
TDS (mg·L ⁻¹)	0.73	228.35	526.71	879.14

Table S3. Water quality parameters of different water matrices.

Name	m/z	Retention Time (min)	Structural Formula
P1	224	22.37	
P2	222	22.37	
Р3	236	23.90	O NHCH ₃ CI
P4	254	18.87	OH O NHCH ₃ CI
Р5	256	18.87	OH OH NHCH ₃ CI
Р6	200	25.85	
Ρ7	240	11.86	OH O NH ₂ Cl

Table S4. The possible degradation intermediates of KET over Ag_3PO_4/P -g- C_3N_4 composite under visible light irradiation.

