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Coarse-grained nanoparticle model (additional details)

Golden section spiral algorithm

The golden section spiral algorithm used to distribute pseudo-atoms into a spherical shell is 

included within the mBuild Python package.1,2 The algorithm itself was adapted from a thread on 

the numpy-discussion list.3

The following equations are used for the golden section spiral algorithm.

𝜑 =
1
2(1 + 5)

𝑙incr = 2𝜋 𝜑

𝑑𝑧 = 2 𝑛, where 𝑛 = the number of pseudo ― atoms

bands = 0, 1, …, 𝑛 ― 1, 𝑛

𝑧 = bands ∙ 𝑑𝑧 ― 1 + (𝑑𝑧 2)
𝑟 = 1 ― 𝑧2

𝑎𝑧 = bands ∙ 𝑙incr

𝑥 = 𝑟 ∙ cos 𝑎𝑧

𝑦 = 𝑟 ∙ sin 𝑎𝑧

Where x, y, and z define lists of the x, y, and z coordinates for all particles around a unit sphere. 

Particle positions are then scaled by , where d is the diameter of the atomistic 
1
2[𝑑 ― (𝜎b + 𝜎silica)]

nanoparticle and σsilica = 0.40323nm is the arithmetic average of σSi and σO. This ensures the 

nanoparticle radius remains nominally independent of bead size.

Nanoparticles can be constructed following this algorithm, or by using instantiating the 

`CG_nano` class, within the NanoOpt Python Package.4
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Maximum packing model, φb(d, σb)
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Figure S1 – Using a maximum packing model, volume fraction of coarse-grained beads within 

the spherical nanoparticle shell as a function of nanoparticle radius for σb values of 0.5 

(magenta), 1.0 (red), 1.5 (blue), and 2.0nm (black). The inset shows the same data with the 

nanoparticle radius normalized by σb, where the four curves collapse onto a single line.

Preliminary nanoparticle models featured a maximum packing algorithm, where φb was 

maximized without allowing overlap between neighboring beads. Fig. S1 shows that φb for 

nanoparticles constructed in this manner is dependent both on the nanoparticle diameter, d, and 

the pseudo-atom diameter, σb. However, the inset of Fig. S1 reveals that φb is equivalent for 

values of d/σb. As d/σb increases, φb increases, reaching an asymptotic value of roughly 0.4. This 

phenomenon has profound effects on the transferability of interaction parameters derived for 

nanoparticles designed using the maximum packing model. Parameters are likely to be 

transferable between nanoparticles featuring equivalent (or nearly equivalent) values for φb. 

Thus, parameters would likely be transferable only for nanoparticles with d/σb values above 
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about 5. Furthermore, if nanoparticles with lower values of d/σb are included during the 

optimization, the resulting parameter set will likely have reduced accuracy.
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Atomistic target data

Bulk silica equilibration

a. b.

Å

Figure S2 – a. Total potential energy (blue) and system temperature (red) during the stepwise 

annealing of the amorphous silica bulk with 10ps spent at each temperature stage. b. Interaction 

energy between two nanoparticles (d=4nm) carved from bulk silica annealed using times of 1, 5, 

10, and 20ps spent at each temperature stage.

As described in the main text, the amorphous silica bulk from which atomistic nanoparticles 

were carved was generated through the procedure described by Litton and Garofalini,5 where a 

stoichiometric mixture of Si and O is heated to 10,000K and quenched to 300K through a series 

of intermediate temperatures, using the ReaxFF force field. The temperature profile of the 

system through the quenching procedure is shown in Fig. S2a, alongside the potential energy of 

the system (which is shown to equilibrate quickly at each stage). At each stage the system is held 

at this temperature for 10ps before advancing to the next stage (directly following the procedure 

of Litton and Garofalini). We have examined the influence of the time spent at each stage by 

equilibrating the silica bulk where this time is set to 1, 5, 10, and 20ps and examining the 
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interaction potential between two nanoparticles carved from each bulk. As shown in Fig. S2b, 

the quench rate appears to have negligible influence on the interaction potential over the range 

studied here, providing further confidence that the chosen 10ps is appropriate.
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Nanoparticle carving

Figure S3 – Diagrams of the nanoparticles and the corresponding silica bulk used to carve them 

for nanoparticles with diameters of 4 and 8nm. For nanoparticles with a diameter larger than 

5nm, the silica bulk is replicated.

Nanoparticles are carved from the bulk silica as spheres of a user-defined radius (i.e. all atoms 

within R(nm) from the center of the box are included in the nanoparticle). As the dimensions of 

the silica box are 5nm x 5nm x 5nm, nanoparticles with radii larger than 2.5nm necessitate 

replication of the box for carving (Fig. S3b).



*Corresponding Author: Clare McCabe, Email: c.mccabe@vanderbilt.edu S8

a. b. c.

Å

Figure S4 – Silica nanoparticles with a diameter of 4nm a. without and b. with a surface oxygen 

layer. c. The interaction energy between two nanoparticles without (black) and with (red) a 

surface oxygen layer.

Nanoparticles carved directly from bulk as perfect spheres certainly represent an idealized 

model, where in reality one would expect silica nanoparticles to feature some asphericity and a 

hydroxylized outer layer. The influence of an outer oxygen layer is examined by calculating the 

interaction potential between two nanoparticles, comparing the model described in the main text 

(Fig. S4a, where nanoparticles are carved "as is" without an outer oxygen layer) with a model 

where an additional buffer of oxygen atoms (0.275nm) is included (Fig. S4b). For the model that 

includes oxygen atoms, Si-O bonds were generated between all atoms within 0.20419nm and any 

atoms that are left un-bonded are removed from the system. The interaction potential calculated 

using these two models is shown in Fig. S4c, where it should be noted that we have shifted the 

curve for the second model (w/ oxygen atoms) by a value of -0.55nm (twice the oxygen buffer) 

to account for the difference in radii. From Fig. S4c we observe that the presence of an oxygen 

layer does not appreciably influence the nanoparticle-nanoparticle interaction potential. This 

helps provide further justification for the use of the simpler, idealized model we have utilized for 

the target data in the main text.
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Figure S5 – The interaction energy between nanoparticles with diameters of 4, 6, 8, and 10nm 

using two different model. In black is the model used in the main text, where nanoparticles are 

carved directly from bulk silica. In red are nanoparticles that are equilibrated after carving.

Concerning asphericity, in earlier trials of our nanoparticle optimizations we utilized target 

data obtained from nanoparticles that had been equilibrated for 50ps using the ReaxFF force 

field. For small nanoparticles (e.g. R=2nm) considerable asphericity was observed which resulted 

in difficulty obtained coarse-grained parameters that fit to the all-atom target data, as the coarse-

grained nanoparticles are constructed as perfect spheres. Fig. S5 shows the interaction potential 

between two nanoparticles, comparing results obtained using two nanoparticle models:

 Model 1: The model described in the main text, where nanoparticles are carved directly 

from bulk silica as (nearly) perfect spheres with no additional adjustments.

 Model 2: After carving from bulk silica, nanoparticles are equilibrated for 50ps under 

the ReaxFF force field. The interaction potential between two nanoparticles is 

calculated using DREIDING force field and includes a Coulomb term that uses charges 

from the ReaxFF charge equilibration.

It can be observed that for nanoparticles with radii of 3, 4, and 5nm the interaction potential is 

nearly identical between the two models. For the smallest nanoparticle size (R=2.5nm) deviation 

between the two models is observed, likely due to the asphericity of the nanoparticle in Model 2 

(pictured as an inset). The agreement observed between these two models further supports the 
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use of the idealized model (Model 1) for target data collection in the main text, and suggests that 

asphericity effects are negligible for radii ≥ 3nm.
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Atomistic force field

ÅÅ

Figure S6 – a. The interaction energy considering VDW interactions only between two 

nanoparticles with d=4nm using the OPLS (black circles), DREIDING (red triangles), and 

COMPASS (blue squares) force fields. b. The interaction energy considering electrostatic 

interactions only using OPLS charges (black circles), charges obtained from ReaxFF charge 

equilibration (red triangles), and ReaxFF charges updated at each timestep (blue squares).

Nanoparticle-nanoparticle interaction potential considering VDW interactions only is examined 

using LJ parameters from three force fields: hybrid COMPASS, DREIDING, and OPLS. The 

hybrid COMPASS force field uses a 9-6 Class2 Lennard-Jones-like potential (Eq. 2 in the main 

text) and the following sixth-order mixing rules for cross interactions:

(S1)𝜎𝑆𝑖 ― 𝑂 = (𝜎6
𝑆𝑖 + 𝜎6

𝑂

2 )
1
6

(S2)𝜀𝑆𝑖 ― 𝑂 = (2𝜎3
𝑆𝑖𝜎3

𝑂 𝜀𝑆𝑖𝜀𝑂

𝜎6
𝑆𝑖 + 𝜎6

𝑂
)

Additional details on the hybrid COMPASS LJ parameters are located in the main text.6,7 Both 

the OPLS and DREIDING force fields describe VDW interactions through a 12-6 LJ potential, 

a.

b.
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using Lorentz-Berthelot mixing rules for cross interactions. OPLS LJ parameters for silicon are 

σSi =4.0Å and ε=0.10kcal/mol, and for oxygen are σO=3.0Å and ε=0.17kcal/mol.8 DREIDING LJ 

parameters for silicon are σ=3.804Å and ε=0.310kcal/mol, and for oxygen are σ=3.033Å and 

ε=0.096kcal/mol.9 The VDW contribution to the interaction potential is shown in Fig. S6 for 

nanoparticles with a diameter of 4nm. Interaction potentials calculated using the DREIDING and 

COMPASS force fields are shown to be nearly identical, whereas the OPLS curve is shown to be 

slightly smoother. As both the DREIDING and COMPASS force fields have been utilized in the 

literature in studies of silica nanoparticles, it was determined that one of these should be chosen 

for our study. Interactions potentials were calculated slightly quicker using the COMPASS force 

field, so this is the one that was ultimately chosen.

Nanoparticle-nanoparticle interaction potential considering electrostatic interactions only is 

examined using three sets of partial charges: OPLS, partial charges obtained through ReaxFF 

charge equilibration (QEq-static), and partial charges obtained through ReaxFF charge 

equilibration that are updated at each configuration (QEq-dynamic). OPLS charges for silicon 

and oxygen are 0.86 and -0.43 respectively.8 Charge equilibration was performed in LAMMPS 

using the implementation by Aktulga et al..10 The electrostatic contribution to the interaction 

potential is shown in Fig. S6b for nanoparticles with a diameter of 4nm. The electrostatic 

contribution to the interaction potential using OPLS charges is shown to yield large error bars 

and deviates to slightly positive values at smaller separations. This is expected, as fixed charges 

without a charge equilibration are likely to yield a non-uniform charge distribution, and the lack 

of considering nanoparticle charge neutrality during carving is likely to provide each 

nanoparticle with a slight charge that will lead to repulsion. The electrostatic contribution to the 
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interaction potential using dynamic charge equilibration is shown to be negligible at long range, 

and reveals attraction at short range. However, as mentioned in the main text, silica nanoparticles 

typically feature a polymer coating to prevent aggregation, so we are not concerned with the 

short range behavior, thus, the influence of charge appears to be negligible as has been found in 

previous work comparing the influence of various force fields on silica nanoparticle self-

assembly.11 This is further supported by examining the electrostatic contribution to the 

interaction potential using charges obtained through a single charge equilibration. Here, the 

influence of charge is shown to be negligible even at short range.
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Target data collection (nanoparticle-nanoparticle)

Target data used in force field optimization consists of values of interaction potential between 

two bodies calculated over a range of center-of-mass separations. For optimization of 

nanoparticle-nanoparticle parameters, the two bodies involved in target data collection are 

atomistic nanoparticles. Target data collection is not included within the Python package we 

have developed, as we opted for scripting in C++ for this portion of the development for ease of 

parallelization and improved performance. A template of the script used in the collection of 

target data is provided in the GitHub repository.4 The procedure used to collect target data can be 

broken down as:

1. Load in the atomic positions from an XYZ file

2. Define limits of center-of-mass separations to examine

 Min: d

 Max: d + 4 + ceil(d/4) – 1

 This does not represent the range of the final data, as pruning is performed to remove 
values at short separations (within the region of overlapping VDW volumes), described 
in further detail below.

3. Initialize a histogram with 100 bins (higher resolution is therefore provided to smaller 
nanoparticles)

4. Choose a starting separation within the range of (Min, Max)

5. Evaluate the interaction energy and add the value to the appropriate bin in the histogram

 Note: An overlap criterion is considered whereby if any two atoms are of a distance 
≤0.8σ the two nanoparticles are considered to be overlapping and this configuration is 
skipped. This helps to avoid contributions from high-energy, overlapping 
configurations at small center-of-mass separations that systems would be unlikely to 
adopt.

6. Generate a new configuration by randomly rotating and randomly translating one of the 
nanoparticles
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7. Continue to repeat steps 5 and 6 until an even sampling of all bins is achieved (excluding 
the first 5 bins, where our overlap criterion inhibits even sampling)

After target data is collected, the data is pruned to remove values at center-of-mass separations 

below 0.40323nm x 0.8, again as an overlap criterion, where 0.40323nm represents the diameter 

of silica. This removes data at center-of-mass separations where VDW radii would be 

overlapping, which hinders optimization of coarse-grained parameters.

It should also be noted that the number of configurations sampled per bin is not equal for all 

nanoparticle radii; however, standard deviations in interaction potential for all radii and center-

of-mass separations are <10% and are closer to <2% for values other than at the shortest few 

center-of-mass separations. This supports the notion that a sufficient number of configurations 

were sampled per bin for all nanoparticle sizes. As follows are the mean number of 

configurations per bin, along with the standard deviation, for each of the radii examined in this 

work (3nm-10nm) is as follows: 3nm: 86.8 ± 9.2, 4nm: 69.5 ± 10.1, 5nm: 22.4 ± 4.2, 6nm: 66.1 

± 9.7, 7nm: 33.6 ± 5.2, 8nm: 19.1 ± 3.5, 9nm: 25.6 ± 4.2, 10nm: 13.9 ± 3.8.
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Target data collection (nanoparticle-alkane cross-interactions)

Target data was also collected for the interaction between spherical silica nanoparticles of 

various radii and united-atom alkane moieties (CH2, CH3). Data collection used the same 

procedure as for the target data collected for the potential between two nanoparticles, evaluating 

the interaction energy at a series of center-of-mass separations. It was determined that additional 

data needed to be collected in the region of the potential well, and further determined that 

additional long-range data was required. As such, target data collection used the following 

general procedure three separate times, with values for the minimum and maximum center-of-

mass separations and bin numbers in parentheses corresponding to the three separate iterations:

1. Load in the atomic positions from an XYZ file

2. Define a single point to represent the united-atom CH2 or CH3 moiety

3. Define limits of center-of-mass separations to examine

 Min: (d/2, d/2 + 0.2, d/2 + 1.0)

 Max: (d/2 + 1.0, d/2 + 0.4, d/2 + 3.0)

 This does not represent the range of the final data, as pruning is performed to remove 
data with large error bars in the short-range region and additional data was collected to 
provide additional fidelity to the region of the potential well. See further explanation 
below.

4. Initialize a histogram with (50, 50, 20) bins

5. Choose a starting separation within the range of (Min, Max)

6. Evaluate the interaction energy and add the value to the appropriate bin in the histogram

 Note: An overlap criterion is considered whereby if any two atoms are of a distance 
≤0.8σ the two nanoparticles are considered to be overlapping and this configuration is 
skipped. This helps to avoid contributions from high-energy, overlapping 
configurations at small center-of-mass separations that systems would be unlikely to 
adopt.
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7. Generate a new configuration by randomly rotating and randomly translating the 
nanoparticle

8. Continue to repeat steps 5 and 6 until an even sampling of all bins is achieved

The three iterations produced three sets of data, and a complete set was generated by 

combining these three and running a function that ensured the data monotonically decreased to 

the bottom of the potential well and monotonically increased after. Points that did not satisfy this 

criterion were deleted. This was necessary as the standard deviation in the short-range region 

was quite high, yet a defined well was found necessary for successful optimization.
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Equations used from the work of Lee and Hua for CG model comparison

To compare the CG model developed in this work with available models in the literature, Fig. 

11 in the main text provides plots showing interaction potential curves for several nanoparticle 

sizes calculated using the model developed in this work and using equations provided in Fig. 6 of 

the work by Lee and Hua.12 In their work, a general interaction potential was used for the 

interaction between two point nanoparticles of the form:

𝑈(𝑟) = 4𝜀[(𝜎 𝑟)2𝛼 ― (𝜎 𝑟)𝛼]

where σ is the nanoparticle diameter and ε and α are derived through fitting. The equations 

derived via fitting (along with reduced forms of ε and σ) for these last two parameters are:

𝜀𝑟 = 𝜀
𝜀0

𝜎𝑟 = 𝜎
𝜎0

𝜀𝑟 = 286[1 ― exp( ―0.014𝜎𝑟)]

𝛼 = 0.226 + 2.983𝜎𝑟

where σ0 and ε0 correspond to 0.62nm and 3.10 kJ/mol, respectively. The values for σ0 and ε0 

correspond to the parameters used in the interaction between pseudo-atoms of a coarse-grained 

nanoparticle model similar to that used in our work; however, in the work of Lee and Hua, 

pseudo-atoms were fixed to a given size (0.62nm in diameter) and interactions were governed by 

a 12-6 Lennard-Jones potential. The equations above for point particle interactions have been 

used in our main text (Figure 11) to compare nanoparticle-nanoparticle interaction potential 

curves with our model.
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States considered for parameterization of nanoparticle-nanoparticle core interactions

Parameterization of nanoparticle-nanoparticle core interactions followed the procedure 

outlined in Fig. 2 of the main text. Specifically, Stages 1 and 2 of the optimization scheme were 

performed for all nanoparticles described by:

 d(nm): 4, 6, 8, 10, 12, 14, 16, 18, 20

 σb(nm): 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0

 φb: 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60

It should be noted that the following two exclusion criteria were applied to remove a small subset 

of state points:

 Nanoparticles where d/σb > 20, as these systems are finely-grained and add significant 

computational expense to the optimization

 States featuring regions of intersection between three neighboring pseudo-atoms, as the 

volume of this intersection region cannot be easily calculated, and thus these systems 

cannot be constructed with a reliable φb. These systems typically feature d ≤ 6nm and 

σb ≥ 1.3nm.

Following these two exclusion criteria, 1010 states remained for the optimization.
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Interactions between nanoparticles with different d, σb, and φb

Figure S7 – Interaction potential between a nanoparticle with d=8nm, σb=0.6nm, and φb=0.4 and 

a nanoparticle with d=16nm, σb=0.6, 1.3 and 2.0nm, and φb=0.25, 0.425, and 0.6. Points 

represent all-atom data and lines represent CG data using parameters obtained from Eqs. 6 and 7 

and the mixing rules detailed in the main text.

Fig. S7 shows an expanded version of Fig. 7a-c from the main text, comparing the derived CG 

potential against all-atom data for nanoparticles of different sizes. As noted in the main text, it is 

observed that increasing σb of the larger nanoparticle results in higher residual values; however, 

the curves in general show excellent fits considering the simplicity of the mixing rules used. Fig. 

S7 also shows that the residual between the CG and all-atom data for nanoparticles of different 

sizes is independent of φb.
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