Supporting Information

Surface-enhanced resonance Raman scattering guided brain tumor surgery showing prognostic benefit in rat models

Limei Han^{a,+}, Wenjia Duan^{a,+}, Xinwei Li^{a,+}, Cong Wang^a, Ziyi Jin^a, Yuting Zhai^{b,c}, Chong Cao^a, Luo Chen^a, Wenjing Xu^{b,c}, Ying Liu^{b,c}, Yong-Yan Bai^a, Jianfeng Feng^{b,c}, Mao Ying^{d,e}, Qi Yue^{*d}, Xiaoyong Zhang^{*b,c}, Cong Li^{*a,f}

^aMinhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China

^bInstitute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China

^cKey Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai 200433, China

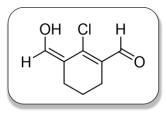
^dDepartment of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China

^eState Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China

^fInstitute of Functional and Molecular Medical Imaging, Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China

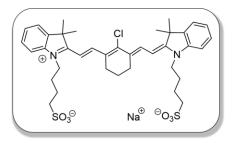
*Corresponding Author:

*E-mail: congli@fudan.edu.cn

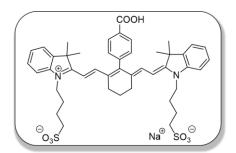

*E-mail: xiaoyong_zhang@fudan.edu.cn

*E-mail: yueqi1989@126.com

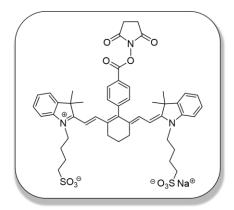
Table of content


1. Synthesis of molecular reporter IR7-SH	S3-S4
2. Characterization of AuS-IR7	S5
3. Mouse dorsal skin window chamber with SERS imaging	S 6
4. Supplemented spectra of IR7-SH	S7
5. Pictures of facilities used for in vivo visualization	S 8

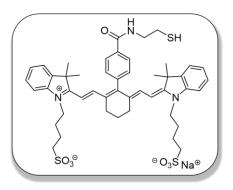
1. Synthesis of molecular reporter IR7-SH


1.1 Synthesis of compound 1. Mixing 8.0 mL N,Ndimethylformamide (DMF) with 8.0 mL dichloromethane (DCM) and 7.2 mL POCl₃ in 7 mL DCM to obtain solution 1 and solution 2 respectively. Dropwise adding solution 2 into solution 1 in ice bath

offered solution 3. Then cyclohexanone (2.0 g, 20.4 mM) in 10 mL DCM was dropwise added into solution 3. After continuously stirring at 65 $\,^{\circ}$ C for 3 h, the reactive mixture was poured into 50 g ice. The water-layer was collected and filtered to obtain aiming product as a yellow solid (2.75g, 15.9 mM, yield: 78%).


1.3. Synthesis of IR783. Sodium acetate (0.11 g, 1.4 mM), compound 1 (0.12 g, 0.7 mM) and 2 (0.41 g, 1.4 mM) were solved in acetic anhydride (13 mL). The mixture was stirred for 40 min at 70 °C. After cooling down to room temperature, superfluous ice-cold diethyl ether was added

and obtained a green color powder after filtration. The solid was further purified via silica gel chromatography (CH₂Cl₂:CH₃OH=10:3) to give pure product (0.44 g, 0.59 mM, yield: 84%).


1.4. Synthesis of compound 2. IR783 (0.3 g, 0.4 mM), potassium carbonate (120 mg, 0.86 mM) and 4hydroxyphenylboronic acid (120 mg, 0.72 mM) were dissolved in water (2 mL). The solution was heated to 95 °C before tetrakis(triphenylphosphine)palladium (27

mg, 0.023 mM) was added. The mixture was stirred for 2 h and TLC showed new compound has been produced. The product was purified via silica gel chromatography ($CH_2Cl_2:CH_3OH=10:3$) to give the purple solid (0.29 g, 0.35 mM, yield: 88%).

1.5 Synthesis of compound 3. Compound 3 (190 mg, 0.24 mM) was dissolved in anhydrous DMF (4 mL) and N-hydroxysuccinimide (33 mg, 0.29 mM) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide was then added for reaction. The mixture was kept in dark for 12 h to get a green solution. A dark green precipitate was obtained after the solution was added dropwise to iced diethyl ether (50

mL) and filtered. The precipitated was washed 2-3 times by anhydrous acetonitrile and then dissolved by iced water less than 5 mL (pH = 4-6). The product was dried under vacuum to give a loose green solid (183 mg ,0.2 mM, yield: 82%).

1.6 Synthesis of IR783-SH. Compound 3 (64 mg, 0.07mM) was mixed with cysteamine hydrochloride (4.79 mg, 0.042 mM) and trimethylamine (4.98 mg, 0.049mM) in anhydrous DMF and reacted in dark for 8 h to get a green mixture. The solution was added dropwise to iced diethyl ether (50 mL) and a green precipitate was obtained after

filtration. The solid was washed 2-3 times by anhydrous acetonitrile and then dissolved by iced water less than 5 mL (pH = 4-6). The product was dried under vacuum to give a loose green solid (48.8 mg, 0.054 mM, yield: 78%). ¹H NMR (400 MHz, CD₃OD) δ 8.09 (d, J = 7.1 Hz, 2H), 7.58 – 7.44 (m, 1H), 7.33 – 7.25 (m, 6H), 7.21 (d, J = 6.7 Hz, 2H), 7.12 (t, J = 11.0 Hz, 4H), 6.18 (d, J = 13.9 Hz, 2H), 4.06 (s, 4H), 3.74 (t, J = 7.8 Hz, 2H), 2.84 – 2.79 (m, 6H), 2.71 – 2.67 (m, 4H), 1.85 (m, 10H), 1.54 (t, 1H), 1.10 (m, J = 10.4 Hz, 12H). ¹³C NMR (151 MHz, MeOD) δ 178.55, 173.34, 149.21, 144.31, 143.62, 142.15, 135.29, 132.73, 131.13, 129.76, 128.81, 126.00, 123.31, 119.68, 111.93, 101.21, 51.83, 49.85, 44.78, 38.39, 28.06, 27.22, 26.90, 25.66, 23.57, 22.51.

2. Hydrodynamic diameter and Zeta potential of AuS-IR7

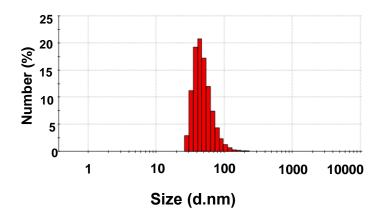


Figure S1. Hydrodynamic diameter of AuS-IR7.

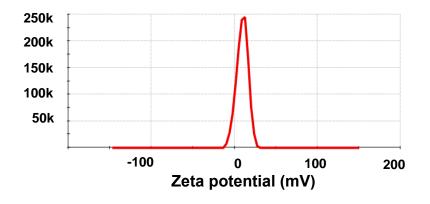


Figure S2. Zeta potential of AuS-IR7.

3. Development of mouse dorsal skin window chamber

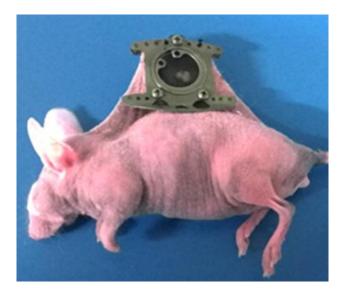
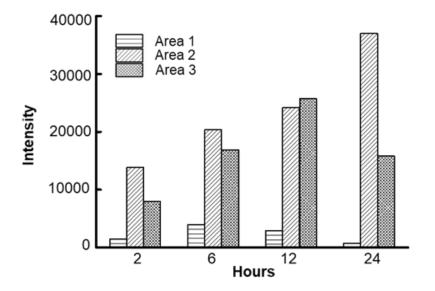
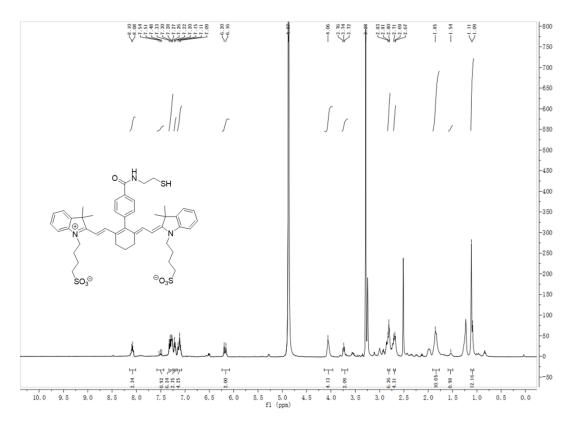
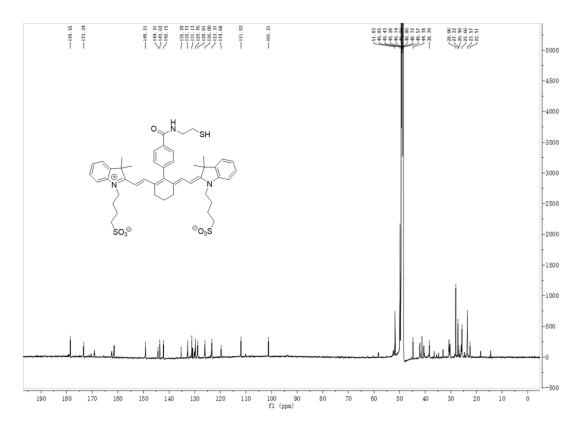
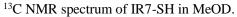


Figure S3. Picture of mouse dorsal skin window chamber model bearing a C6 glioma xenograft.


Figure S4. Raman signal intensities at the selected locations in mouse dorsal skin window chamber at 2, 6, 12 and 24 h post **AuS-IR7** injection.

4. Supplemented spectra of IR7-SH

¹H NMR spectrum of IR7-SH in CD₃OD-*d*₄.

5. Pictures of facilities used for in vivo visualization

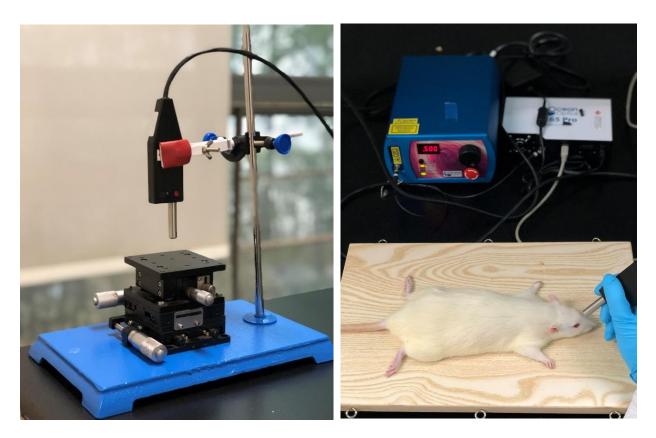


Figure S5. The pictures of facilities used for in vivo visualization of glioma in mouse skin window chamber (left) and SERRS-guided glioma surgery (right).