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Optimized Geometries of Ethylperoxy Radical 

Units: Angstroms 

 

UHF-CCSD(T)-F12/cc-pVDZ-F12 

Convergence: 10-8 Eh/a0 

 

Gauche 

O    -1.349344997852     -0.544835159289      0.159158958398 

O    -0.684186976215      0.476381885755     -0.343915580316 

C     0.607919448080      0.607614779571      0.307837984722 

C     1.539362694688     -0.504516361505     -0.120806863736 

H     0.426471401077      0.606324523727      1.382250710308 

H     0.958858163009      1.589346295787     -0.009851385922 

H     1.124830082693     -1.470018498337      0.165978936574 

H     1.689085348506     -0.487028752085     -1.200387698380 

H     2.507062451717     -0.379795581125      0.367283640165 

 

Trans 

O    -1.712967170671      0.098046241159      0.000000000000 

O    -0.520698882244     -0.462817183701      0.000000000000 

C     0.519603099039      0.551695894696      0.000000000000 

C     1.845333932578     -0.173213466914      0.000000000000 

H     0.373219394908      1.163681239127      0.889970212700 

H     0.373219394908      1.163681239127     -0.889970212700 

H     1.943984779911     -0.800011265727      0.886013665536 

H     1.943984779911     -0.800011265727     -0.886013665536 

H     2.656592691396      0.555314181179      0.000000000000 

 

 

UHF-CCSD(T)/ANO0 

Convergence: 10-10 Eh/a0 

 

Gauche 

O    -1.356338826629     -0.558457943839      0.157369032229 

O    -0.687342883492      0.495585246570     -0.344680691241 

C     0.610058678860      0.605870219767      0.315578382053 

C     1.546346357970     -0.508429494967     -0.126025466887 

H     0.434065618485      0.594668389381      1.397519267852 

H     0.975805741756      1.594715550410      0.012171881076 

H     1.129252792679     -1.484357762423      0.149107432349 

H     1.700394945839     -0.478945940031     -1.212027592277 

H     2.519247355846     -0.388454963543      0.369026951111 
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Trans 

O    -1.729137790213      0.106785735720      0.000000000000 

O    -0.518308175852     -0.477763980311      0.000000000000 

C     0.518703735845      0.549909106548      0.000000000000 

C     1.859332253054     -0.166218590366      0.000000000000 

H     0.376546745031      1.168030589271      0.894472399817 

H     0.376546745031      1.168030589271     -0.894472399817 

H     1.966461488311     -0.796558352427      0.891507499067 

H     1.966461488311     -0.796558352427     -0.891507499067 

H     2.667714817105      0.576212226842      0.000000000000 

 

 

UHF-CCSD(T)/ANO1 

Convergence: 10-9 Eh/a0 

 

Gauche 

O    -1.350000256872     -0.548031220536      0.158876070824 

O    -0.684096608616      0.480905668596     -0.344214824758 

C     0.608157805389      0.607726790519      0.309588709440 

C     1.539481674900     -0.505808252507     -0.121855798879 

H     0.428028505132      0.604912408946      1.384598114125 

H     0.962689861385      1.589880590180     -0.004735591326 

H     1.123326377914     -1.472009834660      0.163098259675 

H     1.688102983861     -0.486860415510     -1.202296033251 

H     2.508870285245     -0.384118139025      0.365492184673 

 

Trans 

O    -1.716551044757      0.099351853726      0.000000000000 

O    -0.519107392251     -0.465666284593      0.000000000000 

C     0.519017564413      0.551975850628      0.000000000000 

C     1.847674049625     -0.171887142349      0.000000000000 

H     0.374062712939      1.164733571588      0.890083255544 

H     0.374062712939      1.164733571588     -0.890083255544 

H     1.947096305093     -0.799382169230      0.886352804652 

H     1.947096305093     -0.799382169230     -0.886352804652 

H     2.659412147779      0.557321837327      0.000000000000 
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UHF-CCSD(T)/haug-cc-pVTZ 

Convergence: 10-9 Eh/a0 

 

Gauche 

O    -1.354794613332     -0.545350440343      0.160241162915 

O    -0.683785716982      0.478469082536     -0.347194357259 

C     0.610539843857      0.607480162171      0.311691829165 

C     1.542613562822     -0.505912907891     -0.122045900514 

H     0.424139973120      0.601444546389      1.386255322641 

H     0.961555749872      1.591645200510     -0.002496155542 

H     1.126552866853     -1.473646775686      0.160345775965 

H     1.692897488490     -0.483349192169     -1.202842302925 

H     2.511374378446     -0.383982018761      0.367738653223 

 

Trans 

O    -1.718706182605      0.098785803407      0.000000000000 

O    -0.520527169518     -0.465308402019      0.000000000000 

C     0.521835168675      0.554355650677      0.000000000000 

C     1.849373528819     -0.173593426763      0.000000000000 

H     0.373942277489      1.165468529994      0.891489496457 

H     0.373942277489      1.165468529994     -0.891489496457 

H     1.947167548226     -0.801326123021      0.887171521232 

H     1.947167548226     -0.801326123021     -0.887171521232 

H     2.662462875786      0.555024229089      0.000000000000 

 

 

Comparisons of Harmonic Frequencies 

Sensitivity of the VPT2+K predictions to the harmonic frequencies was explored (Fig. 

S1). The four simulations for each conformer are completely analogous to each other, aside from 

using a different set of harmonic frequencies and intensities. We also note that these simulations 

are performed with semi-diagonal quartic force fields, where the cubic and quartic force 

constants are in the CCSD(T)/ANO0 normal coordinates. The number of bands from each 

conformer is nearly unchanged for the three levels of theory, and the relative intensities are also 

similar. However the differences in the zeroth-order frequencies influence the ordering of the 

bands. Between the hybrid simulations, which use at least triple-zeta quality harmonic 
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frequencies, the position of any given transition changes by less than 10 cm-1. It can be seen that 

CCSD(T)/ANO0 harmonic frequencies lead to a (sometimes) severe overestimation of the 

transition frequencies. 

2880 2900 2920 2940 2960 2980 3000 3020

ANO0
  

 

cc-pVDZ- F12

haug-cc-pVTZ

Wavenumber (cm
-1
)

ANO1

 

Figure S1:  Infrared depletion spectrum of ethylperoxy, measured on mass channel 45 u, using DTAP, 

and VPT2+K simulations. The basis sets used for the harmonic frequencies and intensities are indicated 

for each pair of simulations (with the exception that the cc-pVDZ-F12 simulations used the haug-cc-

pVTZ intensities). The trans simulations are in blue, while the gauche simulations are in pink. 
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Numerical Accuracy of Force Constants 

The numerical accuracy of our normal coordinate force constants, which were determined 

by numerical differentiation of analytic internal coordinate gradients, followed by numerical 

transformation into normal coordinates, was benchmarked against CFOUR’s standard semi-

diagonal quartic force field recipe, based upon analytic second derivatives. We computed quartic 

normal coordinate force fields for several small molecules: water, formaldehyde, hydrogen 

peroxide, and formic acid. The differences between our force constants and CFOUR’s force 

constants were about ± 0.01 cm-1 for quadratic and ± 0.2 cm-1 for cubic and quartic. We also 

checked the correctness of the ethylperoxy anharmonic internal force constants by simply 

transforming them into the CCSD(T)/ANO0 normal coordinates. The agreement with CFOUR’s 

force constants was excellent. 

 

Four Variations of Force Field Transformation 

The accuracy of different variations of the transformation from internal coordinates to 

normal coordinates was investigated (Tables S1-4). In these tables, the column “ANO0” contains 

the CCSD(T)/ANO0 force constants in their original normal coordinates, ordered by best match 

to the CCSD(T)-F12 normal coordinates. Four different variations of the transformation into the 

CCSD(T)-F12 normal coordinates are defined by the reference structure used to compute the L-

tensor elements and by the set of quadratic internal force constants used in the transformation 

equations. These four variations are named as follows: ANO0 reference structure and ANO0 

quadratic force constants (var-1), F12 reference structure and F12 quadratic force constants (var-

2), F12 reference structure and ANO0 quadratic force constants (var-3), ANO0 reference 
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structure and F12 internal quadratic force constants (var-4). The column labeled “F12” contains 

anharmonic normal coordinate force constants evaluated via finite differences of CCSD(T)-

F12/cc-pVDZ-F12 energies. Cubic and quartic force constants calculated in this manner are 

typically accurate to 1 cm-1 (sometimes more numerical error for very low frequency 

coordinates, such as the torsions 20 and 21). 

 The force constants transformed with the var-2 procedure are usually very similar to 

those transformed with var-3; likewise, var-1 force constants are similar to var-4. This indicates 

that the contribution to these higher order force constants from the quadratic internal coordinate 

force constants is small. Procedures var-2 and var-3 are quite a bit better overall than var-1 and 

var-4. It is apparent that their use of the ANO0 equilibrium geometry for determination of the L-

tensor elements is largely responsible for their deficiencies. For many normal coordinates, it can 

be seen that the transformed force constants are not greatly different. This is generally because 

the two sets of normal coordinates are very similar. Sometimes the transformed force constants 

are superior, and sometimes the force constants expressed in the original ANO0 normal 

coordinates are superior. For certain force constants, the advantages of coordinate transformation 

are striking, such as for the antisymmetric CH stretching (i=14,15) cubic force constants of the 

gauche conformer (Table S3). In this instance, the transformation puts the force constants into 

excellent agreement with the true CCSD(T)-F12 values. 



S8 
 

TABLE. S1: Comparisons of trans ϕiii (cm-1) for four methods of transforming from 

internal to normal coordinate force constants RMSD excludes the O-O stretch (i = 8). 

 

i Γ ANO0 var-1 var-2 var-3 var-4 F12 

1 a′ -787.3 -796.3 -794.0 -794.1 -796.3 -783.1 

2 a′ 1335.8 1351.2 1351.0 1351.0 1351.2 1332.4 

3 a′ 1051.6 1067.2 1067.3 1067.3 1067.2 1054.9 

4 a′ 35.1 18.3 17.4 16.8 18.8 17.3 

5 a′ -62.1 -63.2 -62.3 -63.3 -62.3 -62.4 

6 a′ -101.4 -109.4 -107.1 -109.9 -106.6 -106.2 

7 a′ -12.4 -14.9 -16.0 -19.6 -11.4 -21.4 

8 a′ 334.1 346.9 345.8 346.5 346.2 410.9 

9 a′ 95.6 -86.0 -89.3 -90.2 -85.2 -86.9 

10 a′ -93.2 -90.2 -87.3 -87.3 -90.2 -83.3 

11 a′ 131.6 144.0 132.8 134.5 142.2 134.0 

12 a′ 59.0 57.8 60.0 61.2 56.8 58.2 

13 a′ -10.7 -1.2 -9.8 -11.1 0.4 -11.6 

RMSD 53.1 9.1 7.5 7.5 9.3 - 
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TABLE. S2: Comparisons of trans ϕiiii (cm-1) for four methods of transforming from 

internal to normal coordinate force constants RMSD excludes the O-O stretch (i = 8). 

 

i Γ ANO0 var-1 var-2 var-3 var-4 F12 

1 a′ 553.3 558.4 557.8 557.8 558.4 548.8 

2 a′ 512.2 521.3 521.1 521.2 521.3 510.6 

3 a′ 322.6 328.5 328.5 328.5 328.5 322.9 

4 a′ 15.3 12.5 11.6 12.1 12.0 1.5 

5 a′ 13.6 14.3 13.6 14.1 13.9 2.4 

6 a′ 32.3 34.0 32.7 32.9 33.8 31.9 

7 a′ 66.5 71.6 70.9 71.4 71.0 69.7 

8 a′ 106.0 106.8 106.3 106.3 106.8 120.1 

9 a′ 12.6 14.7 14.6 14.7 14.7 13.8 

10 a′ 37.8 42.1 41.4 41.4 42.1 39.6 

11 a′ 97.7 99.1 99.6 100.1 98.5 99.2 

12 a′ 6.3 5.9 6.7 6.4 6.1 6.0 

13 a′ 69.4 68.0 71.3 69.3 69.9 70.8 

14 a″ 302.8 314.7 314.8 314.9 314.7 309.7 

15 a″ 310.9 323.7 324.1 324.0 323.8 318.1 

16 a″ 6.3 5.7 4.6 4.4 5.8 -9.7 

17 a″ 57.2 58.3 57.3 58.9 57.5 56.6 

18 a″ 67.9 64.3 63.4 64.2 63.5 61.5 

19 a″ 293.9 295.8 297.1 299.2 293.7 296.7 

20 a″ 3234.8 3474.0 3509.2 3520.2 3463.2 3502.2 

21 a″ 541.3 628.5 744.0 652.2 716.7 746.7 

RMSD 77.2 27.9 6.3 22.4 12.7 - 
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TABLE. S3: Comparisons of gauche ϕiii (cm-1) for four methods of transforming from 

internal to normal coordinate force constants. RMSD excludes the O-O stretch (i = 8). 

 

i Γ ANO0 var-1 var-2 var-3 var-4 F12 

1 a′ 258.3 165.1 165.7 165.7 165.1 162.8 

2 a′ -1329.9 -1338.4 -1337.8 -1337.8 -1338.4 -1321.7 

3 a′ -1063.7 -1078.7 -1078.7 -1078.7 -1078.7 -1065.9 

4 a′ -55.0 -54.5 -53.5 -54.5 -53.6 -53.2 

5 a′ 19.4 29.8 29.2 29.5 29.5 30.8 

6 a′ -100.2 -108.3 -107.7 -110.3 -105.8 -107.4 

7 a′ -2.6 2.1 -9.4 -10.5 3.1 -10.5 

8 a′ 241.7 197.8 199.2 199.4 197.6 242.6 

9 a′ -100.3 130.3 128.0 129.9 128.4 125.7 

10 a′ -11.7 -28.8 -30.4 -30.6 -28.6 -25.2 

11 a′ 139.1 146.7 145.8 147.6 145.0 145.8 

12 a′ 40.2 43.3 42.8 43.0 43.1 39.8 

13 a′ 54.5 53.8 56.2 56.2 53.7 57.0 

14 a″ 344.9 260.5 261.4 261.4 260.5 257.2 

15 a″ 227.7 210.0 209.4 209.4 210.0 206.0 

16 a″ 11.3 -8.9 -10.5 -10.7 -8.7 -9.8 

17 a″ -9.0 13.5 13.3 14.7 12.2 17.4 

18 a″ -12.4 42.9 38.7 39.5 41.9 47.0 

19 a″ 22.0 18.0 18.4 19.6 16.8 16.0 

20 a″ 9.3 158.3 7.9 7.4 158.2 7.0 

21 a″ 41.9 43.2 46.8 47.2 46.5 43.7 

RMSD 60.7 34.4 5.5 5.6 34.4 - 
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TABLE. S4: Comparisons of gauche ϕiiii (cm-1) for four methods of transforming from 

internal to normal coordinate force constants RMSD excludes the O-O stretch (i = 8). 

 

i Γ ANO0 var-1 var-2 var-3 var-4 F12 

1 a′ 309.2 323.4 323.3 323.3 323.4 318.3 

2 a′ 509.7 515.1 514.8 514.8 515.1 506.0 

3 a′ 332.3 338.1 338.2 338.1 338.1 332.6 

4 a′ 8.9 8.5 7.5 7.8 8.2 -3.9 

5 a′ 5.7 8.3 7.6 7.9 7.9 -1.1 

6 a′ 34.1 35.6 34.8 35.0 35.3 34.3 

7 a′ 70.1 73.8 72.7 73.4 73.1 71.0 

8 a′ 69.5 60.6 60.7 60.8 60.5 69.0 

9 a′ 23.7 28.3 28.2 28.3 28.2 27.2 

10 a′ 21.1 24.4 24.1 24.1 24.4 22.3 

11 a′ 59.0 60.5 60.7 60.8 60.4 60.5 

12 a′ 41.4 41.4 43.2 42.4 42.1 42.4 

13 a′ 49.6 44.8 45.9 45.5 45.1 45.9 

14 a″ 332.1 313.5 314.2 314.1 313.5 309.5 

15 a″ 314.0 333.2 333.2 333.2 333.2 328.1 

16 a″ 8.2 5.6 4.9 5.1 5.5 -3.8 

17 a″ 62.7 64.6 63.4 64.4 63.6 61.1 

18 a″ 28.1 20.9 20.6 21.0 20.6 21.3 

19 a″ 230.2 238.2 239.2 241.2 236.2 239.0 

20 a″ 3370.0 3574.3 3611.3 3626.0 3559.8 3607.3 

21 a″ 407.6 401.2 441.8 414.4 427.5 439.3 

RMSD 54.2 12.4 5.0 8.6 12.1 - 
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Details Regarding Full Quartic Force Field Calculations 

 To compute full quartic force fields of trans- and gauche-ethylperoxy, displacements 

were made in all 3N-6 internal (z-matrix) coordinates. Step sizes used were 0.005 Å for bond 

lengths and 0.25 degrees for bond angles and dihedral angles. Up to two positive and negative 

steps were taken in single internal coordinates, and single positive and negative steps were taken 

simultaneously in two and three internal coordinates. No advantage was taken of symmetry to 

reduce the number of displacements needed; although, abelian computational symmetry could be 

used for all of the Cs symmetry displacements of the trans conformer. A total of 11564 displaced 

gradients were computed for each conformer. CFOUR was directed to compute analytic energy 

gradients and to transform them into z-matrix coordinates by providing z-matrix coordinate 

input, requesting geometry optimization, and including the keyword GEO_MAXSTEP=1. 

Gradients were read from the GRDINT files written by CFOUR.1 

An analytic gradient vector of length 3N-6 is determined at each displacement. For each 

component of this vector, 1D, 2D, and 3D, in internal coordinates, were constructed from its 

values at equilibrium (effectively zero) and at displacements along all 3N-6 internal coordinates. 

These grids were constructed for every possible combination of 1, 2, and 3 different internal 

coordinates. In Mathematica, low-order polynomial interpolation was applied to each rectangular 

grid with the “Interpolation” function. A necessary condition to use Mathematica’s interpolation 

function on multidimensional data is that the grids be rectangular. This implies that the grids in 2 

and 3 normal modes may only include the gradients from points displaced by ± 1 units. For each 

interpolated grid, a Taylor series expansion was constructed about the equilibrium using the 

“Series” function.2 Then quadratic, cubic, and quartic force constants are extracted from each 

Taylor series. Once this has been performed on all possible grids, some types of force constants 
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will have been determined redundantly; these are averaged together. Comparing the values of 

these force constants also provides a numerical consistency check on the force field. This kind of 

diagnostic is also reported by CFOUR for quartic force constants of the iijj type. We found that 

this interpolation scheme allows for accurate determination of force constants. It is not as 

sensitive to step size or the number of grid points as direct least squares fitting of Taylor 

polynomials, and it is more straightforward to apply than central difference formulas. 

 The internal coordinate force constants are converted into atomic units. The L-tensor 

elements are then evaluated via central finite differences. Up to third derivatives of the internal 

coordinates with respect to the normal coordinates are necessary to transform a full quartic force 

field.3 In order to evaluate these, the dimensionless normal coordinates, in the form of Cartesian 

displacement vectors, are read from the QUADRATURE file that CFOUR writes after a 

harmonic frequency calculation. Small steps in the normal coordinates are made by adding the 

normal coordinate vectors to the cartesian coordinates of the equilibrium geometry. About 0.001 

units is found to be satisfactory. The values of the internal coordinates are measured at these 

displaced geometries. Once all elements of the L-tensor are determined, the force constants in 

normal coordinates are straightforwardly determined using algebraic equations.3 

 

Mass Spectrometry 

 

A series of mass spectra for the n-propylnitrite (PRONO) experiments are presented 

below (Fig. S2). Trace (a) shows the neat droplet beam. When droplets are doped with the 

PRONO precursor (trace b), some parent ion signal appears at 90 u and also deprotonated signals 

at 89 and 88 u. These signals diminish when the precursor is decomposed in the heated pyrolysis 

source (trace c). Also note the increase in 27 u and 30 u upon heating the source. The only 
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obvious change upon adding O2 (trace d) is the growth of 32 u; the enhancement of 45 u, the 

chosen mass channel for ethylperoxy spectroscopy, is slight. The pyrolysis current was chosen to 

maximize the ethylperoxy depletion signal; the optimal value for PRONO was found to be 30 A, 

somewhat higher than for the di-tert-amyl peroxide (DTAP) precursor, which optimized at 20 A. 
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Figure S2: HENDI mass spectra of (a) neat droplet beam (b) cold PRONO (c) PRONO with 30 A 

pyrolysis current (d) PRONO with 30 A pyrolysis current with O2. 
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Infrared Spectroscopy 

An infrared spectrum of n-propylnitrite was collected (Fig. S3). Several skeletal and 

nitrite torsional isomers are expected to be populated in the PRONO sample. This spectrum 

could be modeled as the sum of several conformer specific spectra, with appropriate Boltzmann-

weights. We make no attempt to assign these features. 

2880 2900 2920 2940 2960 2980 3000 3020

Wavenumber (cm
-1
)

 
Figure S3: Infrared spectrum of the n-propylnitrite precursor, measured on mass channel 29 u, in the 

region hosting ethylperoxy radical features. It is likely that several rotamers are contributing to this 

spectrum. 

 

 

 

 

 



S17 
 

References 

(1) CFOUR, A Quantum Chemical Program Package Written by Stanton, J.F.; Gauss, J.; 

Harding, M.E.; Szalay, P.G. with contributions from Auer, A.A.; Bartlett, R.J.; Benedikt, 

U.; Berger, C.; Bernholdt, D.E.; Bomble, Y.J.; et al., and the Integral Packages 

MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, 

H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van 

Wüllen. For the current version, see http://www.cfour.de. 

(2) Mathematica, Version 11, Wolfram Research, Inc., Champaign, IL, 2016. 

(3) Hoy, A. R.; Mills, I. M.; Strey, G., Anharmonic Force Constant Calculations. Mol. Phys. 

1972, 24, 1265-1290. 

 

http://www.cfour.de/

