Supporting Information

## Sustained-release of exendin 4 using injectable and ionicnano-complex forming polymer hydrogel system for longterm treatment of type 2 diabetes mellitus

Bo-Bae Seo, Mi-Ran Park, and Soo-Chang Song\*

Center for Biomaterials, Korea Institute of Science & Technology, Seoul, 130-650, Republic of Korea

\* Corresponding author.

Tel: +82-2-958-5123.

Fax: +82-2-958-5089.

E-mail address: <u>scsong@kist.re.kr</u>.

## Supporting figures



**Figure S1.** <sup>1</sup>H NMR spectra of synthesized protamine conjugated poly(organophosphazene). (a) Pre-ProCP, (b) protamine sulfate, and (C) ProCP.



**Figure S2.** Temperature-dependent viscosity changes of ContP (a), ProCP-1 (b), and ProCP-2 (c) solutions (15 wt% of ProCP in phosphate buffered solution).

| Polymer  | Structure <sup>a</sup>                                                                                                  |      | T <sub>max</sub><br>(°C) <sup>c</sup> | V37∘C<br>(Pa.s) <sup>d</sup> | V <sub>max</sub><br>(Pa.s) <sup>e</sup> |
|----------|-------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------|------------------------------|-----------------------------------------|
| ProCP-2  | [NP(IleOEt)60.5(GlyGlyOH)9.0(protamine)2.5(AMPEG)28.0]n                                                                 | 11.8 | 34.8                                  | 425                          | 437.5                                   |
| ProCP-2' | [NP(IleOEt) <sub>60.5</sub> (GlyGlyOH) <sub>9.5</sub> (protamine) <sub>2.0</sub> (AMPEG) <sub>28.0</sub> ] <sub>n</sub> | 7.8  | 29.8                                  | 825                          | 1000                                    |
| ProCP-2" | [NP(IleOEt)60.5(GlyGlyOH)10.0(protamine)1.5(AMPEG)28.0]n                                                                | 5    | 28.8                                  | 1175                         | 1406.5                                  |

Table S1. Characteristics of ProCP with different amount of protamine group.

<sup>a</sup> The substituted ratios were determined by <sup>1</sup>H-NMR.

<sup>b</sup> The association temperature at which the viscosity start to increase. Viscosity was measured at 15 wt% of polymer concentration in PBS (pH 7.4).

<sup>c</sup> The temperature at which viscosity reaches the maximum value.

<sup>d</sup> Viscosities at 37 °C.

<sup>e</sup> Maximum viscosity.



**Figure S3.** Temperature-dependent viscosity changes of ProCP-2, ProCP-2', and ProCP-2" solutions (15 wt% of ProCP in phosphate buffered solution).



**Figure S4.** Cytotoxicity test of ProCP-2 on NIH3T3 cell. The cell viability were confirmed after 24 hours (n=6).



**Figure S5.** Transmission electron microscopy (TEM) images of the ProCP-2 nano-particles (left) and Ex-4/ProCP-2 nano-complexes (right).



**(b)** 

**(a)** 



**Figure S6.** Cy5.5-conjugated Ex-4 (a) and aminofluorescein-conjugated ProCP (AF-ProCP) (b) for *in vivo* retention study.



**Figure S7.** Pharmacokinetic study of exendin 4 (Ex-4) in Sprague-Dawley (SD) rats. Plasma concentration of Ex-4 in SD rats following subcutaneous injections of Ex-4 solution (50 nmol) ( $\bullet$ ), Ex-4 solution (100 nmol) ( $\bullet$ ), Ex-4/protamine-conjugated polymer 1 (ProCP-1) nano-complexes (50 nmol) ( $\blacktriangle$ ), Ex-4/ProCP-2 nano-complexes (50 nmol) ( $\diamond$ ), and Ex-4/ProCP-2 nano-complexes (50 nmol) ( $\blacklozenge$ ). Error bars represent standard deviation (n = 4).

|                          | Ex-4 Sol.<br>(50nmol/rat) | Ex-4 Sol.<br>(100nmol/rat) | Ex-4/ProCP-1<br>(50nmol/rat) | Ex-4/ProCP-2<br>(50nmol/rat) | Ex-4/ProCP-2<br>(100nmol/rat) |
|--------------------------|---------------------------|----------------------------|------------------------------|------------------------------|-------------------------------|
| AUC                      | 1572.1                    | 2635.7                     | 1676.0                       | 3172.8                       | 3724.0                        |
| T <sup>1/2</sup> (hour)  | 1.2                       | 2.7                        | 28.8                         | 108.7                        | 174.5                         |
| T <sub>max</sub> (hour)  | 1.0                       | 1.0                        | 24.0                         | 48.0                         | 48.0                          |
| C <sub>max</sub> (ng/mL) | 1012.3                    | 1942.1                     | 29.7                         | 26.7                         | 26.7                          |

Table S2. Pharmacokinetic parameters of Figure S7.



**Figure S8.** Pharmacodynamic studies of exendin 4 (Ex-4) release after one-time subcutaneous (SC) injection of the Ex-4/protamine-conjugated polymer (ProCP) nano-complex system in diabetic (db/db) mice. This magnified graph shows the early time points in Figure 6 (A). The green arrow indicates the injection point.



Figure S9. Pharmacodynamic studies of control groups (daily Ex-4 injection, daily saline injection, and untreated groups). (A) Blood glucose level, (B) body weight, (C) and food uptake were monitored for 14 days (n = 5).



Figure S10. Blood glucose levels of control groups (once-daily Ex-4 injection, twice-daily injection, daily saline injection, and untreated groups) (n = 5). The green arrow shows the first injection point.