Supporting Information

Multiporous Terbium Phosphonate Coordination Polymer Microspheres as Fluorescent Probe for Trace Anthrax Biomarker Detection

Yongquan Luo, [†] Lei Zhang, ^{*,†} Lingyi Zhang, [†] Bohao Yu, [†] Yajie Wang, [‡] and Weibing Zhang ^{*,†}

[†] Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

[‡] Department of Pharmacy, Anhui Medical College, Hefei, 230601, China

*E-mail: leizhang595@ecust.edu.cn. Tel: 86-21-64252942. Fax: 86-21-64252947. *E-mail: weibingzhang@ecust.edu.cn Tel: 86-21-64252145. Fax: 86-21-64233161.

Contents

Material characterization

 Table S1. The comparison of different fluorescent probe for DPA detection

Figure S1. Energy Dispersive Spectrometer (EDS) spectrum of the TbP-CPs

Figure S2. The XPS spectrum of the TbP-CPs

Figure S3. XPS spectra of O element (a), N element (b) and Tb element (c) before (black curve) and after (red curve) the addition of DPA

Figure S4. Fluorescent emission decay curves of TbP-CPs and with 5 μ M DPA at 544 nm (Decay curve of Tb-CPs , black curve; Decay fitted curve of Tb-CPs , blue curve; Decay curve of Tb-CPs+PDA , purple curve; Decay fitted curve of Tb-CPs+PDA , red curve)

Figure S5. Effects of pH values on fluorescence intensity of TbP-CPs with 2.0 μ M DPA (red curve) and without DPA (black curve) in NaAc-HAc buffer (200 mM, pH 5.0)

Figure S6. Effects of interaction time on fluorescence intensity of TbP-CPs with 2.0 μ M DPA in NaAc-HAc buffer (200 mM, pH 5.0)

Figure S7. The stability of 0.3 mg/mL TbP-CPs suspension solution in NaAc-HAc buffer (200 mM, pH 5.0)

Material characterization

The structure and morphology of multiporous terbium phosphonate coordination polymers microspheres (TbP-CPs) were characterized by ultrahigh resolution field emission scanning electron microscopy (UHRFESEM, NOVA Nano SEM450, FEI, USA) and ultrahigh resolution transmission electron microscope (HR-TEM, JEM-2100, JEOL, Japan). The X-ray photoelectron spectra were obtained using an ESCALAB 250Xi X-ray photoelectron spectrometer (XPS, USA). The specific surface area of TbP-CPs was calculated by the Brunauer-Emmett-Teller (BET) method. Nitrogen sorption/desorption isotherm was performed on a Micromeritics Instrument Corporation TriStar II 3020 (USA) at 77 K. Before the sorption/desorption measurement, the TbP-CPs were degassed in a vacuum at 300 °C for 10 h. The pore size distribution (PSD) was calculated based on the adsorption branch with the Barrett-Joyner-Halenda (BJH) model. The FTIR spectrum of TbP-CPs was characterized (Nicolet 6700 FTIR, Thermo, USA) using the KBr pellet method. Thermogravimetric analysis (TGA) was performed in a nitrogen atmosphere at a heating rate of 10 °C min⁻¹ from 40 °C to 800 °C (Pyris Diamond, PerkinElmer, USA). Then, the fluorescence spectra for TbP-CPs as fluorescence probe was measured with a Lumina Fluorescence Spectrometer (Thermo Scientific). Finally, the fluorescence lifetime of TbP-CPs was measured with a Fluorescence Spectrofluorometer (FLS980, Edinburgh Instruments, UK).

Fluorescent probes	Detection limit (nM)	Linear range (µM)	Refs.
Tb/Eu@bio-MOF	34	0.05-1	[1]
SiO ₂ -Tb-EDTA	10.3	0-12	[2]
CDs-Tb	0.1	0.0005-2.5	[3]
CDs-Cu ²⁺ systems	79	0.25-20	[4]
CDs/Eu-NCPs	5.1	0.025-5	[5]
Automated anthrax smoke detector	0.2	0.01-0.1	[6]
Eu-Gd(BDC)1.5(H ₂ O) ₂ @SiO ₂	48	/	[7]
AMP/Tb	10	0.02-20	[8]
LnAg NPs	12.3	0.04-10	[9]
TbP-CPs	5.0	0-8	This work

 Table S1 The comparison of different fluorescent probe for DPA detection

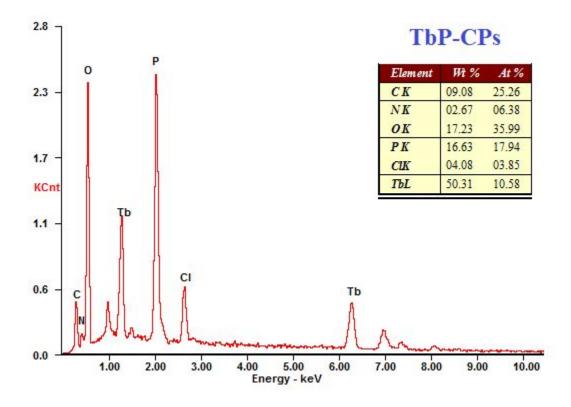


Figure S1. Energy Dispersive Spectrometer (EDS) spectrum of the TbP-CPs

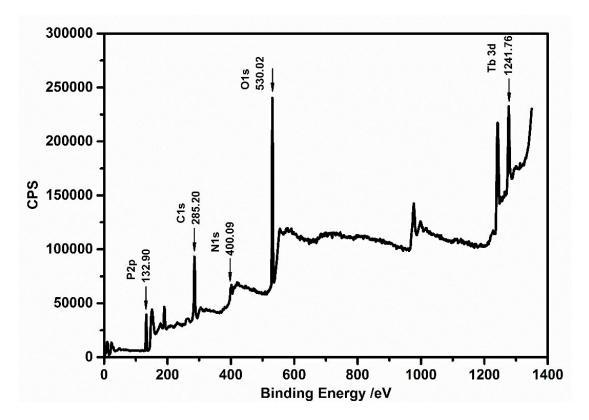
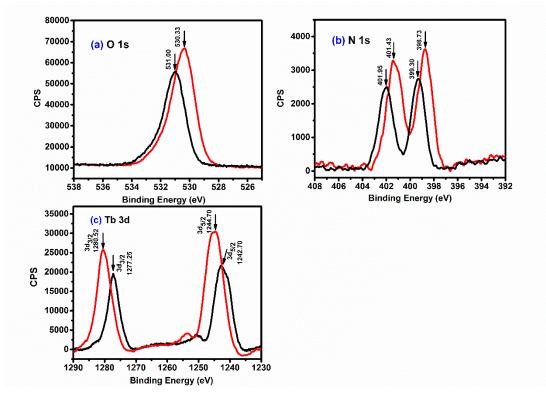



Figure S2. The XPS spectrum of the TbP-CPs

Figure S3. XPS spectra of O element (a), N element (b) and Tb element (c) before (black curve) and after (red curve) the addition of DPA

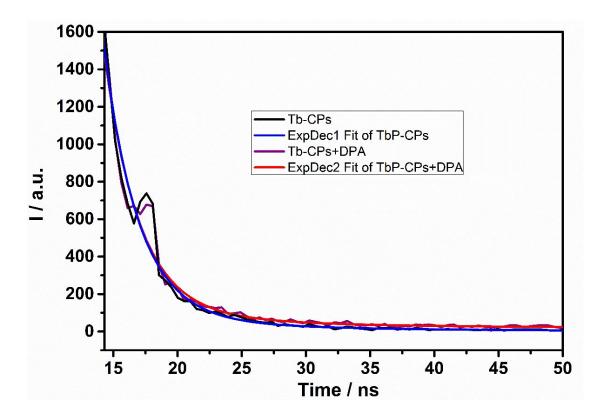


Figure S4. Fluorescent emission decay curves of TbP-CPs and with 5 μ M DPA at 544 nm (Decay curve of Tb-CPs , Black curve; Decay fitted curve of Tb-CPs , Blue curve; Decay curve of Tb-CPs+PDA , Purple curve; Decay fitted curve of Tb-CPs+PDA , Red curve)

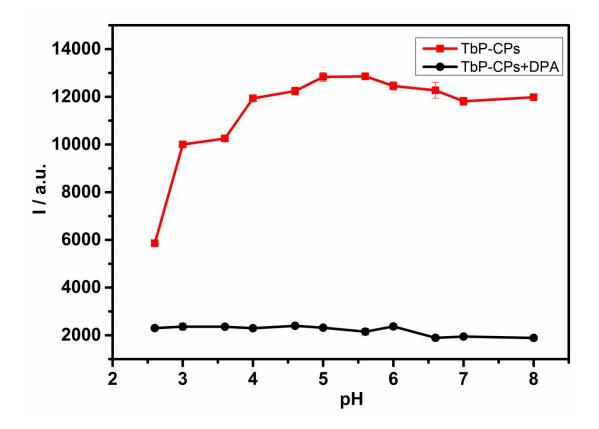


Figure S5. Effects of pH values on fluorescence intensity of TbP-CPs with 2.0 μ M DPA (red curve) and without DPA (black curve) in NaAc-HAc buffer (200 mM, pH 5.0)

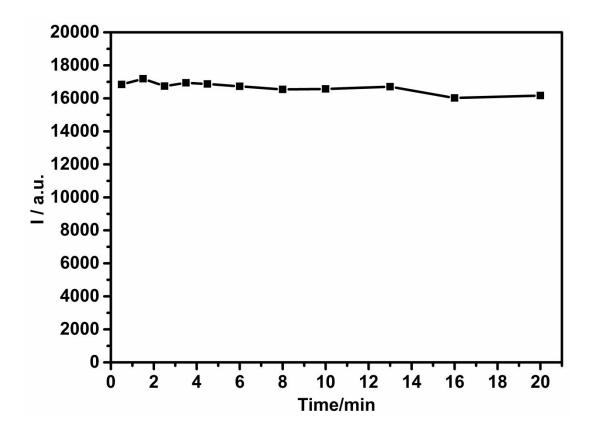
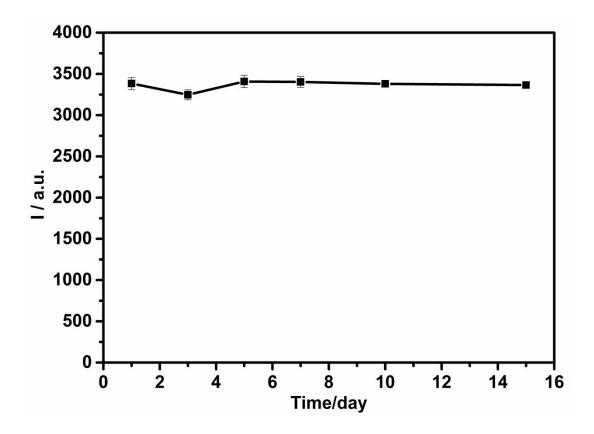



Figure S6. Effects of interaction time on fluorescence intensity of TbP-CPs with 2.0 μ M DPA in NaAc-HAc buffer (200 mM, pH 5.0)

Figure S7. The stability of 0.3 mg/mL TbP-CPs suspension solution in NaAc-HAc buffer (200 mM, pH 5.0)

REFERENCES

[1] Zhang, Y.; Li, B.; Ma, H.; Zhang, L.; Zheng, Y. Rapid and Facile Ratiometric Detection of an Anthrax Biomarker by Regulating Energy Transfer Process in Biometal-Organic Framework. Biosens. Bioelectron. 2016, 85, 287-293.

[2] Taylor, K. M. L.; Lin, W. B. Hybrid Silica Nanoparticles for Luminescent Spore Detection. J. Mater. Chem. 2009, 19, 6418-6422.

[3] Liu, M. L.; Chen, B. B.; He, J. H.; Li, C. M.; Li, Y. F.; Huang, C. Z. Anthrax Biomarker: An Ultrasensitive Fluorescent Ratiometry of Dipicolinic Acid by Using Terbium(III)-Modified Carbon Dots. Talanta 2019, 191, 443-448.

[4] Li, P. J.; Ang, A. N.; Feng, H. T.; Li, S. F. Y. Rapid Detection of an Anthrax Biomarker Based on the Recovered Fluorescence of Carbon Dot–Cu(II) Systems. J. Mater. Chem. C 2017, 5, 6962-6972.

[5] Song, Y. H.; Chen, J. Y.; Hu, D. Q.; Liu, F. F.; Li, P.; Li, H. B.; Chen, S. H.; Tan, H. L.; Wang, L. Ratiometric Fluorescent Detection of Biomakers for Biological Warfare Agents with Carbon Dots Chelated Europium-Based Nanoscale Coordination Polymers. Sens. Actuators. B 2015, 221, 586-592.

[6] Yung, P. T.; Lester, E. D.; Bearman, G.; Ponce, A. An Automated front-end Monitor for Anthrax Surveillance Systems Based on the Rapid Detection of Airborne Endospores. Biotechnol. Bioeng. 2007, 98, 864-871.

[7] Rieter, W. J.; Taylor, K. M.; Lin, W. Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing. J. Am. Chem. Soc. 2007, 129, 9852-9853.

[8] Tan, H. L.; Ma, C. J.; Chen, L. L.; Xu, F. G.; Chen, S. H.; Wang, L. Nanoscaled Lanthanide/Nucleotide Coordination Polymer for Detection of an Anthrax Biomarker. Sens. Actuators. B 2014, 190, 621-626.

[9] Tan, H. L.; Li, Q.; Ma, C. J.; Song, Y. H.; Xu, F. G.; Chen, S. H.; Wang, L. Lanthanide-Functionalized Silver Nanoparticles for Detection of an Anthrax Biomarker and Test Paper Fabrication. J Nanopart. Res. 2014, 16, 2151-2162.