Supporting Information

Irreversible Physisorption of PS-*b*-PMMA Copolymers on Substrates for Balanced Interfacial Interactions as a Versatile Surface Modification

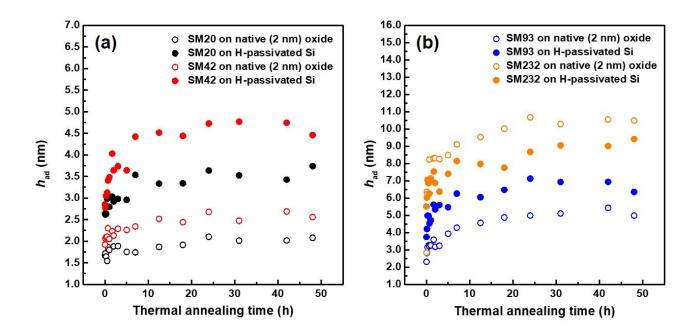
Wooseop Lee, [†] Yeongsik Kim, [†] Seungyun Jo, [†] Seongjin Park, [†] Hyungju Ahn, [‡] and Du Yeol Ryu ^{*, †} [†] Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

^{*}Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigok-ro, Namgu, Pohang 37673, Korea

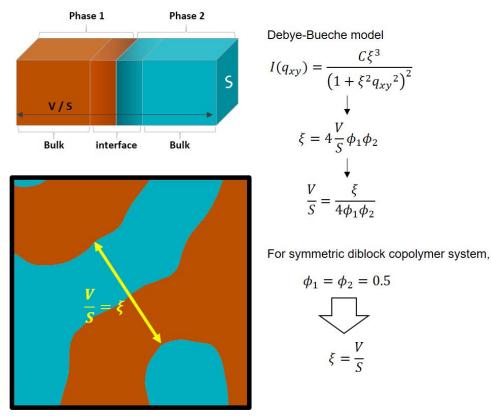
Experimental

Materials: Nearly monodisperse ($M_w/M_n < 1.06$) and symmetric PS-*b*-PMMAs (20.3, 42.1, 93.5 and 232 kg/mol) were synthesized by living anionic polymerization in tetrahydrofuran (THF) using styrene (S) and methyl methacrylate (MMA) monomers at -78 °C. The process was carried out under purified argon environment. A *sec*-butyllithium was used as an initiator and LiCl (high purity, Aldrich) was dissolved into THF. The number-averaged molecular weight (M_n) and dispersity ($D = M_w/M_n$) was measured by size-exclusion chromatography (SEC) with multiangle laser light scattering (MALLS) detector. The volume fraction of PS (ϕ_{PS}) was characterized by ¹H NMR (Avance II, Bruker Biospin) based on the densities of the components (1.050 and 1.184 g/cm³ for PS and PMMA, respectively). The equilibrium lamellar spacings (L_o) of bulk PS-*b*-PMMAs were measured by small-angle x-ray scattering (SAXS) at the beamline 4C of Pohang Accelerator Laboratory (PAL), Korea. Additionally,

two asymmetric PS-*b*-PMMAs such as PS-cylinder (ϕ_{PS} =0.28, 71.7 kg/mol) and PMMA-cylinder (ϕ_{PS} = 0.80, 73.3 kg/mol) forming samples were synthesized and characterized in the same manners as above.


Substrates: The standard silicon wafer with the native (2 nm) oxide layer was used as received. For H-passivated Si substrate, the native oxide substrate was immersed in 5 vol % of hydrogen fluoride (HF) aqueous solution for 30 min and was sequentially rinsed by ethanol and DI water. For wide-applicability test, the various substrates such as mica sheets (Ted Pella, Prod No.56, grade V1), glass (Corning, Cat. No. 2850-22), aluminum and gold (thermally deposited on silicon wafer in a thickness of 100 nm) were used.

Surface modification by irreversible adsorption: To form the adsorbed layer on the native oxide substrate, H-passivated Si substrate, mica, glass and deposited aluminum substrates, 93.5 kg/mol PS-b-PMMA solution (1.50 wt % in toluene) was spun cast to set ~ 30 nm thickness onto the substrates, followed by thermal annealing at 190 °C under vacuum which is above the glass transition temperatures of the two blocks (~ 100 °C for PS and ~ 105 °C for PMMA). In case of gold substrate, however, the adsorption process was carried out at 150 °C in order to prevent dewetting-induced inhomogeneity during adsorption process. Further, these films were immersed in toluene for 12 h to eliminate the unadsorbed chains, leading to the irreversibly adsorbed layers. Particularly for 42.1 kg/mol PS-b-PMMA films, the thermal annealing for irreversible adsorption was set at 160 °C under vacuum for 24 h.


Self-assembly of BCP thin film: 93.5 kg/mol PS-*b*-PMMA thin films were prepared onto various substrates by spin-casting the polymer solution in toluene. The solution concentration was varied in the range of 0.50 - 1.50 wt % and the process was operated at 2000 - 5000 rpm to fine-tune the film thickness. The films were thermally annealed at 190 °C under vacuum for 24 h, except for the films

supported on gold substrate (at 170 °C for to prevent the onset of dewetting). In case of 42.1 kg/mol PS-*b*-PMMA films, the thermal annealing was set at 160 °C under vacuum for 24 h.

Analysis for adsorbed layer and thin film: A Spectroscopic ellipsometry (SE-MG 1000, Nano-view Co.) was operated at an incidence angle of 69.7° to measure film thicknesses, where a deuterium–tungsten lamp (Hamamatsu Photonics) was used as the light source with the photon energy of 1.45 - 5.00 eV ranging from the ultraviolet to visible ranges. Scanning force microscopy (SFM; Dimension 3100, Digital Instrument Co.) was used to examine the surface morphology of polymer films, which was operated in a tapping mode with the standard silicon nitride probe at 3 % offset below their resonance frequencies ranging from 250 to 350 kHz. The normal SFM phase images were acquired at a scanning rate of 7 μ m/s. Grazing-incidence small-angle x-ray scattering (GISAXS) experiment was carried out at 9A beamline of Pohang Accelerator Laboratory (PAL), Korea. The typical operating conditions were set at a wavelength of 1.12 Å and a sample-to-detector distance of 6.5 m. The incidence angle (α_i) was set at 0.120° for the adsorbed layer and 0.140° for the BCP films, which are all above the critical angle (0.114°) to probe the entire film structures. 2D GISAXS patterns were recorded using a 2D detector (SX-165, Rayonix) positioned at the end of a vacuum guide tube with an exposure time of 12 s.

Figure S1. Thicknesses of the adsorbed layers (h_{ad}) onto the two kinds of substrates (native oxide substrate and on H-passivated Si substrate, respectively) as a function of annealing time. The thin (~ 30 nm) BCP films were thermally annealed at 190 °C under vacuum to generate the adsorbed layers onto the substrates, and the films were leached in toluene to remove the unadsorbed chains.

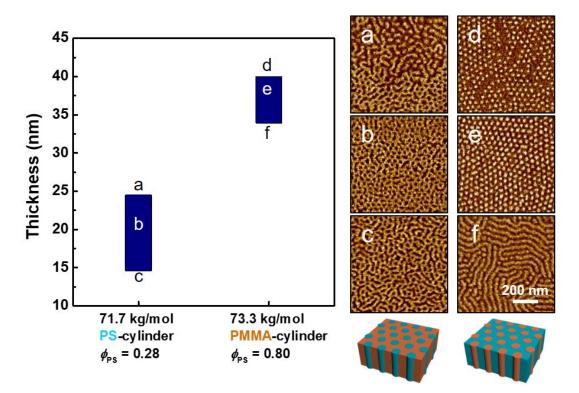
Figure S2. Schematic description of the correlation length (ξ) of the adsorbed layers and the calculation of ξ based on the Debye-Bueche model. A nonparticulate two-phase model consisting of PS and PMMA is suggested, where a 3D unit region has volume (V), cross-section (S), and the average distance (V/S) between the two phases.

Figure S2 describes our adsorbed layers as a nonparticulate two-phase system model of which the two inhomogeneous phases are mixed irregularly but isotropically. According to Roe¹, a two-phase system (consisting of PS and PMMA) was presumed to have a 3D unit region with volume (V) and cross-section (S), and the average distance (V/S) between the two phases, respectively. The Debye-Bueche model was adopted to calculate the correlation length (ζ) between two phases by fitting the scattering intensity (I(q)) using the following equation

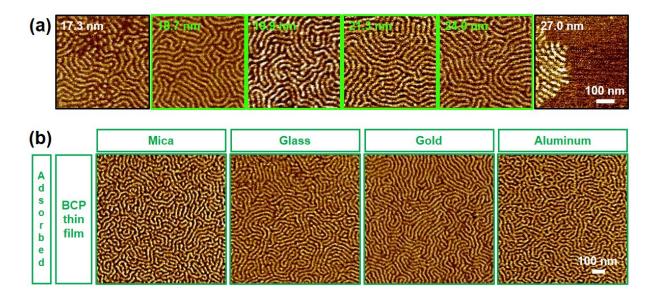
$$I(q) = \frac{\zeta\xi^3}{(1+\xi^2 q^2)^2}$$
(1)

where q and C are the scattering vector (in nm⁻¹) and a constant, respectively. Here, the ξ is defined as

$$\xi = 4 \frac{V \langle \eta^2 \rangle}{S(\Delta \rho)^2} \tag{2}$$


where $\langle \eta^2 \rangle$ is the mean square fluctuation of the electron density and $\Delta \rho$ is the electron density difference between the two phases. In this context, the invariant Q is expressed as

$$Q = V\langle \eta^2 \rangle = V(\Delta \rho)^2 \phi_1 \phi_2 \tag{3}$$


where ϕ_1 and ϕ_2 are the volume fractions of phase 1 and 2, respectively. By combining *eq* 2 and 3, we obtain the following relationship as

$$\frac{V}{S} = \frac{\xi}{4\phi_1\phi_2} \tag{4}$$

For a symmetric PS-*b*-PMMA system particularly with $\phi_{PS} = \phi_{PMMA} = 0.5$, one can calculate the ξ (equal to *V/S*) that defines the compositional randomness of our adsorbed layers.

Figure S3. Thickness windows of perpendicular cylinders for asymmetric PS-*b*-PMMA films supported on the adsorbed layers of themselves. (a – c) SFM phase images of PS-cylinder forming BCP films (71.7 kg/mol, $\phi_{PS} = 0.28$) at thicknesses of 25.3, 21.3, and 13.8 nm. (d – f) SFM phase images of PMMA-cylinder forming BCP films (73.3 kg/mol, $\phi_{PS} = 0.80$) at thicknesses of 41.3, 37.8, and 33.0 nm, respectively. To ensure thermal equilibrium self-assembly, 71.7 kg/mol PS cylinder-forming and 73.3 kg/mol PMMA cylinder-forming PS-*b*-PMMA films were thermally-annealed at 200 and 170 °C, respectively, under vacuum for 24 h.

Figure S4. (a) Thickness window of perpendicular lamellae of the overlying SM42 on the adsorbed layer of its own using H-passivated Si substrates. (b) SFM phase images of SM42 films (~ 22 nm) supported on various substrates (mica, glass, gold, and deposited aluminum) with the irreversible adsorption of SM42 itself onto such substrates.

References

(1) Roe, R. J. *Methods of X-ray and neutron scattering in polymer science*; Oxford University Press: **2000**; p 174.