Supporting Information

Modification of Electrical and Magnetic Properties of Fe₃O₄ Epitaxial Thin Films by Nitrogen Substitution for Oxygen

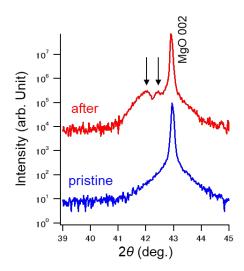
Satoshi Fujiwara¹, Yuji Kurauchi¹, Yasushi Hirose^{1*}, Isao Harayama^{3,4}, Daiichiro Sekiba^{3,4}, and Tetsuya Hasegawa^{1,2}

- 1 Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- 2 Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan

3 Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

4 Tandem Accelerator Complex, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

* hirose@chem.s.u-tokyo.ac.jp


Contents

- 1. Change of T_N by nitrogen substitution
- 2. Physical properties of nitrogen rich Fe₃O_{4-x}N_y thin films (y=0.6 and 0.8)
- 3. DOSs under epitaxial strain

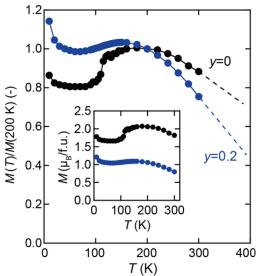

1. Change of T_N by nitrogen substitution

Figure S1 shows XRD patterns of a Fe₃O_{4-y}N_y film before and after annealing at 500 °C for 1 hour in an UHV chamber (base pressure $<5 \times 10^{-8}$ Torr). Note that this annealing temperature (500 °C = 773 K) is lower than T_N of Fe₃O₄ (~860 K). After the annealing, diffraction peaks from impurity phase(s) appeared due to intermixing between the Fe₃O_{4-y}N_y thin film and MgO substrate. According to the previous report on Fe₃O₄ film on MgO, similar intermixing might start at much lower temperature of 300-450 °C.^{S1-S4}

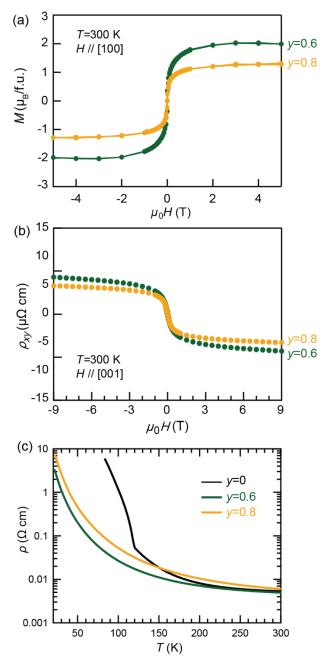
In order to avoid the intermixing between the Fe₃O_{4-y}N_y thin film and MgO substrate, we conducted *M*-*T* measurements below room temperature. Although large uncertainty is included, extrapolation of the *M*-*T* curves above 200 K (Fig. S2) suggested a tendency that nitrogen substitution reduced T_N .

Figure S1. XRD patterns of a Fe₃O_{4-y}N_y thin film (y=0.56) before and after the annealing. Arrows represent the diffraction from impurity phase(s).

Figure S2. Normalized magnetization M(T)/M(200 K) vs temperature curves of Fe₃O_{4-y}N_y thin films (y=0, 0.2) under field-cooled condition. A magnetic field of 1 kOe was applied along the in-plane direction. Dashed lines are visual guides for magnetization over 300 K. Inset shows the magnetization

without normalization.

Reference


^{S1} Kim, Y. J.; Gao, Y.; Chambers, S. A. Selective Growth and Characterization of Pure, Epitaxial α -Fe₂O₃(0001) and Fe₃O₄(001) Films by Plasma-Assisted Molecular Beam Epitaxy. *Surf. Sci.* **1997**, *371*, 358.

^{S2} Anderson, J. F.; Kuhn, M.; Diebold, U.; Shaw, K.; Stoyanov, P.; Lind, D. Surface Structure and Morphology of Mg-Segregated Epitaxial Fe₃O₄ (001) Thin Films on MgO (001). *Phys. Rev. B* **1997**, *56*, 9902.

^{S3} Handke, B.; Haber, J.; Ślęzak, T.; Kubik, M.; Korecki, J. Magnesium Interdiffusion and Surface Oxidation in Magnetite Epitaxial Films Grown on MgO (100). *Vacuum* **2001**, *63*, 331.

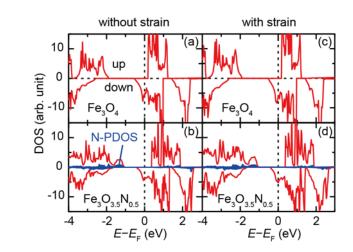
^{S4} N.T.H. Kim-Ngan, A.G. Balogh, J.D. Meyer, J. Brötz, S. Hummelt, M. Zając, T. Ślęzak, and J. Korecki, Nucl. Instruments Methods Phys. Res. B **2009**, *267*, 1484.

2. Physical properties of nitrogen rich Fe₃O_{4-x}N_y thin films (y=0.6 and 0.8)

Figure S3. (a) In-plane magnetization vs magnetic filed curves at room temperature (300 K), (b) Hall resistivity ρ_{xy} at 300 K, and (c) ρ –*T* curves of the Fe₃O_{4–y}N_y thin films.

3. DOSs under epitaxial strain

The crystal and electronic band structures of Fe₃O₄ and Fe₃O_{3.5}N_{0.5} under the epitaxial strain from MgO substrate were calculated by using constrained structural optimization procedures. Firstly, we calculated the lattice constant of MgO using the GGA-PBE functional. The obtained value 4.251 Å was about 1% larger than the experimental value of 4.210 Å. Next, we optimized the out-of-plane lattice constant and atomic positions of Fe₃O₄ and Fe₃O_{3.5}N_{0.5}, where the in-plane lattice constant was fixed at that of MgO, as follows. We used the primitive cell (Fe₆O₈ or Fe₆O₇N) of which the lattice vector is:


$$\begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & a & a \\ a & 0 & a \\ c & c & 0 \end{pmatrix}$$
 (1)

where *a* and *c* are the in-plane and out-of-plane lattice constants, respectively. In this constrained structure optimization, *a* was set to the double of MgO (8.502 Å), and *c* was optimized.

Table S1 compares the calculated *c* and lattice distortion ratio (c/a - 1) with the experimental values. The experimentally observed distortion ratio, c.a. -0.5%, was qualitatively reproduced by our calculations. Figures S4(c) and (d) in the main text show the density of states (DOS) profiles of strained Fe₃O₄ and Fe₃O_{3.5}N_{0.5}. The whole profiles are almost the same as those obtained by the strain-free calculations (Figures S4(a) and (b)), indicating that the tensile strain does not have a significant effect on the electronic conduction of Fe₃O_{4-y}N_y.

Table S1. Experimental (Exp.) and calculated (DFT) out-of-plane lattice constant, *c*, and distortion ratio, c/a-1. In-plane lattice constant *a* was fixed to the double of MgO ($a_{Exp.}=8.420$ Å and $a_{DFT}=8.502$ Å).

	с _{Ехр.} (Å)	$c_{\text{Exp.}}/a_{\text{Exp.}}-1$ (%)	$c_{\rm DFT}$ (Å)	$c_{\rm DFT}/a_{\rm DFT}-1$ (%)
Fe ₃ O ₄	8.369	-0.61	8.456	-0.54
Fe ₃ O _{3.6} N _{0.4}	8.382	-0.45		
Fe ₃ O _{3.5} N _{0.5}			8.455	-0.55

Figure S4. Spin-polarized electronic density of states (DOS) of (a, c) y = 0 (Fe₃O₄) and (b, d) y = 0.5 (Fe₃O_{3.5}N_{0.5}) (c, d) with and (a, b) without epitaxial strain. The blue lines in (b) and (d) correspond

to the partial DOS (PDOS) for nitrogen.