Supporting Information

Identification of New Small-Molecule Inducers of Estrogen-Related Receptor α (ERR α) Degradation

Lijie Peng, ${ }^{*, \dagger, \# \#}$ Zhensheng Zhang, ${ }^{\dagger, \#}$ Chong Lei, ${ }^{\dagger}$ Shan Li, ${ }^{\dagger}$ Zhang Zhang, ${ }^{\dagger}$ Xiaomei Ren, ${ }^{\dagger}$ Yu Chang, ${ }^{\dagger}$ Yan Zhang, ${ }^{\dagger}$ Yong Xu, ${ }^{\dagger}$ and Ke Ding* ${ }^{\dagger}$
${ }^{\dagger}$ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
${ }^{\ddagger}$ Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China

Contents of SI

1. General information	S2
2. Synthetic procedures and compound characterization	S3
3. In Vitro TR-FRET Assay	S47
4. Computational Study	S48
5. Western Blot Analysis	S49
6. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds	S 54
7. HPLC Purity Analysis	S83

1. General information

All reagents and solvents were obtained from commercial sources and were used without further treatment unless otherwise noted. Flash chromatography was performed using silica gel (200-300 mesh). All reactions were monitored by TLC, using silica gel plates with fluorescence F254 and UV light visualization. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-400 spectrometer at 400 MHz and 100 MHz , respectively. Coupling constants (J) are expressed in hertz (Hz). Chemical shifts (δ) of NMR are reported in parts per million (ppm) units relative to internal control (TMS). High resolution ESI-MS were recorded on an AB SCIEX X500r QTOF mass spectrometer. Purity of compounds was determined by reverse-phase high performance liquid chromatography (HPLC) analysis to be $>95 \%$. HPLC instrument: Dionex Summit HPLC (Column: Diamonsil C18, $5.0 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$ (Dikma Technologies); detector: PDA-100 photodiode array; inJector: ASI-100 autoinJector; pump: p-680A). A flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ was used with mobile phase of MeOH in $\mathrm{H}_{2} \mathrm{O}$.

2 Synthetic procedures and compound characterization

2.1 Procedure for preparing compound $\mathbf{4 a - 4 f}$.

Reagents and conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{DMF}, 8{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 85 \%$; (b) Piperidine, $\mathrm{CH}_{3} \mathrm{CN}$, $80^{\circ} \mathrm{C}, 5 \mathrm{~h}, 75 \%$; (c) for $\mathbf{4 b}$: $\mathrm{CH}_{3} \mathrm{I}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, $1 \mathrm{~h}, 93 \%$; for $\mathbf{4 c}$: oxalyl chloride, DMF, DCM, $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} 0,3 \mathrm{~h}, 54.5 \%$; for 4d: 2-methoxyethan-1-amine, HATU, DIPEA, DMF, rt, $1 \mathrm{~h}, 81 \%$; for $\mathbf{4 e}$: (1) tert-butyl 5-aminopentanoate, HATU, DIPEA, DMF, rt,
1 h, 68\% ;
(2) TFA, DCM, rt, $1 \mathrm{~h}, 93 \%$; for
4f: (1) tert-butyl 3-(2-aminoethoxy)propanoate, HATU, DIPEA, DMF, rt, 1 h, 66\% ; (2) TFA, DCM, rt, $1 \mathrm{~h}, 86 \%$.

32
4-((2, 4-bis(trifluoromethyl)benzyl)oxy)-3-methoxybenzaldehyde (32).
To a solution of 1-(bromomethyl)-2,4-bis(trifluoromethyl)benzene ($3.07 \mathrm{~g}, 10 \mathrm{mmol}$, $1 \mathrm{eq})$ in DMF (10 mL), Vanillin ($1.52 \mathrm{~g}, 10 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.9 \mathrm{~g}, 14 \mathrm{mmol}$, $1.4 \mathrm{eq})$ were added and stirred at $80^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the resulting mixture was extracted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=7: 1$) to afford 32 as a white solid ($3.21 \mathrm{~g}, 8.50 \mathrm{mmol}, 85 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87$ (s,
$1 \mathrm{H}), 7.97$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (dd, $J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$.

4a
(E)-3-(4-((2, 4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylic acid (4a).

To a solution of compound $\mathbf{3 2}(2.9 \mathrm{~g}, 7.7 \mathrm{mmol}, 1 \mathrm{eq})$ and 2-cyanoacetic acid (977.9 $\mathrm{mg}, 11.4 \mathrm{mmol}, 1.5 \mathrm{eq})$ in acetonitrile (20 mL), piperidine (1.5 mL) was added and stirred at $80{ }^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the resulting mixture was treated with water. Then hydrochloric acid (2 N) was added to precipitate solid. The mixture was extracted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=1: 1$) to afford $\mathbf{4 a}$ as a slightly yellow solid ($2.6 \mathrm{~g}, 5.8 \mathrm{mmol}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.79$ $(\mathrm{s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.81 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ $(\mathrm{s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 164.13,154.48,151.73$, $149.42,139.74,131.67,130.45,129.79(\mathrm{q}, ~ J=33.33 \mathrm{~Hz}), 128.16(\mathrm{q}, J=31.31 \mathrm{~Hz})$, $126.40,125.59,125.17,123.66,122.44,117.18,113.85,101.12,66.68,56.14$. HRMS (ESI^{+}): calculated for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 468.0636, found 468.0641. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA ($90: 10: 0.01$), $5.70 \mathrm{~min}, 98.94 \%$ purity.

Methyl (E)-3-(4-((2, 4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyan

 oacrylate (4b).$\mathbf{4 a}(200 \mathrm{mg}, 0.44 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in 3 mL anhydrous DMF. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (121.6 $\mathrm{mg}, 0.88 \mathrm{mmol}, 2 \mathrm{eq})$ and $\mathrm{CH}_{3} \mathrm{I}(41 \mu \mathrm{~L}, 0.66 \mathrm{mmol}, 1.5 \mathrm{eq})$ were added into reaction.

After being stirred for 1 h , the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE}: \mathrm{EA}=2: 1$) to give $\mathbf{4 b}$ as a white solid ($188 \mathrm{mg}, 0.41 \mathrm{mmol}$, 93% yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.35$ ($\mathrm{s}, 1 \mathrm{H}$), 8.18 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $8.12(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 163.26,155.26,152.09,149.43,139.67,131.72,130.47,129.32,128.03,126.81$, 125.40, 123.70, 122.41, 116.73, 114.02, 113.88, 99.46, 66.69, 56.17, 53.68. HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 482.0797$, found 482.0782. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(80: 20), 23.45 \mathrm{~min}, 100 \%$ purity.

(E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylam ide (4c).

Oxalyl chloride (0.5 mL) and and a drop of DMF was added to a solution of $\mathbf{4 a}$ (100 $\mathrm{mg}, 0.22 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{DCM}(2 \mathrm{~mL})$. The solution was concentrated in vacuo and the crude product is used without further purification after being stirred for 5 h at room temperature. The crude product obtained above was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and 28% ammonia solution (1 mL) was added at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature for 2 hours, the mixture was extracted with DCM and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $3: 1)$ to afford the product ($\mathbf{4 c}$) ($55 \mathrm{mg}, 0.12 \mathrm{mmol}, 55 \%$ yield) as white solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.57$ (dd, $J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 163.41$, $151.05,150.87,149.43,139.86,131.63,130.42,129.76$ (q, $J=32.32 \mathrm{~Hz}), 128.12(\mathrm{q}, J$
$=31.31 \mathrm{~Hz}$), $125.95,125.53,125.13,123.65,122.46,117.54,113.92,113.28,104.11$, 66.62, 56.11. HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 445.0981$, found 445.0973. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(80: 20), 11.20 \mathrm{~min}, 96.20 \%$ purity.

(E)-3-(4-((2, 4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano- N -(2-methoxyethyl) acrylamide (4d).

2-methoxyethan-1-amine ($39.8 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.2 \mathrm{eq}$), HATU ($216.7 \mathrm{mg}, 0.57 \mathrm{mmol}$, 1.3 eq) and DIPEA ($0.22 \mathrm{ml}, 1.3 \mathrm{mmol}, 3 \mathrm{eq}$) was added to a solution of Carboxylic acid $\mathbf{4 a}(200 \mathrm{mg}, 0.44 \mathrm{mmol}, 1 \mathrm{eq})$ in dry DMF (3 mL). After being stirred for 1 h at RT, the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography (PE / EA $=3: 1$) to give $\mathbf{4 d}\left(183 \mathrm{mg}, 0.36 \mathrm{mmol}, 82 \%\right.$ yield) as white solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.43$ (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.27$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 161.73, 151.06, 150.83, 149.42, 139.86, 131.62, 130.41, 129.74 (q, $J=36.36 \mathrm{~Hz}$), 128.11 ($\mathrm{q}, ~ J=32.32 \mathrm{~Hz}$), 125.94, 125.44, $125.18,123.63,122.45,117.42,113.91,113.40,103.73,70.59,66.61,58.37,56.12$. HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 503.1400 , found 503.1383 . HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (80:20), $15.19 \mathrm{~min}, 100 \%$ purity.

(E)-5-(3-(4-((2, 4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano acrylamido) pentanoic acid (4e).

Tert-butyl 5 -aminopentanoate ($91.8 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.2 \mathrm{eq}$), HATU ($216.7 \mathrm{mg}, 0.57$ mmol, 1.3 eq) and DIPEA ($0.22 \mathrm{ml}, 1.3 \mathrm{mmol}, 3 \mathrm{eq}$) was added to a solution of Carboxylic acid $\mathbf{4 a}(200 \mathrm{mg}, 0.44 \mathrm{mmol}, 1 \mathrm{eq})$ in dry DMF (3 mL). After being stirred for 1 h at RT , the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EA}=2: 1)$ to give tert-butyl ester intermediate $(178 \mathrm{mg}, 0.30$ $\mathrm{mmol}, 68 \%$ yield) as yellow solid. TFA (1 mL) was added to a solution of tert-butyl ester intermediate above in DCM (2 mL). After being stirred for 1 h , the solvents were removed in vacuo, and residual TFA was removed by the addition and evaporation of toluene ($3 \times 3 \mathrm{~mL}$) to give $\mathbf{4 e}(155 \mathrm{mg}, 0.28 \mathrm{mmol}, 93 \%)$ as yellow solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.01(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (dd, $J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 174.85,161.54,150.99,150.62,149.42,139.87,130.41,129.76$ (q, $J=$ 33.33 Hz), 128.11 (q, $J=32.32 \mathrm{~Hz}$), 126.00, 125.35, 125.18, 125.13, 123.62, 122.44, $117.45,113.91,113.39,103.97,79.44(\mathrm{t}, J=33.33 \mathrm{~Hz}), 66.63,56.13,33.74,28.88$, 22.35. HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 545.1506, found 545.1495. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA ($80: 20: 0.02$), $7.67 \mathrm{~min}, 96.85 \%$ purity.

(E)-3-(2-(3-(4-((2, 4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano acrylamido)ethoxy)propanoic acid (4f).

Tert-butyl 3-(2-aminoethoxy)propanoate ($100.3 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.2 \mathrm{eq}$), HATU ($216.7 \mathrm{mg}, 0.57 \mathrm{mmol}, 1.3 \mathrm{eq}$) and DIPEA ($0.22 \mathrm{~mL}, 1.3 \mathrm{mmol}, 3 \mathrm{eq}$) was added to a solution of Carboxylic acid $\mathbf{4 a}(200 \mathrm{mg}, 0.44 \mathrm{mmol}, 1 \mathrm{eq})$ in dry DMF (3 mL). After
being stirred for 1 h at RT, the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=2: 1$) to give tert-butyl ester intermediate ($178 \mathrm{mg}, 0.29$ $\mathrm{mmol}, 66 \%$ yield) as yellow solid. TFA (1 mL) was added to a solution of tert-butyl ester intermediate above in DCM (2 mL). After being stirred for 1 h , the solvents were removed in vacuo, and residual TFA was removed by the addition and evaporation of toluene (3 x 3 mL) to give $\mathbf{4 f}(140 \mathrm{mg}, 0.25 \mathrm{mmol}, 86 \%)$ as yellow solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.18(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{~s}$, $1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.49(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 173.09, 161.76, 151.07, 150.84, 149.42, 139.87, 131.64, 130.47, 129.96, 128.28, 125.95, 125.47, 123.66, 117.40, 113.92, 113.40, 103.72, 68.76, 67.01, 66.42, 56.13, 35.13. HRMS (ESI^{+}): calculated for Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 561.1455 , found 561.1444. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA (80 : $20: 0.02$), $11.91 \mathrm{~min}, 97.96 \%$ purity.

2.2 General Procedure for Preparing Linker

A) Synthesis of Linker (10a-10b, 10d):

Reaction conditions: (a) tert-Butanol, DCC, DMAP, DCM, rt; (b) Pd/C, $\mathrm{H}_{2}, \mathrm{EtOH}$, $40{ }^{\circ} \mathrm{C}$.

Tert-butyl 6-(((benzyloxy)carbonyl)amino)hexanoate(34d). General procedure for syntheses of 34a-34b.

6-(((benzyloxy)carbonyl)amino)hexanoic acid (1.0 g , $3.8 \mathrm{mmol}, 1 \mathrm{eq})$, DMAP (92.8
$\mathrm{mg}, 0.76 \mathrm{mmol}, 0.2 \mathrm{eq})$ and $\operatorname{DCC}(862.5 \mathrm{mg}, 4.2 \mathrm{mmol}, 1.1 \mathrm{eq}$ were added to a solution of tert-butanol ($0.73 \mathrm{ml}, 7.6 \mathrm{mmol}, 2.0 \mathrm{eq}$) in DCM (5 mL) and stirred at room temperaturethe for 3 h . The mixture was evaporated to obtain the residue. The residue was purified by flash chromatography $(\mathrm{PE} / \mathrm{EA}=6: 1)$ to afford $\mathbf{3 4 d}(1.1 \mathrm{~g}$, $3.4 \mathrm{mmol}, 89 \%$ yield) as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (dd, $J=$ $15.1,11.0 \mathrm{~Hz}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=13.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{dd}, J=15.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{dd}, J=14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.43$ (d, $J=3.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.34(\mathrm{dd}, J=15.2,8.2 \mathrm{~Hz}, 2 \mathrm{H})$.

Tert-butyl 3-(((benzyloxy)carbonyl)amino)propanoate (34a).
Yield: 76\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}$, $2 \mathrm{H}), 3.42(\mathrm{dd}, J=12.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl 4-(((benzyloxy)carbonyl)amino)butanoate (34b).
Yield: $83 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}$, $1 \mathrm{H}), 3.23(\mathrm{dd}, J=13.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.43$ ($\mathrm{s}, 9 \mathrm{H}$).

10d
Tert-butyl 6-aminohexanoate (10d). General procedure for syntheses of $\mathbf{1 0 a}, \mathbf{1 0 b}$.
10% palladium on carbon catalyst (90 mg) was added to a solution of the ester 34d ($730 \mathrm{mg}, 2.3 \mathrm{mmol}, 1 \mathrm{eq}$) in ethanol (6 mL). The mixture were stirred under an atmosphere of hydrogen for 24 h at $45^{\circ} \mathrm{C}$. The reaction mixture was filtered through a pad of Celite, washed with ethyl acetate and the filtrate was evaporated to obtain 10d ($201 \mathrm{mg}, 1.1 \mathrm{mmol}, 48 \%$ yield) as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.68(\mathrm{t}$,
$J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{dd}, J=15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.42$ $(\mathrm{m}, 11 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 2 \mathrm{H})$.

10a
Tert-butyl 3-aminopropanoate (10a).
Yield: 55%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.92(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.

10b

Tert-butyl 4-aminobutanoate (10b).

Yield: 47%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.70(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2H), 1.76-1.67 (m, 2H), 1.43 (s, 9H).
B) Synthesis of Linker ($\mathbf{1 0 h}-\mathbf{1 0 j}$):

Reaction conditions: (a)Na, THF, rt; (b) TsCl, DMAP, TEA, DCM, rt; (c) NaN_{3}, DMF, $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (d) $\mathrm{PPh}_{3}, \mathrm{H}_{2} \mathrm{O}$, THF, rt.

Tert-butyl 3-(2-hydroxyethoxy)propanoate (36h). General procedure for syntheses of 36i, 36j.

To a solution of anhydrous ethylene glycol ($10 \mathrm{~g}, 161.1 \mathrm{mmol}, 3 \mathrm{eq}$) in dry THF (40 mL), Sodium metal ($62.0 \mathrm{mg}, 2.70 \mathrm{mmol}, 0.05 \mathrm{eq}$) was added and stirred at RT for 2 h . Tert-butyl acrylate ($6.90 \mathrm{~g}, 53.7 \mathrm{mmol}, 1 \mathrm{eq}$) was added and allowed to stir for 10 h .

The resulting mixture was concentrated in vacuo, and extracted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=2: 1$) to obtain $\mathbf{3 6 h}(5.0 \mathrm{~g}, 26.3 \mathrm{mmol}, 49 \%$ yield) as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77$ - $3.67(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 2 \mathrm{H})$, 2.54-2.43 (m, 3H), 1.45 ($\mathrm{s}, 9 \mathrm{H}$).

Tert-butyl 3-(2-(2-hydroxyethoxy)ethoxy)propanoate (36i).
Yield: 51%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.72$ (dd, $J=8.4,4.4 \mathrm{~Hz}, 4 \mathrm{H}$), $3.67-3.57$ (m, 6H), $2.58(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.

36j
Tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (36j).
Yield: $46 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.70(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.67-3.57(\mathrm{~m}$, $10 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl 3-(2-(tosyloxy)ethoxy)propanoate (37h). General procedure for syntheses of $\mathbf{3 7 i}$, $\mathbf{3 7 j}$.

A solution of tosyl chloride ($3.23 \mathrm{~g}, 17 \mathrm{mmol}, 1.3 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{3 6 h}(2.5 \mathrm{~g}, 13.1 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{NEt}_{3}(2.4 \mathrm{~mL}, 17 \mathrm{mmol}$, $1.3 \mathrm{eq})$ and DMAP ($402.8 \mathrm{mg}, 3.3 \mathrm{mmol}, 0.25 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 8 hours at room temperature. The resulting mixture was treated with saturated NaHCO_{3} and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=7: 1$) to obtain $\mathbf{3 7 h}(3.9 \mathrm{~g}, 11.3 \mathrm{mmol}, 86 \%)$ as colorless
oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.15(\mathrm{dd}, J=5.4,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=8.1,4.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.45$ (s, 9H).

Tert-butyl 3-(2-(2-(tosyloxy)ethoxy)ethoxy)propanoate (37i).
Yield: 74%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 ($\mathrm{d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.57-3.50(\mathrm{~m}, 4 \mathrm{H}), 2.46(\mathrm{t}, J=6.5$ Hz, 2H), 2.43 (s, 3H), 1.43 (s, 9H).

37j
Tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate (37j).
Yield: $77 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.18-4.14$ (m, 2H), 3.69 (dd, $J=11.6,5.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.58(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 8 \mathrm{H})$, $2.49(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl 3-(2-azidoethoxy)propanoate (38h), General procedure for syntheses of $\mathbf{3 8 i}, \mathbf{3 8 j}$.

37h ($3.0 \mathrm{~g}, 8.6 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{NaN}_{3}(2.8 \mathrm{~g}, 43 \mathrm{mmol}, 5 \mathrm{eq})$ were dissolved in $\operatorname{DMF}(8 \mathrm{ml})$. The reaction mixture was heated to reflux for 3 h at $100{ }^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was extracted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography (PE / $\mathrm{EA}=8: 1)$ to obtain $\mathbf{3 8} \mathbf{h}(1.7 \mathrm{~g}, 7.9 \mathrm{mmol}, 92 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.72(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51$ (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl 3-(2-(2-azidoethoxy)ethoxy)propanoate.(38i).
Yield: $88 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.60(\mathrm{~m}$, $6 \mathrm{H}), 3.38(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.

38j
Tert-butyl 3-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)propanoate(38j).
Yield: 79%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.74-3.59(\mathrm{~m}, 12 \mathrm{H}), 3.39(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl 3-(2-aminoethoxy)propanoate (10h), General procedure for syntheses of $\mathbf{1 0 i}, \mathbf{1 0 j}$.
$\mathrm{PPh}_{3}(1.84 \mathrm{~g}, 7.0 \mathrm{mmol}, 1.5 \mathrm{eq})$ and water $(3 \mathrm{~mL})$ were added to a solution of $\mathbf{3 8 h}(1.0$ $\mathrm{g}, 4.7 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (18 mL) and stirred at room temperature overnight. After evaporation of the solvent, the residue was purified by silica gel column chromatography ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain $\mathbf{1 0 h}(525$ $\mathrm{mg}, 2.8 \mathrm{mmol}, 60 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 1.44 ($\mathrm{s}, 9 \mathrm{H}$).

Tert-butyl 3-(2-(2-aminoethoxy)ethoxy)propanoate (10i).
Yield: 59%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.71(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 4 \mathrm{H}), 3.49(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.43 (s, 9H).

Tert-butyl 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)propanoate(10j).
Yield: 65%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.70(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.66-3.57(\mathrm{~m}$, $8 \mathrm{H}), 3.50(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}$, 9H).
C) Synthesis of linker 10g:

Reaction conditions: (a) Potassium tertbutoxide, tertbutanol, rt; (b) Pd / C, $\mathrm{H}_{2}, \mathrm{EtOH}$, $40{ }^{\circ} \mathrm{C}$; (c) TsCl, DMAP, TEA, DCM, rt; (d) NaN_{3}, DMF, $100{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (e) $\mathrm{PPh}_{3}, \mathrm{H}_{2} \mathrm{O}$, THF, rt.

Tert-butyl 2-(2-(benzyloxy)ethoxy)acetate (41).

To a solution of Potassium tertbutoxide ($2.24 \mathrm{~g}, 20 \mathrm{mmol}, 1 \mathrm{eq}$) in anhydrous tertbutanol (24 mL), compound $39(3.00 \mathrm{~g}, 20 \mathrm{mmol}, 1 \mathrm{eq})$ was added and stirred at RT for 30 min . Then the flask was cooled to $10{ }^{\circ} \mathrm{C}$ and tert-butyl bromoacetate $(3.90 \mathrm{~g}$, $20 \mathrm{mmol}, 1 \mathrm{eq}$) was added and stirred at RT for 16 h . The mixture was extracted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=6: 1$) to obtain $41(2.60 \mathrm{~g}, 9.76 \mathrm{mmol}, 49 \%)$ as a
colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~s}$, 2 H), 3.74 (dd, $J=5.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=5.9,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl 2-(2-hydroxyethoxy)acetate (42).

Ester $41(2.40 \mathrm{~g}, 9.01 \mathrm{mmol}, 1 \mathrm{eq})$ and 10% palladium on carbon catalyst (200 mg) were mixed in ethanol (15 mL), stirred for 24 h at $45{ }^{\circ} \mathrm{C}$ under an atmosphere of hydrogen. The reaction mixture was filtered through a pad of Celite, washed with ethyl acetate. The filtrate was extracted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The combined organic layer were washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EA}=$ $1: 1)$ to obtain $42(680 \mathrm{mg}, 3.86 \mathrm{mmol}, 43 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=5.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}$, $1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.

Following the procedure used in the synthesis of linker 10 h , linker 10 g was obtained with 42 instead of 36h. Tert-butyl 2-(2-(tosyloxy)ethoxy)acetate (43).
Yield: $78 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.22-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.

44

Tert-butyl 2-(2-azidoethoxy)acetate (44).
Yield: 85%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=6.9,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.44(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.

10 g

Tert-butyl 2-(2-aminoethoxy) acetate(10g).
Yield: 55%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52$ (t, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43$ (s, 9H).

2.3 General procedure for preparing ERRa-PROTACS

A) Synthesis of PROTAC 6a-b, 6d, 6g-j:

B) Synthesis of PROTAC 6c, 6e-f:

C) Synthesis of PROTAC 7a-h:

D) Synthesis of PROTAC 8a-b:

E) Synthesis of PROTAC 9a-b:

28

Reagents and conditions: (a) HATU, DIPEA, DMF, rt; (b) TFA, DCM, rt; (c) HATU, DIPEA, DMF, rt; B. (a) HATU, DIPEA, DMF, rt; (b) TFA, DCM, rt; (c) HATU, DIPEA, DMF, rt; C. (a) DIPEA, DMF, $90^{\circ} \mathrm{C}$; (b) TFA, DCM, rt; (c) HATU, DIPEA, DMF, rt; D. (a) HATU, DIPEA, DMF, rt; (b) TFA, DCM, rt; (c) HATU, DIPEA, DMF, rt; (d) 4 N HCl in 1,4-dioxane, DCM, rt; E. (a) HATU, DIPEA, DMF, rt; (b) TFA,

DCM, rt; (c) HATU, DIPEA, DMF, rt.

11a
Tert-butyl (E)-3-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2cyanoacrylamido)propanoate (11a). General procedure for syntheses of 11b, 11d, 11g-11j.

10a ($77 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.2 \mathrm{eq}$), HATU ($216.7 \mathrm{mg}, 0.57 \mathrm{mmol}, 1.3 \mathrm{eq}$) and DIPEA ($0.22 \mathrm{~mL}, 1.3 \mathrm{mmol}, 3 \mathrm{eq}$) was added to a solution of carboxylic acid $\mathbf{4 a}(200 \mathrm{mg}$, $0.44 \mathrm{mmol}, 1 \mathrm{eq}$) in dry DMF (3 mL). After being stirred for 1 h at RT, the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=2: 1$) to give 11a ($170 \mathrm{mg}, 0.30 \mathrm{mmol}, 68 \%$ yield) as yellow solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=12.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.49$ ($\mathrm{s}, 9 \mathrm{H}$).

11b
Tert-butyl (E)-4-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2cyanoacrylamido)butanoate (11b).

Yield: 61%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dd}, J=12.8$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl (E)-6-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2cyanoacrylamido)hexanoate (11d).

Yield: $54 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=13.2$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.35(\mathrm{~m}$, $2 H)$.

Tert-butyl (E)-2-(2-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl) -2-cyanoacrylamido)ethoxy)acetate (11g).

Yield: $69 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl (E)-3-(2-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl) -2-cyanoacrylamido)ethoxy)propanoate (11h).

Yield: $66 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~d}$,
$J=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.52(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl (E)-3-(2-(2-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphe nyl)-2-cyanoacrylamido)ethoxy)ethoxy)propanoate (11i).

Yield: 54%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=14.3,6.7 \mathrm{~Hz}$, 2H), 5.46 (s, 2H), 3.98 (s, 3H), 3.74 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.69-3.58$ (m, 8H), 2.52 (t, J $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl (E)-1-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cy ano-3-oxo-7,10,13-trioxa-4-azahexadec-1-en-16-oate (11j).

Yield: $56 \%{ }^{1}{ }^{1} \mathrm{H} ;$; MR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (s, 1H), $7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H})$, $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.59(\mathrm{~m}, 14 \mathrm{H}), 2.49(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.

(2S,4R)-1-((S)-2-(3-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphe nyl)-2-cyanoacrylamido)propanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4 -methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (6a). General procedure for syntheses of $\mathbf{6 b}, \mathbf{6 d}, \mathbf{6 g} \mathbf{- 6 j}$.

TFA (1 mL) was added to a solution of Compound 11a ($100 \mathrm{mg}, 0.17 \mathrm{mmol}, 1 \mathrm{eq}$) in

DCM (2 mL). After being stirred for 1 h , the solvent was removed in vacuo, and residual TFA was removed by the addition and evaporation of toluene ($3 \times 3 \mathrm{~mL}$). The crude product was used to next step without further purification. HATU (83.6 mg , $0.22 \mathrm{mmol}, 1.3 \mathrm{eq}$), DIPEA ($85 \mu \mathrm{~L}, 0.51 \mathrm{mmol}, 3 \mathrm{eq}$) and $13(86.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.2$ eq) was added to a solution of the crude product obtained above (1.0 eq.) in DMF (2 $\mathrm{ml})$ at $25^{\circ} \mathrm{C}$. After being stirred for 1 h , the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography $\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 96\right)$ to give $\mathbf{6 a}(62 \mathrm{mg}, 0.067$ $\mathrm{mmol}, 39 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ - $7.28(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}$, $2 \mathrm{H}), 4.72(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=16.4,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.29(\mathrm{dd}, J=15.1,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}, J=12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67-3.51 (m, 2H), $3.38(\mathrm{~s}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 6 \mathrm{H}), 2.16$ (dd, $J=13.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $0.93(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.98,171.70,170.79,160.89,152.45$, $151.14,150.29,149.69,148.46,139.04,138.07,131.53,130.94,130.55(\mathrm{q}, J=34.34$ Hz), 129.47, 129.24, 128.69, 128.02, 127.79 (q, $J=33.33 \mathrm{~Hz}$), 126.46, 125.85, 124.70 (d, $J=25.25 \mathrm{~Hz}$), 123.20, 122.00 (q, $J=23.23 \mathrm{~Hz}$), 117.41, 113.01, 112.26, 101.46, $77.24,70.26,66.25,58.59,57.91,57.07,56.07,43.19,36.67,36.07,35.17,34.99$, 26.41, 16.06. HRMS (ESI^{+}): calculated for $\mathrm{C}_{45} \mathrm{H}_{47} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 929.3126, found 929.3132 . HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 10.13 \mathrm{~min}, 95.17 \%$ purity.

(2S,4R)-1-((S)-2-(4-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphe nyl)-2-cyanoacrylamido)butanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (6b).

Yield: 59\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.28$ (s, 1H), 6.87 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62-.48(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{dd}, J=14.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.97 (s, 3H), 3.61 (dd, $J=11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.48(\mathrm{~m}, 4 \mathrm{H})$, 2.35 (dd, $J=11.7,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{dd}, J=13.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 2 \mathrm{H})$, $0.95(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.48,171.89,170.73,161.15,152.68$, $151.11,150.30,149.71,148.47,139.08,138.06,131.56,130.98,130.55$ (q, $J=33.33$ $\mathrm{Hz}), 129.52129 .25,128.71,128.11,127.80(\mathrm{q}, ~ J=32.32 \mathrm{~Hz}), 126.44,125.90,124.71$ (d, $J=25.25 \mathrm{~Hz}$), 123.24, 122.00 (d, $J=23.23 \mathrm{~Hz}$), 117.47, 113.05, 112.27, 101.44, $77.24,70.18,66.24,58.56,58.02,56.93,56.08,43.25,40.28,35.83,34.71,33.66$, 26.45, 24.76, 16.07. HRMS (ESI ${ }^{+}$: calculated for $\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 943.3282, found 943.3287. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 10.80 \mathrm{~min}$, 98.13\% purity.

(2S,4R)-1-((S)-2-(6-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphe nyl)-2-cyanoacrylamido)hexanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (6d).

Yield: 44\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H})$, 7.85 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 6 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}$, $1 \mathrm{H}), 6.17$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (s, 2H), 4.73 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.56 (dd, $J=21.1$, $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.33$ (dd, $J=14.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, $3.59(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.19$ (dd, $J=22.4,6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.70-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{dd}, \mathrm{J}=26.9,12.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.51,171.89,170.79,160.67,152.38,151.10,150.30,149.72$, $148.47,139.09,138.08,131.56,130.96,130.54$ (q, $J=34.34 \mathrm{~Hz}$), 129.51, 129.25,
128.71, 128.07, $127.80(\mathrm{q}, J=32.32 \mathrm{~Hz}), 126.49,125.91,124.71(\mathrm{~d}, J=25.25 \mathrm{~Hz})$, $123.22,122.00(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 117.64,113.05,112.15,101.43,77.24,70.06,66.24$, 58.51, 57.48, 56.82, 56.08, 43.23, 40.32, 36.05, 35.96, 34.94, 29.00, 26.41, 26.17, 24.92, 16.07. HRMS (ESI^{+}): calculated for $\mathrm{C}_{48} \mathrm{H}_{53} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 971.3595, found 971.3595 . HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 10.73 \mathrm{~min}, 96.53 \%$ purity.

(2S,4R)-1-((S)-2-(((2-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyph enyl)-2-cyanoacrylamido)ethoxy)methyl)amino)-3,3-dimethylbutanoyl)-4-hydrox $\mathbf{y}-\mathrm{N}$-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide ($\mathbf{6 g}$).
Yield: $35 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{dd}, J=16.0,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.31(\mathrm{dd}, J=15.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=12.9 \mathrm{~Hz}$, 2H), 3.94 (s, 3H), $3.77-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.62$ (dd, $J=15.8,4.0 \mathrm{~Hz}, 4 \mathrm{H}$), 2.49 (s, 4H), $2.11(\mathrm{dd}, J=13.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.36,170.73,169.87,161.15,152.83,151.20,150.30,149.72,148.44$, 139.04, 138.13, 131.56, 130.92, $130.56(\mathrm{q}, J=33.33 \mathrm{~Hz}), 129.46,129.25,128.72$, 128.09, $127.80(\mathrm{q}, ~ J=32.32 \mathrm{~Hz}), 126.52,125.86,124.7(\mathrm{~d}, J=24.24 \mathrm{~Hz}), 123.24$, $122.00(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 117.44,113.06,112.27,101.28,77.24,70.18,66.25,60.42$, $58.58,57.02,56.84,56.07,43.18,40.33,35.91,35.28,26.41,16.05 . \mathrm{HRMS}_{\left(\mathrm{ESI}^{+}\right):}$ calculated for $\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 959.3231, found 959.3239. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 9.62 \mathrm{~min}, 99.10 \%$ purity.

(2S,4R)-1-((S)-2-(3-(2-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyp henyl)-2-cyanoacrylamido)ethoxy)propanamido)-3,3-dimethylbutanoyl)-4-hydro xy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (6h). Yield: 56\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32$ (m, 6H), 7.20 ($\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H})$, $4.77(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=15.0,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{td}, J=9.9,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-$ 3.54 (m, 5H), 3.13 (s, 1H), 2.56 - 2.45 (m, 6H), 2.13 (dd, $J=13.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.94$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.79, 171.66, 170.92, 161.10, 152.71, $151.14,150.28,149.70,148.43,139.06,138.15,131.57,130.88,130.55(\mathrm{q}, J=33.33$ $\mathrm{Hz})$, 129.41, 129.25, 128.71, 128.03, 127.80 (q, $J=32.32 \mathrm{~Hz}$), 126.44, 125.88, 124.71 (d, $J=25.25 \mathrm{~Hz}$), 123.24, $122.00(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 117.49,113.05,112.28,101.46$, $77.24,70.19,69.22,66.56(\mathrm{~d}, J=57.57 \mathrm{~Hz}), 66.24,58.48,57.44,56.92,56.07,43.16$, 40.79, 36.58, 36.04, 35.38, 26.41, 16.06. HRMS (ESI $)$: calculated for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{NaO}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 995.3207$, found 995.3209. HPLC analysis: MeOH : $\mathrm{H}_{2} \mathrm{O}(85: 15), 10.18 \mathrm{~min}, 96.36 \%$ purity.

(2S,4R)-1-((S,E)-16-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-(tert-butyl)-15-cyano-4,14-dioxo-7,10-dioxa-3,13-diazahexadec-15-enoyl)-4-hydro xy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (6i).

Yield: $61 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.1$
$\mathrm{Hz}, 2 \mathrm{H}), 7.84$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.29$ (m, 6H), 7.06 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.63 - 4.46 (m, 3H), 4.31 (dd, $J=15.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (s, $3 \mathrm{H}), 3.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.27(\mathrm{~m}, 10 \mathrm{H}), 2.58-2.38(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{dd}, J$ $=13.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.06, 171.91, $170.80,160.93,152.52,151.11,150.27,149.73,148.45,139.09,138.14,131.57$, $130.92,130.54(\mathrm{q}, J=33.33 \mathrm{~Hz}), 129.4,129.25,128.70,128.08,127.79(\mathrm{q}, J=32.32$ $\mathrm{Hz}), 126.54,125.88,124.71(\mathrm{~d}, J=25.25 \mathrm{~Hz}), 123.23,122.00(\mathrm{~d}, J=23.23 \mathrm{~Hz})$, $117.42,113.04,112.17,101.50,77.23,70.31,70.19,70.13,69.19,67.15,66.23,58.37$, 57.59, 56.76, 56.12, 43.22, 40.23, 36.70, 35.93, 34.99, 26.41, 16.07. HRMS (ESI ${ }^{+}$: calculated for $\mathrm{C}_{49} \mathrm{H}_{55} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1017.3650$, found 1017.3635. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 10.31 \mathrm{~min}, 98.32 \%$ purity.

(2S,4R)-1-((S,E)-19-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-(tert-butyl)-18-cyano-4,17-dioxo-7,10,13-trioxa-3,16-diazanonadec-18-enoyl)-4-h ydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (6j).

Yield: $40 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=4.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.05$ - 6.94 (m, 2H), 6.87 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.45 (s, 2H), 4.73 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.61 4.44 (m, 3H), 4.33 (dd, $J=15.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.52(\mathrm{~m}, 13 \mathrm{H}), 3.47(\mathrm{~s}, 1 \mathrm{H}), 2.57-2.42(\mathrm{~m}, 6 \mathrm{H}), 2.13$ $(\mathrm{dd}, J=13.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.15$, $171.88,170.81,160.83,152.38,151.07,150.29,149.71,148.47,139.11,138.15$, $131.58,130.91,130.53(\mathrm{q}, J=34.34 \mathrm{~Hz}), 129.49,129.24,128.71,128.10,127.80(\mathrm{q}, J$ $=32.32 \mathrm{~Hz}), 126.45,125.95,124.71(\mathrm{~d}, J=24.24 \mathrm{~Hz}), 123.21,122.00(\mathrm{~d}, J=22.22$ $\mathrm{Hz}), 117.42,113.07,112.26,101.59,77.23,70.52,70.38,70.11,69.43,67.12,66.25$, $58.28,57.72,56.68,56.100,43.22,40.32,36.62,35.89,34.71,26.40,16.07$. HRMS
(ESI) calculated for $\mathrm{C}_{51} \mathrm{H}_{59} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1061.3912$, found 1061.3887. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 10.36 \mathrm{~min}, 95.08 \%$ purity.

15
Tert-butyl(5-(((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carba moyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)amino)-5-oxopentyl)carbam ate (15).

HATU ($133 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.5 \mathrm{eq}$), DIPEA ($0.20 \mathrm{~mL}, 1.2 \mathrm{mmol}, 5 \mathrm{eq}$) and 13 (100 $\mathrm{mg}, \quad 0.23 \mathrm{mmol}, 1 \mathrm{eq}$) was added to a solution of 5-((tert-butoxycarbonyl)amino)pentanoic acid ($61 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.2 \mathrm{eq}$) in dry DMF (2 mL). After being stirred for 1 h at RT, the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=20: 1$) to give $\mathbf{1 5}$ (89 $\mathrm{mg}, 0.15 \mathrm{mmol}, 65 \%$ yield $)$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~s}, 1 \mathrm{H})$, $7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.62-4.49(\mathrm{~m}$, $3 \mathrm{H}), 4.33$ (dd, $J=15.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.08 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 4 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.48-1.39(\mathrm{~m}, 12 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$.

(2S,4R)-1-((S)-2-((4-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphe nyl)-2-cyanoacrylamido)butyl)amino)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (6c).

TFA (1 mL) was added to a solution of Compound 15 ($80 \mathrm{mg}, 0.13 \mathrm{mmol}, 1 \mathrm{eq}$) in

DCM (2 mL). After being stirred for 1 h , the solvents were removed in vacuo, and residual TFA was removed by the addition and evaporation of toluene ($3 \times 3 \mathrm{~mL}$). The crude product was used to next step without further purification. HATU ($76 \mathrm{mg}, 0.20$ mmol, 1.5 eq), DIPEA ($110 \mu \mathrm{~L}, 0.65 \mathrm{mmol}, 5 \mathrm{eq}$) and $\mathbf{4 a}(73 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added to a solution of the crude product obtained above (1.0 eq) in DMF (2 ml) at $25{ }^{\circ} \mathrm{C}$. After being stirred for 1 h , the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography (MeOH : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=4$: 96) to give $\mathbf{6 c}(81 \mathrm{mg}, 0.085 \mathrm{mmol}$, 65%) as white solid: $[\alpha] 25 \mathrm{D}-22.39^{\circ}(c 0.134, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.91-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.45(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.35(\mathrm{dd}, J=$ $15.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dd}, J=11.3,3.3 \mathrm{~Hz}$, 1 H), $3.57-3.30(\mathrm{~m}, 3 \mathrm{H}), 2.52$ (s, 4H), 2.29 (dt, $J=15.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.17 (dd, $J=$ $13.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=13.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.79,171.66,170.92,161.10,152.71,151.14$, $150.28,149.70,148.43,139.06,138.15,131.57,130.88,130.55(\mathrm{q}, J=33.00 \mathrm{~Hz})$, $129.41,129.25,128.71,128.03,127.80(\mathrm{q}, J=32.32 \mathrm{~Hz}), 126.44,125.88,124.71$ (d, J $=25.25 \mathrm{~Hz}), 123.24,122.00(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 117.49,113.05,112.28,101.46,77.24$, $70.19,69.22,66.84,66.26(\mathrm{q}, J=23.23 \mathrm{~Hz}), 58.48,57.44,56.92,56.07,43.16,40.79$, 36.58, 36.04, 35.38, 26.41, 16.06. HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}: 957.3439$, found 957.3435 . HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 10.69 \mathrm{~min}$, 96.40 \% purity.

(2S,4R)-1-((S)-2-(7-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphe
nyl)-2-cyanoacrylamido)heptanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4 -methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamid (6e). Compound 6e was synthesized from 7-((tert-butoxycarbonyl)amino)heptanoic acid with similar procedure to that of $\mathbf{6 c}$.

Yield: $71 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.86$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H})$, 4.73 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{dd}, J=15.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=11.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.34(\mathrm{~m}, 3 \mathrm{H})$, $2.50(\mathrm{~s}, 4 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{dd}, J=13.9,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.33(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $4 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.74, 171.92, 170.76, 160.66, $152.30,151.09,150.30,149.72,148.47,139.10,138.09,131.56,130.96,130.54(\mathrm{q}, J$ $=33.33 \mathrm{~Hz}), 129.51,129.25,128.71,128.08,127.80(\mathrm{q}, J=33.33 \mathrm{~Hz}), 126.51,125.91$, $124.71(\mathrm{~d}, J=24.24 \mathrm{~Hz}), 123.22$, $122.00(\mathrm{q}, J=22.22 \mathrm{~Hz}), 117.64,113.04,112.12$, $101.45,77.23,70.05,66.24,58.45,57.48,56.80,56.09,43.24,40.34,36.18,35.90$, 34.83, 29.71, 29.05, 28.35, 26.42, 26.23, 25.26, 16.07. $\mathrm{HRMS}_{\left(\mathrm{ESI}^{+}\right): \text {calculated for }}$ $\mathrm{C}_{49} \mathrm{H}_{55} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 985.3752, found 985.3723. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ ($85: 15$), $12.65 \mathrm{~min}, 95.80 \%$ purity.

(2S,4R)-1-((S)-2-(8-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphe nyl)-2-cyanoacrylamido)octanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (6f). Compound $6 f$ was synthesized from 8-((tert-butoxycarbonyl)amino)octanoic acid with similar procedure to that of $\mathbf{6 c}$.

Yield: 50%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.31$ (m, 6H), 6.86
(d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H})$, $4.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{dd}, J=15.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (s, 3H), 3.60 (dd, $J=11.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ (dd, $J=13.4,6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{dd}, J=14.1,7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $1.32(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.83,171.92$, $170.69,160.57,152.32,151.07,150.32,149.72,148.47,139.10,138.07,131.57$, $130.98,130.54(\mathrm{q}, J=33.33 \mathrm{~Hz}), 129.53,129.22,128.70,128.11,127.80(\mathrm{q}, J=32.32$ $\mathrm{Hz}), 126.48,125.94,124.71(\mathrm{q}, ~ J=24.24 \mathrm{~Hz}), 123.22,122.00(\mathrm{q}, J=22.22 \mathrm{~Hz})$, $117.67,113.06,112.16,101.47,77.23,70.06,58.44,57.44,56.76,56.10,43.26,40.56$, 36.30, 35.81, 34.83, 29.71, 29.21, 28.77, 28.71, 26.55, 26.41, 25.32, 16.06. HRMS (ESI^{+}): calculated for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 999.3908, found 999.3888. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 14.56 \mathrm{~min}, 95.60 \%$ purity.

epimeric 6c
(2S,4S)-1-((S)-2-(5-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphe nyl)-2-cyanoacrylamido)pentanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4 -methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (epimeric 6c). Compound epimeric 6c was synthesized from epimeric 10 with similar procedure to that of $6 c$.

Yield: 64%. [α] $25 \mathrm{D}-17.39^{\circ}(c 0.115, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67$ (s, $1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{q}, J=8.6 \mathrm{~Hz}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H})$, $6.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{dd}, J=14.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=14.9,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96(\mathrm{~s}, 4 \mathrm{H}), 3.80(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=6.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}$, $3 \mathrm{H}), 2.34(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=13.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H})$, $1.69(\mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.75,172.57,172.23,160.72,152.39,151.12,150.36$, $149.73,148.55,139.07,137.32,131.45,131.25,130.55(\mathrm{q}, J=33.33 \mathrm{~Hz}), 129.62$, $129.25,128.71,128.14,127.80(\mathrm{q}, J=32.32 \mathrm{~Hz}), 126.51,125.90,124.70(\mathrm{~d}, J=24.24$ $\mathrm{Hz}), 123.24,122.00(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 117.61,113.06,112.12,101.41,77.24,71.13$, $66.25,59.90,58.64,57.16,56.08,43.49,39.75,35.47,35.11,34.79,28.83,26.36$, 22.32, 16.08. HRMS (ESI^{+}): calculated for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 957.3439, found 957.3423 . HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 8.97 \mathrm{~min}, 98.90 \%$ purity.

Tert-butyl(4-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)butyl)c arbamate (19a). General procedure for syntheses of $\mathbf{1 9 b}-19 \mathrm{~h}$.

To a solution of $\mathbf{1 7}(276.2 \mathrm{mg}, 1 \mathrm{mmol}$, 1eq) in DMF (3 mL), 18a ($188.3 \mathrm{mg}, 1 \mathrm{mmol}$, 1 eq) and DIPEA ($258.5 \mathrm{mg}, 2 \mathrm{mmol}, 2 \mathrm{eq}$) were added and stirred at $90{ }^{\circ} \mathrm{C}$ for 8 h . After cooling to room temperature, the resulting mixture was extracted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=1: 1$ to $\mathrm{MeOH} / \mathrm{DCM}=2.5 \%$) to afford 19a as yellow oil ($201 \mathrm{mg}, 0.45 \mathrm{mmol}, 45 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}$, $J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=12.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=12.8,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.21-3.13$ (m, 2H), $2.91-2.83$ (m, 1H), 2.76 (ddd, $J=19.3,14.3,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.17$ $-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{tt}, J=12.7,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)hexyl)c arbamate (19b).

Yield: $34 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.87(\mathrm{~m}, 1 \mathrm{H})$, $4.58(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=12.8,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.88-2.81(\mathrm{~m}$, $1 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dt}, J=8.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.52-$ $1.45(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 2 \mathrm{H})$.

19c
Tert-butyl(2-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)et hoxy)ethoxy)ethyl)carbamate (19c).

Yield: $49 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.3,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.91$ (dd, $J=11.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.56(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.47$ (dd, $J=10.5,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.32$ (dd, $J=10.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.83$ (m, $1 \mathrm{H}), 2.81-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl(2-(2-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)carbamate (19d).
Yield: 46%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=12.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-$ $3.59(\mathrm{~m}, 8 \mathrm{H}), 3.53(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=10.9,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.28(\mathrm{~m}$, 2H), $2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.77$ (ddd, $J=19.3,14.3,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H})$, $1.43(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{ddd}, J=11.1,7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H})$.

Boc

19e
Tert-butyl(3-(4-(3-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)pr opoxy)butoxy)propyl)carbamate (19e).

Yield: $50 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.4,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.98-4.86(\mathrm{~m}, 2 \mathrm{H})$, $3.53(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{tt}, J=18.9,6.4 \mathrm{~Hz}, 8 \mathrm{H}), 3.26-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}$, $1 \mathrm{H}), 2.96-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.13$ (ddd, $J=9.4,7.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.73$ (dd, $J=12.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$, 0.86 (ddd, $J=11.0,7.7,4.7 \mathrm{~Hz}, 1 \mathrm{H})$.

19f
Tert-butyl(3-(2-(2-(3-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)propoxy)ethoxy)ethoxy)propyl)carbamate (19f).

Yield: $40 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31$ (s, 1 H), 7.49 (dd, $J=8.3,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (s, 1H), $4.91(\mathrm{dd}, J=12.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 8 \mathrm{H})$, 3.63 - 3.59 (m, 4H), 3.53 (t, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.47 (q, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.30$ (d, $J=4.9$ Hz, 2H), 2.87 (ddd, $J=11.3,8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (tdd, $J=17.4,12.9,4.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.12 (ddd, $J=9.4,5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl(14-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-3,6,9, 12-tetraoxatetradecyl)carbamate (19g).

Yield: 33%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.4,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ $(\mathrm{s}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=12.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 9 \mathrm{H})$, $3.53(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.82$ (m, 1H), 2.76 (ddd, $J=19.6,14.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ (ddd, $J=9.4,5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.97-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{dd}, J=12.4,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl(17-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-3,6,9, 12,15-pentaoxaheptadecyl)carbamate (19h).

Yield: 32%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H})$, $4.91(\mathrm{dd}, J=12.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.59(\mathrm{~m}, 16 \mathrm{H}), 3.52(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{dd}, J=10.8,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{dd}, J$ $=13.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{td}, J=14.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}$, $9 \mathrm{H})$.

(E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano-N-(4-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)butyl)acrylamide(7a). General procedure for syntheses of 7b-7h.

TFA (2 mL) was added to a solution of Compound $\mathbf{1 9 a}$ ($150 \mathrm{mg}, 0.34 \mathrm{mmol}, 1 \mathrm{eq}$) in DCM (4 mL). After being stirred for 1 h , the solvents were removed in vacuo, and residual TFA was removed by the addition and evaporation of toluene ($3 \times 3 \mathrm{~mL}$). The
crude product was used to next step without further purification. HATU (194 mg, 0.51 mmol, 1.5 eq), DIPEA ($220 \mathrm{mg}, 1.7 \mathrm{mmol}, 5 \mathrm{eq}$) and $\mathbf{4 a}(151.4 \mathrm{mg}, 0.34 \mathrm{mmol}, 1 \mathrm{eq})$ was added to a solution of the crude product obtained above in DMF (3 ml) at $25^{\circ} \mathrm{C}$. After being stirred for 1 h , the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=2.5: 100$) to give $7 \mathrm{a}(115 \mathrm{mg}, 0.15 \mathrm{mmol}, 44 \%)$ as yellow solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57$ (ddd, $J=8.3,4.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (d, $J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=12.9$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 2 \mathrm{H})$, $2.73(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 2.63-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 173.27,170.56,169.38,167.75,162.75,161.58,151.00,150.67$, $149.42,146.85,139.86,136.72,132.68,131.61,130.44,129.77$ (q, $J=33.33 \mathrm{~Hz}$), 128.11 ($\mathrm{q}, ~ J=32.32 \mathrm{~Hz}$), 126.00, 125.39, 125.13, 123.63, 122.45, 117.57 (d, $J=$ $23.23 \mathrm{~Hz}), 113.90$, 113.37, 110.86, 109.50, 103.91, 66.63, 56.12, 49.00, 41.97, 38.71, $36.25,31.45,26.70(\mathrm{~d}, J=17.17 \mathrm{~Hz})$, 22.63. HRMS (ESI) calculated for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 772.2200$, found 772.2200. HPLC analysis: MeOH : H 2 O ($85: 15$), $9.35 \mathrm{~min}, 100 \%$ purity.

(E) -3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano-N-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)hexyl)acrylamide(7b) Yield: $48 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.84$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.4,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.92$ (dd, $J=12.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=$
13.2, $6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.27 (dd, $J=12.3,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dt}, J=12.7,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}$, $2 \mathrm{H}), 1.44(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.32, 169.29, 168.60, 167.61, $160.82,152.35,150.95,149.57,146.73,136.00,132.47,130.50(\mathrm{q}, J=33.33), 129.24$, 128.68, 127.77 (q, $J=32.32$), 126.42, $125.90,124.71(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 121.99(\mathrm{~d}, J=$ $22.22 \mathrm{~Hz}), 117.54,116.75,112.92,112.24,111.61,110.26,101.41,77.26,70.77$, $70.43,69.40,69.29,66.19,56.09,48.85,42.27,40.32,31.41,22.88$. HRMS (ESI) calculated for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 800.2513$, found 800.2502. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 11.66 \mathrm{~min}, 97.92 \%$ purity.

(E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano-N-(2-(2 -(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethoxy)ethoxy)et hyl)acrylamide (7c).
Yield: 54\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39$ (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.54$ $(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 5 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=10.5,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-$ $2.79(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{qd}, J=13.0,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.32,169.29,168.60,167.61,160.82,152.35,150.95,149.57$, 146.73, 136.00, 132.47 (s), 130.5 (q, $J=33.33$), 129.24 (s), 128.68 (s), 127.77 (q, $J=$ 32.32), $126.42,125.90,124.71(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 123.21(\mathrm{~s}), 122.00(\mathrm{~d}, J=22.22 \mathrm{~Hz})$, $117.54,116.75,112.92,112.24,111.61,110.26,101.41,77.26,70.77,70.43,69.40$, 69.29, 66.19, 56.09, 48.85, 42.27, 40.32, 31.41, 22.88. HRMS (ESI) calculated for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{H}^{+}: 832.2412\right.$, found 832.2402. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ ($85: 15$), $8.30 \mathrm{~min}, 99.34 \%$ purity.

(E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano-N-(2-(2 -(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acrylamide (7d).
Yield: $35 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=4.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.49$ $(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{dd}, J=12.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.74-$ 3.59 (m, 14H), 3.46 (q, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.86$ (ddd, $J=11.2,7.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-$ $2.69(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.18,169.25$, $168.46,167.61,160.82,152.37,151.02,149.68,146.81,139.13,136.01,132.51$, $130.52(\mathrm{q}, ~ J=33.33 \mathrm{~Hz}), 129.22,128.71,127.80(\mathrm{q}, J=32.32 \mathrm{~Hz}), 126.45,125.98$, $124.71(\mathrm{~d}, J=24.24 \mathrm{~Hz}), 123.21,120.00(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 117.45,116.76,113.06$, $112.28,111.63,110.28,101.55,77.24,70.83,70.67,70.45,69.44,69.35,66.26(\mathrm{~d}, J=$ 4.04 Hz), 56.10, 48.87, 42.40, 40.29, 31.43, 22.81. HRMS (ESI) calculated for $\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}: 876.2674$, found 876.2645. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ ($85: 15$), $8.53 \mathrm{~min}, 95.89 \%$ purity.

(E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano-N-(3-(4 -(3-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)propoxy)butoxy) propyl)acrylamide (7e).

Yield: 41%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42$ (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J$
$=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{dd}$, $J=12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.46(\mathrm{~m}, 10 \mathrm{H}), 3.40(\mathrm{dd}, J=12.4,6.2 \mathrm{~Hz}$, 2H), $2.96-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 171.13, 169.32, 168.46, 167.67, 160.58, 152.00, 150.82, $149.58,146.96,139.13,136.08,132.48,130.48(\mathrm{q}, J=34.34 \mathrm{~Hz}), 129.27,128.67$, 127.75 (q, $J=32.32 \mathrm{~Hz}), 126.32,126.03,124.71(\mathrm{~d}, J=24.24 \mathrm{~Hz}), 123.24,121.99(\mathrm{~d}$, $J=22.22 \mathrm{~Hz}), 117.45,116.62,112.94,112.19,111.33,109.81,101.80,77.26,71.29$, $71.02,70.05,68.36,66.21,56.09,48.82,40.35,39.73,31.43,29.36,28.79,26.30(\mathrm{~d}, J$ $=15.15 \mathrm{~Hz}$), 22.83. HRMS (ESI) calculated for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 888.3038$, found 888.3043 . HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 13.82 \mathrm{~min}, 96.03 \%$ purity.

(E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano-N-(3-(2 -(2-(3-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)propoxy)ethox y)ethoxy)propyl)acrylamide (7f).

Yield: 42%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.84$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43$ (m, 1H), 7.39 (dd, $J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{dd}$, $J=12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.67-3.51(\mathrm{~m}, 10 \mathrm{H}), 3.39(\mathrm{q}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.16,169.34,168.47,167.67,160.62$, $151.98,150.84,149.60,146.97,139.14,136.12,132.47,130.48(\mathrm{q}, ~ J=34.34 \mathrm{~Hz})$, 129.28, 128.67, 127.76 (q, $J=32.32 \mathrm{~Hz}$), 126.34, $126.02,124.71(\mathrm{~d}, J=24.24 \mathrm{~Hz})$, 123.24, $122.00(\mathrm{~d}, J=21.21 \mathrm{~Hz}), 117.49,116.67,112.96,112.17,111.35,109.81$, $101.83,77.26,70.58,70.53,70.47,70.45,68.83,66.19,56.09,48.83,40.20,39.50$, 31.43, 29.27, 28.69, 22.83. HRMS (ESI) calculated for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$:
904.2987, found 904.2960. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 10.46 \mathrm{~min}$, 97.39% purity.

(E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano-N-(14-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-3,6,9,12-tetraoxatetr adecyl) acrylamide (7 g).

Yield: $50 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39 (dd, $J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{dd}, J=$ $12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.60(\mathrm{~m}, 18 \mathrm{H}), 3.45(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-$ $2.81(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.23,168.60,167.63,160.86,152.30,150.93,149.61,146.78,139.12,136.05$, $132.50,130.48(\mathrm{q}, J=34.34 \mathrm{~Hz}), 129.28,128.67,127.75(\mathrm{q}, J=32.32 \mathrm{~Hz}), 126.49$, 125.95, 124.71 (d, $J=24.24 \mathrm{~Hz}$), 123.22, 121.99 (d, $J=22.22 \mathrm{~Hz}$), 117.41, 116.77, $112.93,112.14,111.65,110.25,101.61,77.26,70.83,70.67,70.65,70.54,70.50$, 70.41, 69.45, 69.37, 66.18, 56.10, 48.84, 42.34, 40.28, 31.43, 22.84. HRMS (ESI) calculated for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+}: 920.2936$, found 920.2913. HPLC analysis: $\mathrm{MeOH}: \mathrm{H} 2 \mathrm{O}(85: 15), 8.43 \mathrm{~min}, 95.97 \%$ purity.

(E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyano-N-(17-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-3,6,9,12,15-pentaoxa heptadecyl)acrylamide (7h).

Yield: $49 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=$
$8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, $J=15.0,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J=11.9,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.97 (s, 3H), $3.70(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 20 \mathrm{H}), 3.45(\mathrm{q}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.95-2.67(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.41$, $169.24,168.57,167.65,160.83,152.27,150.92,149.61,146.78,139.12,136.04$, $132.50,130.48(\mathrm{q}, J=33.33 \mathrm{~Hz}), 129.24,128.67,127.75(\mathrm{q}, J=32.32 \mathrm{~Hz}), 126.49$, 125.97, $124.71(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 123.22,122.99(\mathrm{~d}, J=22.22 \mathrm{~Hz}), 117.41,116.77$, 112.94, 112.14, 111.64, 110.26, 101.63, 77.27, 70.79, 70.67, 70.58, 70.55, 70.51, $70.46,70.40,69.40,66.18,56.10,53.50,52.76,48.86,42.35,40.28,31.47,22.81$. HRMS (ESI) calculated for $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{12}[\mathrm{M}+\mathrm{H}]^{+}$: 964.3198, found 964.3158 . HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(85: 15), 8.46 \mathrm{~min}, 96.24 \%$ purity.

Tert-butyl(E)-(4-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2cyanoacrylamido)butyl)carbamate (22a). General procedure for syntheses of 22b, 27a-27b.

HATU ($194 \mathrm{mg}, 0.51 \mathrm{mmol}, 1.5 \mathrm{eq}$), DIPEA ($220 \mathrm{mg}, 1.7 \mathrm{mmol}, 5 \mathrm{eq}$) and 4a (150 $\mathrm{mg}, 0.34 \mathrm{mmol}, 1 \mathrm{eq})$ was added to a solution of 21a ($77.2 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.2 \mathrm{eq}$) in dry DMF (2 mL). After being stirred for 1 h at RT, the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=100: 2.5$) to give 22a ($123 \mathrm{mg}, 0.20 \mathrm{mmol}, 60 \%$ yield) as yellow solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.21(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H})$, 4.63 (s, 1H), 3.98 (s, 3H), 3.43 (dd, $J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{ddd}, J=15.8,11.2$, $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 9 \mathrm{H})$.

Tert-butyl(E)-(2-(2-(2-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphen yl)-2-cyanoacrylamido)ethoxy)ethoxy)ethyl)carbamate (22b).

Yield: 70%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.36$ (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.18 ($\mathrm{d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12$ (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.02$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (s, 2H), 3.83 (s, 3H), 3.51 (dd, $J=7.4,3.2 \mathrm{~Hz}, 6 \mathrm{H}$), $3.41-3.36$ (m, 4H), 3.06 (q, $J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.36$ (s, 9H).

Tert-butyl((2R,3S)-4-(((S)-1-((4-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylamido)butyl)amino)-4-methyl-1-oxopentan-2-yl)am ino)-3-hydroxy-4-oxo-1-phenylbutan-2-yl)carbamate (25a). General procedure for syntheses of $\mathbf{2 5 b}$.

TFA (2 mL) was added to a solution of Compound 22a ($115 \mathrm{mg}, 0.19 \mathrm{mmol}, 1 \mathrm{eq}$) in DCM (4 mL). After being stirred for 1 h , the solvents were removed in vacuo, and residual TFA was removed by the addition and evaporation of toluene ($3 \times 3 \mathrm{~mL}$). The crude product was used to next step without further purification. HATU (110.3 mg , $0.29 \mathrm{mmol}, 1.5 \mathrm{eq}$), DIPEA ($123 \mathrm{mg}, 0.95 \mathrm{mmol}, 5 \mathrm{eq}$) and $24(77.6 \mathrm{mg}, 0.19 \mathrm{mmol}$, 1 eq) was added to a solution of the crude product obtained above in DMF (3 ml) at $25{ }^{\circ} \mathrm{C}$. After being stirred for 1 h , the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=2.5: 100$) to give 25a ($118 \mathrm{mg}, 0.13$ mmol, 68%) as colorless solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J$
$=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.4,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.50$ (s, 1H), 5.46 ($\mathrm{s}, 2 \mathrm{H}$), 5.03 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.41$ (m, 1H), 4.11 (dd, $J=19.4$, $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.28(\mathrm{~m}, 3 \mathrm{H}), 3.19-3.03(\mathrm{~m}, 2 \mathrm{H}), 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (s, 2H), $1.68(\mathrm{~s}, 2 \mathrm{H}), 1.65-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{dd}, J=12.1,6.3 \mathrm{~Hz}$, $6 \mathrm{H})$.

Tert-butyl((15S,18S,19R,E)-1-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxy phenyl)-2-cyano-18-hydroxy-15-isobutyl-3,14,17-trioxo-20-phenyl-7,10-dioxa-4,1 3,16-triazaicos-1-en-19-yl)carbamate (25b).

Yield: $27 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.82 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ $-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=28.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.41(\mathrm{~d}, ~ J=16.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.21(\mathrm{dd}, J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.41(\mathrm{~m}, 1 \mathrm{H})$, $4.14-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.30(\mathrm{~m}, 16 \mathrm{H}), 3.00-2.91(\mathrm{~m}, 2 \mathrm{H})$, $1.33(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{dd}, J=12.7,4.8 \mathrm{~Hz}, 6 \mathrm{H})$.

(S)-2-((2S,3R)-3-amino-2-hydroxy-4-phenylbutanamido)-N-(4-((E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylamido)butyl)-4-met hylpentanamide (8a). General procedure for syntheses of $\mathbf{8 b}$.

4 N HCl in 1,4-dioxane (6 mL) was added to a solution of Compound 25a (118 mg, $0.13 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{DCM}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After being stirred for 8 h at rt , the solvents were removed in vacuo, and the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with
$\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 15$) to give $\mathbf{8 a}(62 \mathrm{mg}, 0.077 \mathrm{mmol}, 59 \%)$ as colorless solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.38(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 6 \mathrm{H}), 5.49(\mathrm{~d}, J=36.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.27$ (dd, $J=14.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.12 (dd, $J=6.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=13.1,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.62-1.33(\mathrm{~m}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 1 \mathrm{H}), 0.84(\mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}) ~ \delta 173.08,172.07,161.54,150.98,150.63,149.37,140.27,139.85$, 131.63, 130.44, 129.75 (q, $J=33.33 \mathrm{~Hz}), 129.68,128.65,128.11(\mathrm{q}, J=32.32 \mathrm{~Hz})$, 126.34, 125.95, 125.37, 125.17, 123.67, 122.45, 117.47, 113.84, 113.31, 103.90, 72.98, 66.59, 56.09, 51.19, 41.65, 40.94, 38.67, 26.92, 26.82, 24.69, 23.54, 22.05. HRMS (ESI) calculated for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 806.3347$, found 806.3317. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TEA ($90: 10: 0.01$), $13.76 \mathrm{~min}, ~ 99.48 \%$ purity.

(S)-2-((2S,3R)-3-amino-2-hydroxy-4-phenylbutanamido)-N-(2-(2-(2-((E)-3-(4-((2, 4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylamido)ethoxy) ethoxy)ethyl)-4-methylpentanamide (8b).

Yield: 58\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J$ $=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.54-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (s, 3H), $3.66-3.52$ (m, 10H), 3.42 (tdd, $J=14.0,9.3,4.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.96(\mathrm{dd}, J=13.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=13.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.71(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.35,171.97,160.92,152.54,151.05,149.65,139.08,138.18,130.51(q, J=33.33$ $\mathrm{Hz}), 129.31,129.24,128.82,128.74,128.66,127.76(\mathrm{q}, J=32.32 \mathrm{~Hz}), 126.73$, 126.42,
125.89, 124.71 (d, $J=23.23 \mathrm{~Hz}$), 123.22, $122.00(\mathrm{~d}, J=22.22 \mathrm{~Hz}$), 117.52, 112.98 , $112.28,101.45,77.26,72.53,70.52,70.34,70.20,69.82,69.37,66.23,56.10,54.44$, 51.71, 40.75, 40.27, 39.35, 39.03, 31.95, 29.73, 29.69, 29.56, 29.40, 24.88, 22.99, 22.73, 21.83, 14.18. HRMS (ESI) calculated for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{8}[\mathrm{M}+\mathrm{Na}]^{+}: 888.3378$, found 888.3370 . HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TEA ($90: 10: 0.01$), 13.17 min , 98.32% purity.

Tert-butyl(E)-(2-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2cyanoacrylamido)ethyl)carbamate (27a).

Yield: $62 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.85 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (s, 1H), $6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=11.1,5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.

Tert-butyl(E)-(5-(3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2cyanoacrylamido)pentyl)carbamate (27b).

Yield: $55 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.85 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $13.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=13.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{dd}, J=$ $14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 10 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 2 \mathrm{H})$.

(E)-N-(2-(2-(4-((4R,5S)-4,5-bis(4-chloropheny))-2-(2-isopropoxy-4-methoxypheny
l)-4,5-dihydro-1H-imidazole-1-carbonyl)-2-oxopiperazin-1-yl)acetamido)ethyl)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylamide (9a).

TFA (2 mL) was added to a solution of Compound $\mathbf{2 7 a}$ ($124 \mathrm{mg}, 0.21 \mathrm{mmol}, 1 \mathrm{eq}$) in DCM (4 mL). After being stirred for 1 h , the solvents were removed in vacuo, and residual TFA was removed by the addition and evaporation of toluene ($3 \times 3 \mathrm{~mL}$). The crude product was used to next step without further purification. HATU $(121.7 \mathrm{mg}$, $0.32 \mathrm{mmol}, 1.5 \mathrm{eq})$, DIPEA ($156.4 \mathrm{mg}, 1.1 \mathrm{mmol}, 5 \mathrm{eq}$) and $29(134.3 \mathrm{mg}, 0.21 \mathrm{mmol}$, $1 \mathrm{eq})$ was added to a solution of the crude product obtained above in DMF (3 ml) at $25{ }^{\circ} \mathrm{C}$. After being stirred for 1 h , the resulting mixture was extracted with ethyl acetate and saturated NaHCO_{3}. The organic layer was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel column chromatography ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=2.5: 100$) to give 9 ($107 \mathrm{mg}, 0.096$ mmol, 46\%) as colorless solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (dd, $J=18.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-6.79$ (m, 9H), 6.55 (dd, $J=8.5$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $3 \mathrm{H}), 4.64(\mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $28.0,16.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.43$ (dd, $J=13.9,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.04$ $(\mathrm{m}, 3 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 168.37, 165.82, 163.04, $162.24,160.22,157.00,154.73,152.87,151.23,149.61,139.03,135.91,135.05$, 133.10, 132.90, 132.26, 130.53 (q, $J=33.33 \mathrm{~Hz}$), 129.27, 128.70, 128.49, 128.03,
127.99, 127.78 (q, $J=32.32 \mathrm{~Hz}), 126.71,125.72,124.70(\mathrm{~d}, J=24.24 \mathrm{~Hz}), 123.24$, $122.00(\mathrm{~d}, ~ J=22.22 \mathrm{~Hz}), 117.38,113.19,112.87$, 112.33, 104.48, 100.60, 100.06, 77.26, 71.82, 70.88, 69.19, 66.18, 56.08, 55.59, 50.91, 49.62, 47.37, 42.16, 40.62, 31.45, 30.18, 29.73, 22.16, 22.04. HRMS (ESI) calculated for $\mathrm{C}_{54} \mathrm{H}_{50} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{7} \mathrm{O}_{8}[\mathrm{M}+$ $\mathrm{H}]^{+}: 1108.2997$, found 1108.3023. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(90: 10), 8.52 \mathrm{~min}$, 95.09% purity.

(E)-N-(5-(2-(4-((4R,5S)-4,5-bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxypheny
1)-4,5-dihydro-1H-imidazole-1-carbonyl)-2-oxopiperazin-1-yl)acetamido)pentyl)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylamide (9b).

Yield: 70%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=$ $8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.54(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.19(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=31.1,9.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{dt}, J$ $=12.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 4 \mathrm{H})$, 3.67 (dd, $J=12.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{dd}, J=8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=13.2,6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.26-3.17$ (m, 3H), 3.13 (t, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.58 (dd, $J=14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.50(\mathrm{dd}, J=14.6,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{dd}, J=15.8,6.0 \mathrm{~Hz}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.26,167.66,165.68,163.00,160.72,160.15,156.99,154.63,152.45$, $151.06,149.66,139.07,135.97,135.03,133.18,132.90,132.25,130.51(\mathrm{q}, J=33.33$ Hz), $129.27,128.67,128.45,128.12,128.00,127.77(\mathrm{q}, J=32.32 \mathrm{~Hz}), 126.52,125.86$, 124.71 (d, $J=23.23 \mathrm{~Hz}), 123.26,122.99(\mathrm{~d}, J=22.22 \mathrm{~Hz}), 117.69,113.27,112.96$,
$112.13,104.46,101.29,100.05,77.26,71.79,70.93,69.14,66.23,60.46,56.11,55.59$, 50.83, 49.71, 47.27, 42.14, 40.26, 39.27, 29.01, 28.89, 23.97, 22.17, 22.04, 21.12, 14.23. HRMS (ESI) calculated for $\mathrm{C}_{57} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{7} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$: 1150.3466, found 1150.3453. HPLC analysis: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(90: 10), 12.56 \mathrm{~min}, 98.74 \%$ purity.

3. In Vitro TR-FRET Assay

LanthaScreen ${ }^{\text {TM }}$ Estrogen Related Receptor alpha TR-FRET Coactivator Assay (Invitrogen, PV4663) were performed to examine the functional response of ERR α ligands. Compounds were successively diluted in complete assay buffer ($2 \times$) with 5 different concentrations. $10 \mu 1$ of 10 nM this solution was transferred to 384-well black assay plates (Thermo, \#267461), $5 \mu 1$ of 20 nM ERR alpha-LBD (4×) in complete assay buffer was added. Next, $5 \mu 1$ of $2 \mu \mathrm{M}$ fluorescein-PGC1 α and 20 nM Tb anti-GST antibody solution in complete assay buffer $(4 \times$) was added to each well to give a final $20 \mu 1$ of reagent solution volumes. All determinations were performed in triplicate and DMSO as a control. The samples were incubated in the dark for 1 h at room temperature on a plate shaker. Fluorescence intensity at 495 nm and 520 nm were measured using microplate reader (Bio-Tek, Synergy H1). The TR-FRET ratio was calculated by dividing the emission signal at 520 nm by the emission signal at 495 nm , and a binding curve by plotting the emission ratio vs. the \log [ligand] was generated. Finally, the IC_{50} value was provided by GraphPad Prism.

Likewise, the commercial TR-FRET assay was used to evaluate the functional response of PROATC 6c against the ERR β (Invitrogen, PV4800) and ERR γ (Invitrogen, PV4408) receptor, respectively.

TRF RET Assay

Figure S1. PROTAC 6c showed no significant effects on inhibiting PGC-1 α binding with ERR β and ERR γ.

4. Computational Study

All the procedure was performed in Maestro (version 9.9, Schrödinger, LLC, New York, NY, 2014) implemented in the Schrödinger program (http://www.schrödinger.com). The crystal structure of ERR α protein with compound 1 (XCT790) (PDB code: 3K6P) were taken from the Protein Data Bank (http://www.pdb.org). The protein was prepared using the Protein Preparation Wizard workflow in Maestro to add bond orders and to add hydrogens. All heteroatom (het) residues and crystal water molecules were removed. The ligand XCT790 was prepared using LigPrep (version 3.1, Schrödinger, LLC, New York, NY, 2014) with the OPLS-2005 force field. In this study, molecular docking study was performed with the Glide program (version 6.4, Schrödinger, LLC, New York, NY, 2014) using the SP (Standard precision) score mode. The grid-enclosing box was placed on the centroid of the binding ligand in the optimized crystal structure as described above, and bounding box was set to $18 \AA$. For all of the methods, Glide docks flexible ligands were fit into a rigid receptor structure. The Figure 2a was generated using PyMol.

5. Western Blot Analysis

MDA-MB-231 cell line was purchased from the ATCC and cultured in RPMI 1640 media supplemented with $10 \%(\mathrm{v} / \mathrm{v})$ fetal bovine serum (FBS) and $1 \%(\mathrm{v} / \mathrm{v})$ penicillin-streptomycin at $37^{\circ} \mathrm{C}$ in a humidified incubator with $5 \% \mathrm{CO}_{2}$.

The cells were treated with compound of indicated concentrations for various times in 12-well plates. Next, cells washed with phosphate buffered saline (PBS) and lysed in 150 ul of 1 x sodium dodecyl sulfate (SDS) lysis buffer (CST recommended) with protease and phosphatase inhibitors. Immunoblotting was performed using standard protocols, here, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as loading control. The antibodies used were ERR α (1:1000, Cell Signaling Technology, \#2101), $\operatorname{ERR} \beta$ (1:1200, Sigma-Aldrich, E0156), ERR γ (1:100, Santa Cruz, sc-393969), ER α (1:1000, CST, 13258s), MCAD (1:10000, abcam, ab92461), PDK4 (1:100, Santa Cruz, sc-130841), ATP5B (1:300, Santa Cruz, sc-33618) and GAPDH (1:4000, Beyotime, AG019-1). Peroxidase reaction were detected using ECL western blotting Detection Kit (Thermo Scientific, Waltham, MA) by Amersham Imager 600 system (GE, America). D (\%) values were generated by ImageJ software analysis. The data are means from at least three independent experiments and the variations are less than 20%.

Figure S2. Degradation effects of PROTACs $\mathbf{6 a - 6 j}$ on ERR α proteins in MDA-MB-231 cells at indiated concentrations for 4 h .

Figure S3. Degradation effects of PROTACs $\mathbf{7 a - 7 h}, \mathbf{8 a - 8 b}, \mathbf{9 a - 9 b}$ on ERR α proteins in MDA-MB-231 cells at indiated concentrations for 4 h .

Cpd. No.	Structure
7a	
7 b	
7c	
7d	

cols)

protac 6c

Figure S4. Western blotting analysis of ER α and ERR α in MCF- 7 cells treated with PROTAC 6c at the indicated concentrations at 4.0 hrs .

Western blotting analysis showed that PROTAC 6c dose-dependently induced ERR α degradation, did not show obvious effect on ER α in MCF-7 breast cancer cell lines.

Figure S5. Western blotting analysis of the target gene of ERR α in MDA-MB-231 cells treated with PROTAC 6c at the indicated concentration and time points.

Western blotting analysis showed that PROTAC 6c potently decreased the protein levels of ATP5B, MCAD and PDK4 at the concentration of 100 nM in the MDA-MB-231 cell line after a $24-\mathrm{hr}$ treatment.

6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

Z2S170913A

-66.68
-56.14

70	160	150	140	130	120	110	100	90		70	60	50	40	30	20	10
	180		1		120	-10	,						10			

220	210	200	190	180	170	160	150	140	130	120	110		90	80	70	1	50	10	10	12	10	0	-10
						100	150	140	130	120	${ }_{\text {f1 }}$	ppm)	90	80	7.	8	5	40	30	20	10	0	-10

Solvent: CDCl_{3}

[^0]2zS171122-1D

$\stackrel{\text { e }}{\stackrel{4}{4}}$

Solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

z2S171122-1D

[^1]

Solvent: CDCl_{3}

2ZS171212-1A

[^2]

[^3]
Solvent: CDCl_{3}

zzs $180516-3$

[^4]

Z2S171123-1
$\begin{array}{llllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { fl } & (\mathrm{pran})\end{array}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
190	180	170	160	150	140	130	120	110	100 f1	90	80	70	60	50	40	30	20	10	0

z2S171213-1A

上ん

[^5]

\[

$$
\begin{aligned}
& \text { RR }
\end{aligned}
$$
\]

Solvent: CDCl_{3}

[^6]

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Solvent： CDCl_{3}

225185184.	®	5 5 迢	\＆25		
SE	0	戞边	\％\％\％		
11	T	す！		¢1／	4 ¢

| 0 | 170 | 160 | 1 |
| :--- |

180	170	160	150	140	130	120	110	100	$\begin{aligned} & 90 \\ & \mathrm{fl}(\mathrm{ppm}) \end{aligned}$	80	70	60	50	40	30	20	10	1

7. HPLC Purity Analysis

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak R } \\ \quad \neq \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area $\%$
1	4.697 BB	0.1081	14.75901	2.14892	0.4868
2	5.687 BV R	0.1663	2999.98804	268.59540	98.9425
3	6.540 VB E	0.1392	17.30550	1.91996	0.5708
Totals			3032.05255	272.66428	

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC
Location ： 1
Injection Date ：29／07／2018 18：25：41
Inj Volume ： $5.000 \mu \mathrm{l}$
Method ：E：\DK\TL\方法80C－20A－30min－1u．M
Last changed ：26／10／2017 17：22：09 by 系统
WWD1A．Wavelength $=254 \mathrm{~nm}$（201807281728－5 2018－07－28 18－25－01．D）

Sorted By	$:$	Signal	
Multiplier	$:$	2.0000	
Dilution	$:$	1.0000	
Sample Amount：		$: \quad 10.00000 \quad$［ng／ul］	（not used in calc．）
Use Multiplier \＆Dilution Factor with ISTDs			

Signal 1：VWD1 A，Wavelength＝254 nm

Peak \＃	RetTime Type ［min］	Width ［min］	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height ［mAU］	Area \％
1	23.452 BB	0.4984	1959.64551	62.05481	00.0000
Total	］：		1959.64551	62.05481	

$===$	
	Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier $\&$	Dilution Factor with ISTDs	

Signal 1: VWD1 A, Wavelength=254 nm

Acq．Operator ：系统
Sample Operator：系统
Acq．Instrument ： 1260 LC
Injection Date ：29／07／2018 15：57：34
Location ： 1

Inj Volume ： $5.000 \mu \mathrm{l}$
Acq．Method：E：\DK\TL\方法 $180 \mathrm{C}-20 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{~L} . \mathrm{M}$
Last changed ：26／10／2017 17：22：09 by 系统
Analysis Method ：E：\DK\ZHANGXIN\METHOD\100C－60min－5uL．M
Last changed ：16／04／2018 09：54：06 by 系统

Area Percent Report

Sorted By	$:$	Signal		
Multiplier	$:$	2.0000		
Dilution	$:$	1.0000		
Sample Amount：		$: \quad 10.00000 \quad$［ng／ul］	（not used in calc．）	
Use Multiplier \＆Dilution Factor with ISTDs				

Signal 1：WWD1 A，Wavelength＝254 nm

Peak \＃	RetTime Type ［min］	Width ［min］	Area ［mAU＊s］	Height ［mAU］	Area \％
1	15.185 BB	0.3407	2871．36914	130.5097	100.0000
Total	1s ：		2871.36914	130.5097	

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ： 1260 LC
Location ： 2
Injection Date ：11／07／2018 16：12：32
Inj Volume ： $5.000 \mu \mathrm{l}$
Acq．Method ：E：\DK\TL\方法 $85 \mathrm{C}-15 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{M} . \mathrm{M}$
Last changed ：09／12／2017 11：38：08 by 系统
Analysis Method ：E：\DK\ZHANGXIN\METHOD\100C－60min－5uL．M
Last changed ：16／04／2018 09：54：06 by 系统
VWD1 A，Wavelength＝254 nm（E：IDKIZZSDDatal20180615Vigand 2018－07－11 16－11－50．D）

Area Percent Report

Sorted By	$:$	Signal		
Multiplier	$:$	2.0000		
Dilution	$:$	1.0000		
Sample Amount：		$: \quad 10.00000$	［ng／ul］	（not used in calc．）
Use Multiplier \＆Dilution Factor with ISTDs				

Signal 1：WWD1 A，Wavelength＝254 nm

Peak \＃	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width ［min］	Area [mAU*s]	Height ［mAU］	Area \％
1	5.396		0.1240	35.84205	4.40191	3.1504
2	7.666		0.2443	1101.84070	67.53761	96.8496
Tota	ls ：			1137.68275	71.93952	

Last changed : 26/10/2017 17:22:09 by 系统

Area Percent Report

Sorted By	$:$	Signal		
Multiplier	$:$	2.0000		
Dilution	$:$	1.0000		
Sample Amount:	$:$	10.00000	[ng/ul]	(not used in calc.)
Use Multiplier \& Dilution Factor with ISTDs				

Signal 1: WWD1 A, Wavelength $=254 \mathrm{~nm}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	7.417	BB	0.1917	64.96856	5.27423	2.0405
2	11.986	BB	0.3076	3119.06226	155.77315	97.9595
Total	s :			3184.03082	161.04737	

Signal 1: VWDI A, Wavelength=254 nm

Peak	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU]] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \frac{\%}{8} \end{gathered}$
1	7.107	BB	0.2432	90.29964	5.78235	1.8698
2	10.800		0.3346	4739.15674	220.60747	98.1302
Total	s :			4829.45638	226.38982	

Acq．Method ：E：\DK \TL\方法85C－15A－30min－1u．M
Last changed ：09／12／2017 11：38：08 by 系统
Analysis Method ：E：\DK\TL\方法 $85 \mathrm{C}-15 \mathrm{D}-30 \mathrm{~min}-1 \mathrm{u} . \mathrm{M}$
Last changed ：04／07／2017 21：09：03 by 系统

Area Percent Report				
Sorted By	：	Signal		
Multiplier	：	2.0000		
Dilution	：	1.0000		
Sample Amount：		$: \quad 10.00000$	［ng／ul］	（not used in calc．）
Use Multiplier \＆Dilution Factor with ISTDs				

Signal 1：VWD1 A，Wavelength＝254 nm

Peak \＃	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height ［mAU］	Area \％
1	1.634	BV	0.0565	42.81990	11.22754	0.7857
2	1.705	VB	0.0735	32.30190	6.33572	0.5927
3	5.817	BB	0.1177	33.12532	4.30737	0.6078
4	7.069	VB R	0.2545	87.76083	5.18298	1.6103
5	10.690	BB	0.3584	5253.95557	227.56870	96.4035
Total	1s ：			5449.96352	254.62230	

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC Location ： 1
Injection Date ：30／12／2017 14：28：28
Inj Volume ： $5.000 \mu \mathrm{l}$
Acq．Method ：E：\DK\TL\方法85C－15A－30min－1u．M
Last changed ：09／12／2017 11：38：08 by 系统
Analysis Method ：C：\Chem32\1\Methods\DEF＿LC．M
Last changed ：23／06／2014 04：13：01 by SYSTEM

Area Percent Report

Sorted By	$:$	Signal			
Multiplier	$:$	1.0000			
Dilution	$:$	1.0000			
Sample Amount：		$:$	20.00000	［ng／ul］	（not used in calc．）
Use Multiplier \＆Dilution	Factor with ISTDs				

Signal 1：WWD1 A，Wavelength $=254 \mathrm{~nm}$

Peak \＃	RetTime ［min］		Width ［min］	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height ［mAU］	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	6.312	BB	0.1175	13.81890	1.82117	0.2051
2	6.998	BB	0.2183	219.65315	15.69065	3.2606
3	10.725	BB	0.3122	6503.16846	323.95517	96.5343
Total	s ：			6736.64051	341.46699	

Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	2.0000		
Dilution	:	1.0000		
Sample Amount:			[ng/ul]	(not used

Signal 1: WWD1 A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	6.634	BB	0.1931	55.10929	4.40067	1.6181
2	7.746	BB	0.2527	87.93238	5.38062	2.5819
3	12.645	BB	0.3829	3262.68750	132.23456	95.8000
Total	ls :			3405.72917	142.01585	

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC Location ： 1
Injection Date ：18／09／2018 19：23：55
Inj Volume ： 50.000μ
Acq．Method ：E：\DK $\backslash T$ T \backslash 方法 $85 \mathrm{C}-15 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{u} . \mathrm{M}$
Last changed ：18／09／2018 19：22：59 by 系统 （modified after loading）
Analysis Method ：E：\DK\ZHANGXIN\METHOD\100C－60min－5uL．M
Last changed ：16／04／2018 09：54：06 by 系统

Area Percent Report

Sorted By	$:$	Signal		
Multiplier	$:$	2.0000		
Dilution	$:$	1.0000		
Sample Amount：		$:$	10.00000	［ng／ul］
Use Multiplier \＆Dilution	Factor with ISTDs			

Signal 1：WWD1 A，Wavelength $=254 \mathrm{~nm}$

Peak \＃	RetTime [min]		Width ［min］	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height ［mAU］	Area \％
1	6.518	BB	0.1516	52.30556	5.32589	0.7942
2	8.534	BB	0.3748	192.24989	7.35789	2.9192
3	10.532	BB	0.3736	44.99976	1.71258	0.6833
4	14.558	BB	0.4452	6296.18457	219.80826	95.6033
Totals ：				6585.73978	234.20462	

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC
Location ： 1
Injection Date ：05／06／2018 21：32：32
Acq．Method ：E：\DK\TL\方法 $85 \mathrm{C}-15 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{u} . \mathrm{M}$
Last changed ：09／12／2017 11：38：08 by 系统
Analysis Method ：E：\DK\TL\方法 $90 \mathrm{C}-10 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{u} . \mathrm{M}$
Last changed ：28／07／2018 18：29：28 by 系统
（modified after loading）

Area Percent Report

Sorted By	$:$	Signal			
Multiplier	$:$	2.0000			
Dilution	$:$	1.0000			
Sample Amount：		$:$	5.00000	［ng／ul］	（not used in calc．）
Use Multiplier \＆Dilution Factor with ISTDs					

Signal 1：WWD1 A，Wavelength＝254 nm

Peak \＃	RetTime ［min］	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height ［mAU］	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.686	BB	0.2267	38.90159	2.62779	0.9077
2	9.623	BB	0.3455	4246.87061	188.03697	99.0923
Total				4285.77220	190.66476	

```
Acq. Operator : 系统
Sample Operator : 系统
Acq. Instrument : 1260LC Location : 1
Injection Date : 16/12/2017 13:23:00
Inj Volume : 5.000 \mul
Acq. Method : E:\DK\TL\方法85C-15A-30min-lu.M
Last changed : 09/12/2017 11:38:08 by 系统
Analysis Method : E:\DK\IL\方法80C-20D-30min-lu.M
Last changed : 04/07/2017 21:08:28 by 系统
```


Area Percent Report				
Sorted By	：	Signal		
Multiplier	：	1.0000		
Dilution	：	1.0000		
Sample Amount：		： 5.00000	［ng／ul］	（not used in calc．）
Use Multiplier		ctor with ISTDs		

Signal 1：VWDI A，Wavelength $=254 \mathrm{~nm}$

Peak	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A^{*} s\right]} \end{gathered}$	Height ［mAU］	Area
1	7.002	BV R	0.2873	174.79730	8.97302	3.6404
2	10.179	BB	0.3402	4626.79053	210.65396	96.3596
Total	s ：			4801.58783	219.62699	

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC Location ： 1
Injection Date ： $16 / 12 / 2017$ 12：51：20
Inj Volume ： $5.000 \mu \mathrm{l}$
Acq．Method ：E：\DK $\backslash \mathrm{TL} \backslash$ 方法 $85 \mathrm{C}-15 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{l} . \mathrm{M}$
Last changed ：09／12／2017 11：38：08 by 系统
Analysis Method ：E：\DK \backslash TL \backslash 方法 $80 \mathrm{C}-20 \mathrm{D}-30 \mathrm{~min}-1 u . M$
Last changed ：04／07／2017 21：08：28 by 系统

＝＝＝1
Area Percent Report

Signal 1：VWD1 A，Wavelength＝254 nm

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC
Injection Date ：18／09／2018 18：06：12
Inj Volume ： $5.000 \mu \mathrm{l}$
Acq．Method ：E：\DK\TL\方法 $85 \mathrm{C}-15 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{M} . \mathrm{M}$
Last changed ：09／12／2017 11：38：08 by 系统
Analysis Method ：E：\DK\ZHANGXIN\METHOD\100C－60min－5uL．M
Last changed ：16／04／2018 09：54：06 by 系统

Area Percent Report

Sorted By	$:$	Signal		
Multiplier	$:$	2.0000		
Dilution	$:$	1.0000		
Sample Amount：		$: \quad 10.00000 \quad$［ng／ul］	（not used in calc．）	
Use Multiplier \＆Dilution Factor with ISTDs				

Signal 1：WWD1 A，Wavelength＝254 nm

Peak \＃	RetTime ［min］	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height ［mAU］	Area \％
1	7.059	BV R	0.2372	195.99672	12.54745	4.9228
2	10.364	BB	0.3120	3785.39819	188.75014	95.0772
Total	s ：			3981.39491	201.29758	

Area Percent Report
==

Sorted By
Multiplier
Dilution
Sample Amount:
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{U}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{8} \end{gathered}$
1	7.026		0.2293	50.70133	3.43298	1.6766
2	10.307		0.3361	2973.29468	137.07841	98.3234
Total	s :			3023.99601	140.51139	

$==$

Sorted By	:	Signal		
Multiplier	:	2.0000		
Dilution	:	1.0000		
Sample Amount:		30.00000	[ng/ul]	(not used in calc.)
Use Multiplier		tor with ISTDs		

Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$

Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.354 BB	0.2526	329.94098	20.2997	100.0000
Total			329.94098	20.2997	

Acq．Operator ：系纪
Sample Operator ：系统
Acq．Instrument ：1260LC Location ： 1
Injection Date ：27／09／2018 14：52：31
Inj Volume ： $5.000 \mu \mathrm{l}$
Acq．Method：E：\DK\TL\方法 $85 C-15 A-30 m i n-1 u . M$
Last changed ：09／12／2017 11：38：08 by 系统
Analysis Method ：E：\DK\SJY\METHOD\XSXZ．M
Last changed ：21／12／2018 18：12：24 by 系统

Use Multiplier \＆Dilution Factor with ISTDs

Signal 1：VWD1 A，Wavelength＝254 nm

Peak \＃	RetTime ［min］	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height ［mAU］	Area \％
1	3.170	BV R	0.1210	30.50074	3.59347	0.9150
2	7.514	BB	0.2307	38.92440	2.55482	1.1677
3	11.656	BB	0.3132	3263.93237	161.24055	97.9173
Total	s ：			3333.35751	167.38884	

Area Percent Report

| Sorted By | $:$ | Signal | |
| :--- | :---: | :---: | :---: | :---: |
| Multiplier | $:$ | 2.0000 | |
| Dilution | $:$ | 1.0000 | |
| Sample Amount: | | $: \quad 20.00000 \quad$ [ng/ul] (not used in calc.) | |
| Use Multiplier \& Dilution Factor with ISTDs | | | |

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	5.715	BB	0.1929	26.39357	2.10992	0.6572
2	8.300	BB	0.2486	3989.97437	242.92328	99.3428
Totals				4016.36794	245.03320	

Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	2.0000		
Dilution	:	1.0000		
Sample Amount:		: 30.00000	[ng/ul]	(not used in calc.)
Use Multiplier		ctor with ISTDs		

Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s} \mathrm{~s}]}\right.} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	3.353	BB	0.0974	15.67063	2.45591	0.4104
2	5.890	BB	0.1679	141.10254	12.97621	3.6956
3	8.533	BB	0.2333	3661.34229	243.70903	95.8940
Total				3818.11546	259.14115	

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC Location ： 1
Injection Date ：31／10／2018 16：20：50
Inj Volume ： $20.000 \mu \mathrm{l}$
Acq．Method ：E：\DK $\backslash T L \backslash$ 方法 $85 \mathrm{C}-15 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{u} . \mathrm{M}$
Last changed ：31／10／2018 16：20：00 by 系统 （modified after loading）
Analysis Method ：E：\DK\SJY $\backslash M E T H O D \backslash X S X Z . M$
Last changed ：21／12／2018 18：12：24 by 系统

Signal 1：VWD1 A，Wavelength＝254 nm

Peak \＃	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height ［mAU］	Area \％
1	7.759	BB	0.2551	68.98974	4.16894	1.6405
2	12.692	BV E	0.3812	98.16505	3.96063	2.3343
3	13.822	VB R	0.4098	4038.17725	152.06833	96.0252
Totals ：				4205.33204	160.19790	

Sorted By	$:$	Signal		
Multiplier	$:$	2.0000		
Dilution	$:$	1.0000		
Sample Amount:		$: \quad 50.00000 \quad$ [ng/ul]	(not used in calc.)	
Use Multiplier \& Dilution Factor with ISTDs				

Signal 1: VWD1 A, Wavelength=254 nm

Signal 1: VWD1 A, Wavelength=254 nm

Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.363	BB	0.0960	41.48325	6.63238	0.8385
2	5.962	BV	0.1992	92.26182	6.80352	1.8650
3	6.381	W	0.1477	22.24336	2.28322	0.4496
4	6.524	VB	0.1785	29.92163	2.50253	0.6048
5	8.462	BB	0.2336	4761.16748	316.34982	96.24

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC Location ： 1
Injection Date ：04／12／2018 16：07：15
Inj Volume ： $20.000 \mu \mathrm{l}$
Acq．Method ：E：\DK\TL\方法 $90 C-10 D-30 m i n-1 u . M$
Last changed ：04／12／2018 16：06：02 by 系统 （modified after loading）
Analysis Method ：E：\DK\SJY\METHOD\XSXZ．M
Last changed ：21／12／2018 18：12：24 by 系统

Signal 1：VWD1 A，Wavelength＝254 nm

Peak \＃	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height ［mAU］	Area \％
1	7.200	BB	0.2251	58.05653	3.95913	0.5191
2	13.758	BB	1.1390	1.11262 e 4	135.50314	99.4809
Total	ls ：			1.11843 e 4	139.46228	

Acq．Operator ：系统
Sample Operator ：系统
Acq．Instrument ：1260LC Location ： 1
Injection Date ：04／12／2018 18：21：58
Inj Volume ： $30.000 \mu \mathrm{l}$
Acq．Method ：E：\DK $\backslash T L \backslash$ 方法 $90 C-10 \mathrm{D}-30 \mathrm{~min}-1 \mathrm{u} . \mathrm{M}$
Last changed ：04／12／2018 18：20：52 by 系统
（modified after loading）
Analysis Method ：E：\DK\SJY $\backslash M E T H O D \backslash X S X Z . M$
Last changed ：21／12／2018 18：12：24 by 系统

Signal 1：VWD1 A，Wavelength $=254 \mathrm{~nm}$

Peak \＃	RetTime ［min］		Width ［min］	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height ［mAU］	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	1.707	BB	0.1331	36.19023	3.76690	0.2401
2	2.770	BB	0.1362	18.62228	1.80722	0.1235
3	3.799	BB	0.1455	42.28354	4.23525	0.2805
4	8.845	BB	0.3492	156.73187	6.66848	1.03
5	13.169	BB	0.8325	1.48189 e 4	243.66263	98.316

Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	2.0000		
Dilution	:	1.0000		
Sample Amount:		: 100.00000	[ng/ul]	(not used in calc.)
Use Multiplier	io	ctor with ISTDs		

Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	1.595	BB	0.0743	17.24165	3.38976	0.1361
2	4.003	BB	0.1917	170.35944	12.06598	1.3448
3	4.887	BB	0.1498	80.00353	7.92377	0.6315
4	6.529	BV R	0.2118	354.70419	25.41198	2.7999
5	8.518	BB	0.2523	1.28461e4	738.51459	95.087

Acq．Operator ：系婉
Sample Operator ：系统
Acq．Instrument ：1260LC Location ： 1
Injection Date ：19／12／2018 14：52：43

Acq．Method ：E：\DK\TL\方法 $90 \mathrm{C}-10 \mathrm{~A}-30 \mathrm{~min}-1 \mathrm{M} . \mathrm{M}$
Last changed ：19／12／2018 14：51：53 by 系统
（modified after loading）
Analysis Method ：E：\DK\SJY\METHOD\XSXZ．M
Last changed ：21／12／2018 18：12：24 by 系统

Area Percent Report				
Sorted By	：	Signal		
Multiplier	：	2.0000		
Dilution	：	1.0000		
Sample Amount：		：100．00000	［ng／ul］	（not used in calc．）
Use Multiplier		ctor with ISTDs		

Signal 1：VWD1 A，Wavelength＝254 nm

Peak \＃	RetTime ［min］	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height ［mAU］	Area \％
1	6.409	BV	0.2005	71.30328	5.31602	0.4513
2	6.648	VB	0.2890	62.24963	3.09055	0.3940
3	8.942	BB	0.2644	1.55988 e 4	908.14166	98.7362
4	12.563	BB	0.4755	66.10728	1.95019	0.4184
Total	s ：			1.57985 e 4	918.49843	

[^0]:

[^1]:

[^2]:

[^3]: $220 \quad 210 \quad 200 \quad 190 \quad 180 \quad 170 \quad 160 \quad 150$

[^4]: | 1 | 1 | | | | | | | | | | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |
 | fl | (pgm) | | | | | | | | | | | |

[^5]:

[^6]:

