Supporting Information for

HFIP solvent enables alcohols to act as alkylating agents in stereoselective heterocyclization

Yuxiang Zhu, Ignacio Colomer, Amber L. Thompson and Timothy J. Donohoe*

Department of Chemistry, University of Oxford,

Chemistry Research Laboratory,

Mansfield Road,

Oxford,

OX1 3TA (UK)

E-mail: timothy.donohoe@chem.ox.ac.uk

^[*] Yuxiang Zhu, Dr I. Colomer, Amber L. Thompson and Prof. T. J. Donohoe,

Table of Contents

1. General experimental details	S5
2. Synthesis of allyl alcohols.	S5
2.1. Synthesis of (<i>E</i>)-2b	S5
2.2. Synthesis of (Z)-2k	S6
2.3. Synthesis of (Z)-2m	S6
3. Synthesis of homoallyl alcohols.	S7
3.1. Synthesis of S1	S7
3.2. Synthesis of S2	S7
3.3. Synthesis of (+)-S3	S8
3.4. Synthesis of S4	S9
3.5. Synthesis of (<i>Z</i>)-1e	S9
4. General procedure for the synthesis of styrenes	S10
4.1. Synthesis of S5	S10
4.2. Synthesis of S6	S10
4.3. Synthesis of S7	S11
4.4. Synthesis of S8	S12
4.5. Synthesis of S9	S12
5. General procedure for the Ru-catalyzed alkene metathesis reaction	S13
5.1. Synthesis of S10	S13
5.2. Synthesis of S11	S13
5.3. Synthesis of S12	S14
5.4. Synthesis of S13	S14
5.5. Synthesis of S14	S15
5.6. Synthesis of S15	S15
5.7. Synthesis of S16	S16
5.8. Synthesis of (<i>E</i>)-1h	S16
5.9. Synthesis of (<i>E</i>)-1i	S17
5.10.Synthesis of (<i>E</i>)-1j	S17
5.11. Synthesis of (<i>E</i>)-11	S18
5.12.Synthesis of (<i>E</i>)-1m	S19
5.13. Synthesis of (<i>E</i>)-1q	S19
5.14. Synthesis of (<i>E</i>)-2i	S20
5.15.Synthesis of (<i>Z</i>)-2l	S20

6.	General procedure for acetate deprotection	S21
	6.1. Synthesis of (<i>E</i>)-1a	S21
	6.2. Synthesis of (<i>E</i>)-1b	S21
	6.3. Synthesis of (<i>E</i>)-1c	S22
	6.4. Synthesis of (<i>E</i>)-1d	S22
	6.5. Synthesis of (<i>E</i>)-1e	S22
	6.6. Synthesis of 1f	S23
	6.7. Synthesis of 1g	S23
	6.8. Synthesis of (<i>E</i>)-1k	S24
	6.9. Synthesis of (<i>E</i>)-1n	S24
7.	General procedure for the synthesis of <i>E</i> -styrenes with a carboxylic acid moiety	S25
	7.1. Synthesis of (<i>E</i>)-10	S25
	7.2. Synthesis of (<i>E</i>)-1p	S26
8.	Screening of reaction conditions for the cyclisation of 1a to 3a	S26
	8.1. General procedure for the cyclization using alcohols as alkylating agents	S27
	8.2. Synthesis of 3a	S28
	8.3. Synthesis of 3b	S28
	8.4. Synthesis of 3c	S29
	8.5. Synthesis of 3d	S29
	8.6. Synthesis of 3e	S30
	8.7. Synthesis of 3f	S31
	8.8. Synthesis of 3g	S31
	8.9. Synthesis of 3h	S32
	8.10. Synthesis of 3i	S33
	8.11. Synthesis of 3j	S35
	8.12. Synthesis of 3k	S35
	8.13. Synthesis of 31	S37
	8.14. Synthesis of 3m	S37
	8.15. Synthesis of 3n	S38
	8.16. Synthesis of 3o	S39
	8.17. Synthesis of 3p	S39
	8.18. Synthesis of 3q	S40
	8.19. Synthesis of 3r	S41
	8.20. Synthesis of 3s	S41
	8.21. Synthesis of 3t	S42

8.22. Synthesis of 3u	S42
8.23. Synthesis of 3v	S43
8.24. Synthesis of 3w	S43
8.25. Synthesis of 3x	S44
8.26. Synthesis of 3y	S45
8.27. Synthesis of 3z	S45
8.28. Synthesis of 3aa	S46
8.29. Synthesis of 3ab	S47
8.30. Synthesis of 3ac	S48
8.31. Synthesis of 3ad	S49
8.32. Synthesis of 3ae	S50
8.33. Synthesis of (+)-3af	S50
8.34. Synthesis of (+)-3ag	S51
8.35. Synthesis of (+)-3ah	S52
8.36. Synthesis of (+)-3ai	S53
8.37. Synthesis of <i>trans</i> -3aj	S54
8.38. Synthesis of cis-3aj	S54
9. General procedure for the alkene hydrogenation	S55
9.1. Synthesis of 6a	S56
9.2. Synthesis of 6b	S56
9.3. Synthesis of (+)-6c	S56
10. Synthesis of 7	S57
11. General procedure for the oxidation of an aromatic ring to a carboxylic acid	S58
11.1. Synthesis of 8	S58
11.2. Synthesis of 9	S59
12. General procedure for the acylation and alkylation of a lactone	S60
12.1. Synthesis of 10a	S60
12.2. Synthesis of 10b	S60
12.3. Synthesis of 10c	S61
13. HPLC chromatograms	S63
14. NMR study of compounds 3b, 3aa and (+)-6c	S67
15. Mechanistic study	S69
16. References	S72

1. General experimental details

¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz or 500MHz spectrometer in CDCl₃ and referenced to residual solvent peaks. Chemical shifts were quoted in ppm (parts per million) to the nearest 0.01 ppm with signal splitting recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint) septet (sept), multiplet (m) and broad singlet (br s). Coupling constants, J, were measured in Hz to the nearest 0.1 Hz. ¹H and ¹³C NMR spectra were recorded at room temperature. All diastereomeric ratio values (d.r.) were based on the crude NMR. The numbering system drawn on the structures and used to assign the NMR peaks is not the same system that was used to generate the chemical name. Infrared spectra were recorded as thin films of neat samples on a Bruker Tensor 27 FT-IR spectrometer equipped with Attenuated Total Reflectance sampling accessories. High resolution mass spectra were given to four decimal places and were recorded on a Bruker MicroTof (resolution = 10000 FWHM) under conditions of electrospray ionization (ESI), electronic ionization (EI) or chemical ionization (CI). Melting points (m.p.) were obtained from recrystallized samples using a Lecia VMTG heated-stage microscope and were uncorrected. The solvent systems used for recrystallization were quoted in parentheses. Flash column chromatography (FCC) was performed using silica gel (60 Å, 0.033-0.070 mm, BDH) or using basic alumina (pH 9.5, 58 Å, 150 mesh, Sigma-Aldrich). TLC analyses were performed on Merck Kiesegel 60 F₂₅₄ 0.25 mm precoated silica plates or Macherey-Nagel Alugram Alox N/UV₂₅₄ 0.20 mm precoated alumina plates. Reagents obtained from Sigma-Aldrich, Alfa, Fluorochem and TCI suppliers were used directly as supplied All anhydrous reactions were carried out in flame dried glassware and under an inert atmosphere of argon provided by a balloon. All reactions were stirred with magnetic followers. THF, toluene and CH₂Cl₂ were dried by purification through two activated alumina purification columns. Brine refers to a saturated aqueous solution of NaCl.

2. Synthesis of allyl alcohols.

2.1. (2*E*)-3-(4-Methoxyphenyl)prop-2-en-1-ol (*E*-2b)

To a stirring solution of 4-methoxycinnamaldehyde (4.800 g, 29.62 mmol) in MeOH (56 mL) under Ar, NaBH₄ (0.840 g, 17.8 mmol) is slowly added at 0 °C. After 30 min. the ice bath is removed. The reaction was allowed to stir for 12 hours at r.t. The reaction is quenched with saturated NH₄Cl solution and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and the solvent was removed

in vacuo. Recrystalization afforded alcohol *E-2b* as a white solid (4.850 g, 98%). Spectroscopic properties matched those previously reported.¹

Data for *E*-2b: R_f 0.5 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (2H, d, J = 8.7 Hz, Ar), 6.86 (2H, d, J = 8.7 Hz, Ar), 6.56 (1H, d, J = 15.9 Hz, 3-H), 6.24 (1H, dt, J = 15.8, 6.0 Hz, 2-H), 4.29 (2H, dd, J = 5.9, 1.2 Hz, 1-H₂), 3.81 (3H, s, OMe), 1.53 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 159.5 (C Ar), 131.1 (C-3), 129.6 (C Ar), 127.8 (2 x CH Ar), 126.4 (C-2), 114.2 (2 x CH Ar), 64.07 (C-1), 55.43 (OMe). HRMS (Cl): calculated for C₁₀H₁₃O₂ [M+H]⁺ requires m/z 165.0916, found m/z 165.0919.

2.2. (\pm) -(Z)-Cyclopent-2-en-1-ol (Z-2k)

Cerium trichloride (2.000 g, 8.197 mmol) was dissolved in 20 mL of methanol. Then cyclopent-2-enone (1.00 g, 12.3 mmol) was added. After 5 min. of vigorous stirring, sodium borohydride (934 mg, 24.6 mmol) was carefully added portionwise and the resulting heterogeneous mixture was stirred for 15 min. at r. t. Water was added dropwise until a clear solution is seen and then the mixture was extracted twice with Et₂O. The organic layers were collected, dried over MgSO₄ and the solvents were removed under vacuum. FCC (20% Et₂O) afforded **Z-2k** as a colorless oil (0.580 g, 85% yield). Spectroscopic properties matched those previously reported.²

Data for **Z-2k**: **R**_f 0.45 (50% Et₂O - pentane). ¹H **NMR** (**400 MHz, CDCl**₃) δ 5.93-5.99 (1H, m, 3-H), 5.78-5.84 (1H, m, 2-H), 4.82-4.88 (1H, m, 1-H), 2.49 (1H, ddt, J = 16.6, 10.9, 5.4 Hz, 4-H_A), 2.17-2.31 (2H, m, 4-H_B and 5-H_A), 1.95 (1H, br s, OH), 1.61-1.76 (1H, m, 5-H_B). ¹³C **NMR** (**100 MHz, CDCl**₃) δ 135.2 (C-3), 133.4 (C-2), 77.6 (C-1), 33.3 (C-5), 31.1 (C-4). **HRMS** (El): calculated for C₅H₇O [M-H]⁺ requires m/z 83.0491, found m/z 83.049.

2.3. (\pm) -(Z)-1-Phenylcyclopent-2-en-1-ol (Z-2m)

To a solution of Cyclopent-2-enone (0.51 mL, 6.1 mmol) in THF (40 mL) at -78 °C was added 1.88M PhLi (4.9 mL, 9.1 mmol). After the mixture was stirred at -78 °C for 1 hour, H₂O was added and allowed to warm to r.t. The mixture was extracted with Et₂O and the organic extract was washed with brine, dried over MgSO₄ and the solvents were removed under vacuum. The residue

was purified (FCC: gradient elution: $5\% \rightarrow 7\%$ Et₂O - pentane) to yield **Z-2m** as a white solid (0.584 g, 60%). Spectroscopic properties matched those previously reported.³

Data for **Z-2m**: **R**_f 0.5 (60% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.43-7.47 (2H, m, Ar), 7.32-7.38 (2H, m, Ar), 7.23-7.28 (1H, m, Ar), 6.12 (1H, dt, J = 5.6, 2.4 Hz, 3-H), 5.88 (1H, dt, J = 5.5, 2.2 Hz, 2-H), 2.60-2.70 (1H, m, 4-H_A), 2.43-2.52 (1H, m, 4-H_B), 2.24-2.29 (1H, m, 5-H₂),1.98 (1H, br s, OH). ¹³**C NMR (100 MHz, CDCl₃)** δ 147.0 (C Ar), 136.6 (C-2), 134.9 (C-3), 128.2 (2 x CH Ar), 126.8 (CH Ar), 124.9 (2 x CH Ar), 87.0 (C-1), 42.0 (C-5), 31.5 (C-4).

3. Synthesis of homoallyl alcohols.

3.1. (\pm) -2-Methyl-3-phenyloxirane (S1)

Ph
$$O$$

0.05 eq. O
Ph CF_3

2.0 eq. H_2O_2
 t
BuOH,MeCN
buffer (K_2CO_3
EDTA tetrasodium)
92%

Trans-β-Methylstyrene (2.000 g, 16.95 mmol) was placed in a round-bottom flask followed by 2,2,2-trifluoro-1-phenylethanone (147 mg, 0.846 mmol). *tert*-Butyl alcohol (25 mL), aqueous buffer solution (25 mL, 0.6 M K_2CO_3 , 4×10^{-5} M EDTA tetrasodium salt), acetonitrile (1.9 mL), and 30% aqueous H_2O_2 (3.9 mL, 34 mmol) were added consecutively. The reaction mixture was allowed to stir for 1 h at room temperature. Then the reaction was quenched by addition of sodium thiosulfate solution, and the mixture was extracted twice with Et_2O . The organic layers were collected, dried over MgSO₄ and the solvents were removed under vacuum. FCC (2% Et_2O) afforded **S1** as a colorless oil (2.090 g, 92% yield). Spectroscopic properties matched those previously reported.⁴

Data for **S1**: **R**_f 0.45 (50% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.22-7.39 (5H, m, Ar), 3.58 (1H, d, J = 2.1 Hz, 1-H), 3.05 (1H, qd, J = 5.1, 2.1 Hz, 2-H), 1.46 (3H, d, J = 5.1 Hz, Me). ¹³**C NMR (100 MHz, CDCl₃)** δ 137.9 (C Ar), 128.6 (2 x C-H Ar), 128.2 (C-H Ar), 125.7 (2 x C-H Ar), 59.2 (C-1), 59.2 (C-2), 18.1 (Me). **HRMS** (Cl): calculated for C₉H₁₀O [M]⁺ requires m/z 134.0726, found m/z 134.072.

3.2. 4-Allyltetrahydro-2*H*-pyran-4-ol (S2)

Zinc dust (3.900 g, 61.03 mmol) was slowly added under vigorous stirring to a mixture of tetrahydro-4H-pyran-4-one (3.000 g, 30.00 mmol) and allyl bromide (9.000 g, 75.00 mmol) in 10 mL THF, and 30 mL of a saturated aqueous solution of ammonium chloride in such a way that the temperature did not exceed 40°C. The mixture was then stirred for 10 hours at room temperature, 100 ml of 10% aqueous sulfuric acid was added and the mixture was filtered. The organic phase was separated, and the aqueous phase was saturated with sodium chloride and extracted with diethyl ether. The extracts were combined with the organic phase and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified (FCC: gradient elution: 15% \rightarrow 25% Et₂O - pentane) to yield **S2** as a colorless oil (3.830 g, 90%). Spectroscopic properties matched those previously reported.⁵

Data for **S2**: **R**_f 0.30 (60% EtOAc - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 5.86 (1H, ddt, J = 17.6, 10.2, 7.5 Hz, 2-H), 5.10-5.22 (2H, m, 1-H₂), 3.68-3.78 (4H, m, 2 x CH₂ tetrahydropyranyl), 2.23 (1H, d, J = 7.5 Hz, 3-H₂), 1.69 (2H, ddd, J = 13.8, 10.4, 5.8 Hz, CH₂ tetrahydropyranyl), 1.60 (1H, br s, OH), 1.42-1.51 (2H, m, CH₂ tetrahydropyranyl). ¹³**C NMR (100 MHz, CDCl₃)** δ 132.6 (C-2), 119.8 (C-1), 68.4 (C-4), 63.9 (2 x CH₂ tetrahydropyranyl), 47.6 (C-3), 37.7 (2 x CH₂ tetrahydropyranyl).

3.3. (+)-(S)-2-Phenylbut-3-en-1-ol [(+)-S3]

To a solution of (*R*)-phenyloxirane (1.000 g, 8.326 mmol, 1.0 equiv.) and [Cu(COD)Cl]₂ (0.172 g, 0.415 mmol) in THF (12 mL) at -78° C was added vinylmagnesium bromide (10.0 mL, 10.0 mmol, 1.0 M solution in THF). The reaction was allowed to warm to r.t. over 8 h, then it was quenched by the addition of saturated NH₄Cl solution and extracted with EtOAc. The combined organics were dried over MgSO₄ and concentrated. The crude residue was purified (FCC: gradient elution: 15% \rightarrow 20% Et₂O - pentane) to yield (+)-S3 as a colorless oil (0.650 g, 53%). Spectroscopic properties matched those previously reported.⁶ Racemic S3 (55% yield) was made via the same procedure without using [Cu(COD)Cl]₂.

Data for (+)-S3: **R**_f 0.40 (40% Et₂O - pentane). [α] $_{D}^{25}$ = +62.1 (0.01 g/mL, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.20-7.37 (2H, m, Ar), 7.20-7.27 (3H, m, Ar), 6.00 (1H, ddd, J = 17.6, 10.4, 7.7 Hz, 3-H), 5.15-5.23 (2H, m, 4-H₂), 3.81 (2H, t, J = 6.0 Hz, 1-H₂), 3.52 (1H, q, J = 7.3 Hz, 2-H), 1.57 (1H, br s, OH). ¹³**C NMR** (100 MHz, CDCl₃) δ 140.7 (C Ar), 138.3 (C-3), 128.9 (2 x C-H Ar), 128.1 (2 x C-H Ar), 127.1 (C-H Ar), 117.2 (C-4), 66.2 (C-1), 52.6 (C-2). **HRMS** (Cl): calculated for C₁₀H₁₂O [M]⁺ requires m/z 148.0883, found m/z 148.0882.

3.4. (\pm) - (2R,3S)-3-Phenylpent-4-en-2-ol (S4)

A 50 mL round bottom flask was flame dried and charged with a solution of copper (I) iodide (85.0 mg, 0.448 mmol) in diethyl ether (3.2 mL) and cooled to -78°C. The vinyl magnisium bromide solution (1M, 5.8 mL, 5.8 mmol) was added slowly. The resulting solution was stirred for 30 min. and then epoxide **S1** (0.600 g, 4.48 mmol) was added slowly. The solution was stirred overnight and allowed to warm to room temperature. The solution was cooled to 0°C and NH₄Cl (sat. aq.) was added. The aqueous layer was extracted three times with diethyl ether, dried over anhydrous MgSO₄, filtered, and concentrated. The crude residue was purified (FCC: gradient elution: $10\% \rightarrow 15\%$ Et₂O - pentane) to yield **S4** as a yellow oil (0.325 g, 45%). Spectroscopic properties matched those previously reported.⁷

Data for **S4**: **R**_f 0.40 (40% Et₂O - pentane). ¹**H NMR (500 MHz, CDCl₃)** δ 7.32-7.37 (2H, m, Ar), 7.24-7.28 (3H, m, Ar), 6.04 (1H, ddd, J = 17.5, 9.8, 8.7 Hz, 3-H), 5.09-5.18 (2H, m, 4-H₂), 4.00-4.10 (1H, m, 1-H), 3.25 (1H, t, J = 8.2 Hz, 2-H), 1.51 (1H, br s, OH), 1.25 (3H, d, J = 6.2 Hz, Me). ¹³**C NMR (125 MHz, CDCl₃)** δ 141.0 (C Ar), 138.5 (C-3), 129.0 (2 x C-H Ar), 128.5 (2 x C-H Ar), 127.1 (C-H Ar), 117.0 (C-4), 70.6 (C-1), 59.1 (C-2), 20.8 (Me).

3.5. (3*Z*)-4-Phenylbut-3-en-1-ol (*Z*-1e)

To (PPh₃)₃NiCl₂ dry powder (0.094 g, 0.14 mmol), 2,3-dihydrofuran (0.54 mL, 7.1 mmol) in dry Et₂O (8.0 mL) was transferred dropwise *via* a cannula. The resulting suspension was cooled to 0 °C and PhMgBr (2.8 M, 2.56 mL, 7.14 mmol) was slowly added dropwise. After stirring for 1 h at 0 °C, the mixture was stirred at room temperature for 6 h, and then poured into sat. NH₄Cl solution (40 mL). The crude product was extracted with Et₂O (3 x 20 mL), then the organic layer was dried over Na₂SO₄, filtered and concentrated to dryness giving a crude residue. Purification using silica gel flash chromatography (cyclohexane/EtOAc, 80:20) afforded the alcohol **Z-1e** as a colorless oil (0.750 g, 71%). Spectroscopic properties matched those previously reported.⁸

Data for **Z-1e**: **R**_f: 0.5 (100% EtOAc). ¹**H NMR (400 MHz, CDCl₃) δ** 7.28-7.38 (4H, m,

Ar), 7.21-7.27 (1H, m, Ar), 6.59 (1H, d, J = 11.7 Hz, 4-H), 5.70 (1H, dt, J = 11.7, 7.4 Hz, 3-H), 3.75 (2H, t, J = 6.5 Hz, 1-H₂), 2.62 (2H, qd, J = 6.6, 1.8 Hz, 2-H₂), 1.54 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 137.3 (C Ar), 131.7 (C-4), 128.8 (2 x CH Ar), 128.4 (C-3), 128.3 (2 x CH Ar), 126.9 (CH Ar), 62.6 (C-1), 32.1 (C-2). HRMS (EI): calculated for C₁₀H₁₂O [M]⁺ requires m/z 148.0883, found m/z 148.0888.

4. General procedure for the synthesis of styrenes

A solution of triphenylphosphonium halide (1.2 eq. or 2.0 eq. or 2.3 eq.) in dry solvent (THF or Et₂O) was placed in a flame-dried round-bottomed flask. The solution was cooled to 0 °C, and the base (1.2 eq. of 'BuOK or 2.0 eq. of 'BuOK or 2.3 eq. of 'BuOK or 4.5 eq. of NaH) was added in one portion. After stirring at 0 °C for 30 min, the aldehyde (1.0 equiv.) was added. The reaction mixture was gradually warmed to room temperature. After 12 h, the reaction was quenched by slow addition of saturated NH₄Cl. The phases were separated, and the aqueous phase was extracted twice with Et₂O. The combined organic layers were washed with brine, dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give the corresponding styrene, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

4.1. 2-Bromo-4-methoxy-1-vinylbenzene (S5)

Methyltriphenylphosphonium bromide (3.800 g, 10.64 mmol), 'BuOK (1.200 g, 10.71 mmol), solution of 2-bromo-4-methoxybenzaldehyde (1.150 g, 5.333 mmol in 2.3 mL THF) and THF (4.6 mL) were subjected to the general procedure except the reaction was heated to 50°C after the KO'Bu was added and before adding the aldehyde (FCC: pentane) to yield **S5** as a colorless oil (0.720 g, 63%). Spectroscopic properties matched those previously reported.⁹

Data for **S5**: **R**_f 0.50 (5% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) \delta** 7.48 (1H, d, J = 8.7 Hz, Ar), 7.09 (1H, d, J = 2.4 Hz, Ar), 6.99 (1H, dd, J = 17.4, 10.9 Hz, 2-H), 6.85 (1H, dd, J = 8.7, 2.5 Hz, Ar), 5.59 (1H, d, J = 17.4 Hz, 1-H_A), 5.25 (1H, d, J = 10.9 Hz, 1-H_B), 3.80 (3H, s, OMe). ¹³**C NMR (100 MHz, CDCl₃)** δ 159.7 (C Ar), 135.2 (C-2), 130.2 (C Ar), 127.3 (CH Ar), 124.1 (C Ar), 117.6 (CH Ar), 114.7 (C-1), 114.2 (CH Ar), 55.7 (OMe). **HRMS** (ESI): calculated for C₉H₁₀BrO [M+H]⁺ requires m/z 212.9910, found m/z 212.9909.

4.2. 2,4-Dimethyl-1-vinylbenzene (S6)

Methyltriphenylphosphonium bromide (6.400 g, 17.92 mmol), NaH (1.613 g, 67.20 mmol), 3,4-dimethoxybenzaldehyde (2.000 g, 14.91 mmol) and THF (74.5 mL) were subjected to the general procedure (FCC: pentane) to yield **S6** as a colorless oil (2.000 g, 99%). Spectroscopic properties matched those previously reported.¹⁰

Data for **S6**: **R**_f 0.50 (pentane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.23 (1H, s, Ar), 7.19 (1H, d, J = 7.8 Hz, Ar), 7.12 (1H, d, J = 7.7 Hz, Ar), 6.70 (1H, dd, J = 17.6, 10.9 Hz, 2-H), 5.73 (1H, d, J = 17.6 Hz, 1-H_A), 5.20 (1H, d, J = 10.8 Hz, 1-H_B), 2.30 (3H, s, Me), 2.29 (3H, s, Me). ¹³**C NMR** (**100 MHz, CDCl**₃) δ 136.9 (C-2), 136.7 (C Ar), 136.4 (C Ar), 135.4 (C Ar), 129.9 (CH Ar), 127.6 (CH Ar), 123.8 (CH Ar), 112.7 (C-1), 19.9 (Me), 19.7 (Me). **HRMS** (ESI): calculated for C₁₀H₁₃ [M+H]⁺ requires m/z 133.10118, found m/z 133.10120.

4.3. Methylenecyclohexane (S7)

Methyltriphenylphosphonium bromide (17.000 g, 47.592 mmol), ${}^{\prime}BuOK$ (5.370 g, 48.00 mmol), 4-oxotetrahydropyran (4.000 g, 40.00 mmol) and Et₂O (130 mL) were subjected to the general procedure (FCC: gradient elution: $3\% \rightarrow 5\%$ Et₂O - pentane) to yield **S7** as a colorless oil (2.270 g, 58%). Spectroscopic properties matched those previously reported.¹¹

Data for S7: $\mathbf{R_f}$ 0.40 (15% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 4.71 (2H, s, 1-H₂), 3.68 (4H, t, J = 5.5 Hz, 4-H₂ and 5-H₂), 2.25 (4H, t, J = 5.5 Hz, 3-H₂ and 6-H₂). ¹³C NMR (100 MHz, CDCl₃) δ 144.7 (C-2), 108.4 (C-1), 69.5 (C-4 and C-5), 35.7 (C-3 and C-6). HRMS (EI): calculated for C₆H₁₀O [M]⁺ requires m/z 98.0726, found m/z 98.0729.

4.4. 2-Vinylphenol (**S8**)

Methyltriphenylphosphonium bromide (8.220 g, 23.01 mmol), tBuOK (2.580 g, 23.04 mmol), salicylaldehyde (1.220 g, 10.00 mmol) and THF (53 mL) were subjected to the general procedure except adding the salicylaldehyde at -78°C (FCC: gradient elution: 20% \rightarrow 30% Et₂O -pentane) to yield **S8** as a colorless liquid (1.120 g, 93%). Spectroscopic properties matched those previously reported. ¹²

Data for **S8**: **R**_f 0.5 (40% Et₂O - pentane). ¹H **NMR** (**400 MHz, CDCl₃**) δ 7.40 (1H, dd, J = 7.6, 1.7 Hz, Ar), 7.15 (1H, ddd, J = 8.1, 7.3, 1.6 Hz, Ar), 6.96 (1H, dd, J = 17.7, 11.2 Hz, 2-H), 6.90-6.95 (1H, m, Ar), 6.80 (1H, dd, J = 8.0, 1.2 Hz, Ar), 5.75 (1H, dd, J = 17.7, 1.4 Hz, 1-H_A), 5.37 (1H, dd, J = 11.2, 1.4 Hz, 1-H_B), 5.16 (1H, s, OH). ¹³C **NMR** (**100 MHz, CDCl₃**) δ 152.9 (C Ar), 131.6 (C-2), 129.0 (C-H Ar), 127.5 (C-H Ar), 124.9 (C Ar), 121.0 (C-H Ar), 116.0 (C-H Ar and C-1). **HRMS** (Cl): calculated for C₈H₉O [M+H]⁺ requires m/z 121.06479, found m/z 121.06465.

4.5. 2-Vinylphenyl acetate (S9)

2-Vinylphenol **S8** (0.480 g, 4.000 mmol) was dissolved in CH₂Cl₂ (40 mL) and the solution was cooled to 0 °C. Triethylamine (0.808 g, 8.000 mmol) and 4-dimethylaminopyridine (50.0 mg, 0.409 mmol) were added, followed by addition of acetyl chloride (0.468 g, 6.000 mmol). After 30 min, the reaction mixture was warmed up to r.t. and stirred for 2 h. The mixture was quenched with satd aq NaHCO₃ and the aqueous layer was separated and extracted with Et₂O. The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. FCC (5% Et₂O - pentane) afforded the acetate **S9** as a colorless oil (0.357 g, 55%). Spectroscopic properties matched those previously reported.¹³

Data for **S9**: **R**_f 0.4 (20% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) \delta** 7.59 (1H, d, J = 7.7 Hz, Ar), 7.30 (1H, t, J = 7.6 Hz, Ar), 7.24 (1H, t, J = 7.5 Hz, Ar), 7.06 (1H, d, J = 8.0 Hz, Ar), 6.77 (1H, dd, J = 17.6, 11.1 Hz, 2-H), 5.78 (1H, dd, J = 17.7, 1.8 Hz, 1-H_A), 5.36 (1H, dd, J = 11.0, 1.8 Hz, 1-H_B), 2.35 (3H, s, Ac Me). ¹³**C NMR (100 MHz, CDCl₃)** δ 169.4 (C=O), 148.1 (C Ar),

130.4 (C-2), 130.3 (C Ar), 128.8 (CH Ar), 126.6 (CH Ar), 126.3 (CH Ar), 122.7 (CH Ar), 116.5 (C-1), 21.0 (Ac Me). **HRMS** (El): calculated for $C_{10}H_{10}O_2$ [M]⁺ requires m/z 162.0675, found m/z 162.0678.

5. General procedure for the Ru-catalyzed alkene metathesis reaction

To a flame-dried flask, charged with 1.5 mol% of Ru-catalyst, under Ar, at room temperature, was added 4.0 mL/mmol of dry CH₂Cl₂ (previously degassed, bubbling Ar during 30 min.). A solution of the mixture of alkenes in dry and degassed CH₂Cl₂ (1.0 mL/mmol) was added and the mixture was stirred under reflux. The reaction was monitored by TLC until completion, and the solvent was evaporated under reduced pressure to give the corresponding alkene, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

5.1. (3*E*)-4-(4-Methoxyphenyl)but-3-en-1-yl acetate (S10)

1-Methoxy-4-vinylbenzene (5.000 g, 37.28 mmol), but-3-en-1-yl acetate (8.510 g, 74.58 mmol) and Grubbs II (0.470 g, 0.554 mmol) were subjected to the general procedure (FCC: 5% Et₂O - pentane) to yield **S10** as a yellow oil (4.250 g, 52%). Spectroscopic properties matched those previously reported.¹⁴

Data for **S10**: **R**_f 0.30 (10% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) &** 7.28 (2H, d, J = 8.4 Hz, Ar), 6.84 (2H, m, J = 8.8 Hz, Ar), 6.41 (1H, d, J = 15.9 Hz, 4-H), 6.02 (1H, dt, J = 15.8 and 7.0 Hz, 3-H), 4.17 (1H, t, J = 6.8 Hz, 1-H₂), 3.79 (3H, s, OMe), 2.52 (1H, qd, J = 6.9 and 1.5 Hz, 2-H₂), 2.05 (3H, s, Ac Me). ¹³**C NMR (100 MHz, CDCl₃) &** 171.1 (C=O), 159.0 (C Ar), 131.8 (C-4), 130.1 (C Ar), 127.2 (2 x CH Ar), 123.3 (C-3), 114.0 (2 x CH Ar), 63.9 (C-1), 55.3 (OMe), 32.4 (C-2), 21.0 (Ac Me). **HRMS** (ESI): calculated for C₁₃H₁₆O₃Na [M+Na]⁺ requires m/z 243.0991, found m/z 243.0994.

5.2. (3*E*)-4-(2-Bromo-4-methoxyphenyl)but-3-en-1-yl acetate (S11)

Styrene **S5** (0.648 g, 3.04 mmol), but-3-en-1-yl acetate (0.693 g, 6.08 mmol) and Grubbs II (39.0 mg, 0.0460 mmol) were subjected to the general procedure except conducting the reaction in toluene at 100°C (FCC: 5% Et₂O - pentane) to yield **S11** as a colorless oil (0.471 g, 52%).

Data for **S11**: **R**_f 0.3 (30% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl₃**) δ 7.40 (1H, d, J = 8.7 Hz, Ar), 7.07 (1H, d, J = 2.7 Hz, Ar), 6.82 (1H, dd, J = 8.7, 2.7 Hz, Ar), 6.72 (1H, d, J = 15.8 Hz, 4-H), 5.99 (1H, dt, J = 15.7, 7.0 Hz, 3-H), 4.19 (2H, t, J = 6.6 Hz, 1-H₂), 3.79 (3H, s, OMe), 2.56 (2H, qd, J = 6.8, 1.4 Hz, 2-H₂), 2.06 (3H, s, Ac Me). ¹³**C NMR** (**100 MHz, CDCl₃**) δ 171.2 (C=O), 159.2 (C Ar), 130.7 (C-4), 129.7 (C Ar), 127.4 (C-H Ar), 126.7 (C-3), 123.5 (C Ar), 117.5 (C-H Ar), 114.2 (C-H Ar), 63.6 (C-1), 55.6 (OMe), 32.4 (C-2), 21.0 (Ac Me). **HRMS** (Cl): calculated for C₁₃H₁₅BrO₃Na [M+Na]⁺ requires m/z 321.00968, found m/z 321.00946. **IR** (film) v_{max} : 2980, 2360, 1734, 1600, 1232, 1026 cm⁻¹.

5.3. (3*E*)-4-(3,4-Dimethylphenyl)but-3-en-1-yl acetate (S12)

Styrene **S6** (0.513 g, 3.89 mmol), but-3-en-1-yl acetate (0.885 g, 7.77 mmol) and Grubbs II (49.0 mg, 0.0578 mmol) were subjected to the general procedure except conducting the reaction in toluene at 100° C (FCC: 10% Et₂O - pentane) to yield **S12** as a colorless oil (0.351 g, 38%).

Data for **S12**: **R**_f 0.3 (20% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.15 (1H, s, Ar), 7.12-7.06 (2H, m, Ar), 6.43 (1H, d, J = 15.8 Hz, 4-H), 6.12 (1H, dt, J = 16.0, 7.0 Hz, 3-H), 4.19 (2H, t, J = 6.7 Hz, 1-H₂), 2.54 (2H, qd, J = 6.9, 1.4 Hz, 2-H₂), 2.26 (3H, s, Me), 2.25 (3H, s, Me), 2.07 (3H, s, Ac Me). ¹³**C NMR (100 MHz, CDCl₃)** δ 171.2 (C=O), 136.7 (C Ar), 135.8 (C Ar), 135.0 (C Ar), 132.4 (C-4), 129.9 (C-H Ar), 127.4 (C-H Ar), 124.4 (C-3), 123.6 (C-H Ar), 63.9 (C-1), 32.5 (C-2), 21.1 (Ac Me), 19.9 (Me), 19.6 (Me). **HRMS**: stable ion was not found in ESI, EI and CI. **IR** (film) ν_{max} : 3656, 2980, 1736, 1232, 1033, 965 cm⁻¹.

5.4. (3*E*)-4-(2-Bromophenyl)but-3-en-1-yl acetate (S13)

2-Bromostyrene (1.370 g, 7.527 mmol), but-3-en-1-yl acetate (0.855 g, 7.49 mmol) and Grubbs II (48.0 mg, 0.0566 mmol) were subjected to the general procedure (FCC: gradient elution: $4\% \rightarrow 5\%$ Et₂O - pentane) to yield **S13** as a colorless oil (1.550 g, 77%).

Data for **S13**: **R**_f 0.40 (20% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.53 (1H, dd, J = 8.0, 1.3 Hz, Ar), 7.48 (1H, dd, J = 7.8, 1.7 Hz, Ar), 7.22-7.28 (1H, m, Ar), 7.05-7.12 (1H, m, Ar), 6.80 (1H, d, J = 15.8 Hz, 4-H), 6.11 (1H, dt, J = 15.8, 7.0 Hz, 3-H), 4.22 (2H, t, J = 6.6 Hz, 1-H₂), 2.59 (2H, qd, J = 6.7, 1.5 Hz, 2-H₂), 2.07 (3H, s, Ac Me). ¹³**C NMR (100 MHz, CDCl₃)** δ 171.2 (C=O), 137.3 (C Ar), 133.0 (CH Ar), 131.5 (C-4), 128.9 (C-3), 128.7 (CH Ar), 127.6 (CH Ar), 127.1 (CH Ar), 123.4 (C Ar), 63.6 (C-1), 32.6 (C-2), 21.1 (Ac Me). **HRMS**: stable ion was not found in ESI, EI and CI. **IR** (film) v_{max} : 2963, 1735, 1472, 1233, 1041, 753 cm⁻¹.

5.5. (3*E*)-4-Phenylbut-3-en-1-yl acetate (S14)

Styrene (0.456 g, 4.38 mmol), but-3-en-1-yl acetate (1.000 g, 8.764 mmol) and Grubbs II (56.0 mg, 0.0660 mmol) were subjected to the general procedure (FCC: gradient elution: $5\% \rightarrow 8\%$ Et₂O - pentane) to yield **S14** as a white solid (0.494 g, 59%). Spectroscopic properties matched those previously reported.¹⁵

Data for **S14**: **R**_f 0.50 (20% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) δ** 7.28-7.38 (4H, m, Ar), 7.19-7.25 (1H, m, Ar), 6.48 (1H, d, J = 15.9 Hz, 4-H), 6.18 (1H, dt, J = 15.9, 7.0 Hz, 3-H), 4.20 (2H, t, J = 6.7 Hz, 1-H₂), 2.55 (2H, qd, J = 6.8, 1.5 Hz, 2-H₂), 2.06 (3H, s, Ac Me). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.1 (C=O), 137.3 (C Ar), 132.4 (C-4), 128.6 (2 x CH Ar), 127.3 (CH Ar), 126.1 (2 x CH Ar), 125.6 (C-3), 63.8 (C-1), 32.4 (C-2), 21.0 (Ac Me). HRMS (ESI): calculated for $C_{12}H_{14}O_2Na$ [M+Na]⁺ requires m/z 213.0886, found m/z 213.0888.

5.6. (1E)-2-(4-Methoxystyryl)phenyl acetate (S15)

1-Methoxy-4-vinylbenzene (0.590 g, 4.40 mmol), acetate $\mathbf{S9}$ (0.357 g, 2.20 mmol) and Grubbs II (28.0 mg, 0.0330 mmol) were subjected to the general procedure except conducting the

reaction in toluene at 100°C (FCC: gradient elution: $10\% \rightarrow 12\%$ Et₂O - pentane) to yield **S15** as a white solid (0.365 g, 62%). Spectroscopic properties matched those previously reported.¹⁶

Data for **S15**: **R**_f 0.40 (40% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.64-7.69 (1H, m, Ar), 7.43 (2H, d, J = 8.4 Hz, Ar), 7.21-7.29 (2H, m, Ar), 7.03-7.10 (2H, m, Ar and 2-H), 6.98 (1H, d, J = 16.3 Hz, 1-H), 6.90 (2H, d, J = 8.7 Hz, Ar), 3.84 (3H, s, OMe), 2.37 (3H, s, Ac Me). ¹³**C NMR** (**100 MHz, CDCl**₃) δ 169.5 (C=O), 159.7 (C Ar), 148.1 (C Ar), 130.7 (C-2), 130.4 (C Ar), 130.1 (C Ar), 128.1 (CH Ar), 128.0 (2 x CH Ar), 126.5 (CH Ar), 126.4 (CH Ar), 122.8 (CH Ar), 119.8 (C-1), 114.3 (2 x CH Ar), 55.5 (OMe), 21.1 (Ac Me). **HRMS** (ESI): calculated for C₁₇H₁₆O₃Na [M+Na]⁺ requires m/z 291.09917, found m/z 291.09909.

5.7. (4*E*)-5-(4-Methoxyphenyl)pent-4-en-1-yl acetate (S16)

1-Methoxy-4-vinylbenzene (0.499 g, 3.72 mmol), pent-4-en-1-yl acetate (0.952 mg, 7.44 mmol) and Grubbs II (47.0 mg, 0.0554 mmol) were subjected to the general procedure except conducting the reaction in toluene at 100° C (FCC: gradient elution: $8\% \rightarrow 10\%$ Et₂O - pentane) to yield **S16** as a colorless oil (0.302 g, 35%). Spectroscopic properties matched those previously reported.¹⁷

Data for **S16**: **R**_f 0.40 (40% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.27 (2H, d, J = 8.6 Hz, Ar), 6.83 (2H, d, J = 8.7 Hz, Ar), 6.35 (1H, d, J = 15.9 Hz, 5-H), 6.05 (1H, dt, J = 15.8, 6.9 Hz, 4-H), 4.11 (2H, t, J = 6.6 Hz, 1-H₂), 3.79 (3H, s, OMe), 2.26 (2H, qd, J = 7.0, 1.5 Hz, 3-H₂), 2.05 (3H, s, Ac Me), 1.80 (2H, tt, J = 7.6, 6.4 Hz, 2-H₂). ¹³**C NMR (100 MHz, CDCl₃)** δ 171.6 (C=O), 159.2 (C Ar), 130.8 (C Ar), 130.4 (C-5), 127.54 (C-4), 127.48 (2 x CH Ar), 114.3 (2 x CH Ar), 64.4 (C-1), 55.7 (OMe), 29.8 (C-3), 29.7 (C-2), 21.5 (Ac Me). **HRMS** (Cl): calculated for C₁₄H₁₉O₃ [M+H]⁺ requires m/z 235.13287, found m/z 235.13284.

5.8. (3E)-1-[3-(4-Methoxyphenyl)allyl]cyclohexan-1-ol (E-1h)

1-Methoxy-4-vinylbenzene (1.900 g, 14.17 mmol), 1-allylcyclohexanol (1.000 g, 7.138 mmol) and Grubbs II (90.0 mg, 0.106 mmol) were subjected to the general procedure except

conducting the reaction in toluene at 100°C (FCC: gradient elution: $12\% \rightarrow 20\%$ Et₂O - pentane) to yield *E***-1h** as a yellow oil (0.964 g, 55%).

Data for *E*-1h: $\mathbf{R_f}$ 0.3 (50% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (2H, d, J = 8.7 Hz, Ar), 6.84 (2H, d, J = 8.7 Hz, Ar), 6.40 (1H, d, J = 15.8 Hz, 4-H), 6.15 (1H, dt, J = 15.5, 7.6 Hz, 3-H), 3.80 (3H, s, OMe), 2.34 (2H, dd, J = 7.6, 1.2 Hz, 2-H₂), 1.42-1.67 (9H, m, 5-H₂, 6-H₂, 8-H₂, 9-H₂ and 7-H_A), 1.22-1.36 (1H, m, 7-H_B). ¹³C NMR (100 MHz, CDCl₃) δ 158.5 (C Ar), 133.2 (C-4), 130.3 (C Ar), 127.4 (2 x CH Ar), 123.1 (C-3), 114.0 (2 x CH Ar), 71.7 (C-1), 55.4 (OMe), 46.0 (C-2), 37.6 (2 x CH₂ cyclohexenyl), 25.9 (CH₂ cyclohexenyl), 22.3 (2 x CH₂ cyclohexenyl). HRMS (Cl): calculated for C₁₆H₂₂O₂Na [M+Na]⁺ requires m/z 269.15120, found m/z 269.15106. IR (film) v_{max} : 3426, 2928, 1608, 1509, 1244, 967 cm⁻¹

5.9. (3*E*)-1-[3-(4-Methoxyphenyl)allyl]tetrahydro-2*H*-pyran-1-ol (*E*-1i)

1-Methoxy-4-vinylbenzene (0.734 g, 5.48 mmol), alcohol **S2** (0.389 g, 2.73 mmol) and Grubbs II (35.0 mg, 0.0413 mmol) were subjected to the general procedure (FCC: gradient elution: $15\% \rightarrow 50\%$ Et₂O - pentane) to yield *E***-1i** as a yellow oil (0.365 g, 53%).

Data for *E*-1i: $\mathbf{R_f}$ 0.30 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (2H, d, J = 8.7 Hz, Ar), 6.85 (2H, d, J = 8.7 Hz, Ar), 6.44 (1H, d, J = 15.8 Hz, 4-H), 6.12 (1H, dt, J = 15.5, 7.6 Hz, 3-H), 3.80 (3H, s, OMe), 3.74-3.80 (4H, m, 6-H₂ and 8-H₂), 2.37 (2H, dd, J = 7.7, 1.3 Hz, 2-H₂), 1.70-1.81 and 1.50-1.56 (4H, m, 5-H₂ and 9-H₂). ¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C Ar), 134.3 (C-4), 130.0 (C Ar), 127.5 (2 x CH Ar), 131.6 (C-3), 114.1 (2 x CH Ar), 69.0 (C-1), 64.0 (C-6 and C-8), 55.5 (OMe), 46.8 (C-2), 37.8 (C-5 and C-9). HRMS (El): calculated for C₁₅H₂₀O₃ [M]⁺ requires m/z 248.1407, found m/z 248.1408. IR (film) v_{max} : 3408, 2950, 1606, 1509, 1244, 1096 cm⁻¹.

5.10. (3*E*)-4-(4-Methoxyphenyl)-1,1-dimethylbut-3-en-1-ol (*E*-1j)

1-Methoxy-4-vinylbenzene (0.937 g, 6.99 mmol), 2-methylpent-4-en-2-ol (0.350 g, 3.50 mmol) and Grubbs II (45.0 mg, 0.0531 mmol) were subjected to the general procedure except

conducting the reaction in toluene at 100°C (FCC: gradient elution: $20\% \rightarrow 50\%$ Et₂O - pentane) to yield *E***-1**j as a yellow oil (0.376 g, 52%).

Data for *E*-1j: $\mathbf{R_f}$ 0.40 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (2H, d, J = 8.3 Hz, Ar), 6.85 (2H, d, J = 8.3 Hz, Ar), 6.41 (1H, d, J = 15.8 Hz, 4-H), 6.41 (1H, dt, J = 15.8, 7.6 Hz, 3-H), 3.81 (3H, s, OMe), 2.36 (2H, d, J = 7.6 Hz, 2-H₂), 1.63 (1H, br s, OH), 1.27 (6H, s, 2 x Me). ¹³C NMR (100 MHz, CDCl₃) δ 159.1 (C Ar), 133.3 (C-4), 130.3 (C Ar), 127.4 (2 x CH Ar), 123.5 (C-3), 114.1 (2 x CH Ar), 71.0 (C-1), 55.5 (OMe), 47.5 (C-2), 29.4 (2 x Me) . HRMS (ESI): calculated for $C_{13}H_{18}O_2$ [M]⁺ requires m/z 206.1301, found m/z 206.1306. IR (film) v_{max} : 3385, 2970, 1576, 1244, 1174, 1033 cm⁻¹.

5.11. (\pm) -(2S,3S,3E)-5-(4-Methoxyphenyl)-3-phenylpent-4-en-2-ol (E-11)

To a mixture of alcohol **S4** (0.060 g, 0.37 mmol), PPh₃ (0.116 g, 0.443 mmol) and paranitrobenzoic acid (0.072 g, 0.44 mmol) in THF (1 mL) at -20° C was added dropwise DIAD (0.09 mL, 0.44 mmol) over a period of 30 min. The mixture was then stirred for 1 h while allowing to warm to 0 °C and then diluted with Et₂O and washed with an aqueous solution of NaHCO₃. The aqueous layer was extracted with Et₂O, and the combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated. The crude was flushed through a layer of slica gel with 10% Et₂O in pentane, then the filtrate was concentrated and added to flame-dried flask, charged with 4-vinylanisole (0.013 g, 0.097 mmol), Grubbs II (4.1 mg, 0.0048 mmol) and degassed toluene (0.24 mL). The solution was heat at 100 °C for 24 hours. Then the solvent was evaporated and the crude was added to a flask charged with K₂CO₃ (23.0 mg, 0.162 mmol) and MeOH (1 mL) at 0 °C. The solution was sitrred for 2 hours, then concentrated in reduced pressure to give the crude residue which was purified (FCC: gradient elution: 13% \rightarrow 20% Et₂O - pentane) to yield *E-11* as a yellow oil (12.9 mg, 13%).

Data for *E*-1l: $\mathbf{R_f}$ 0.50 (70% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.35 (4H, m, Ar), 7.20-7.27 (3H, m, Ar), 6.83 (2H, d, J = 8.7 Hz, Ar), 6.50 (1H, d, J = 15.8 Hz, 4-H), 6.32 (1H, dd, J = 15.8, 9.2 Hz, 3-H), 4.04 (1H, quint, J = 6.7 Hz, 1-H), 3.79 (3H, s, OMe), 3.29 (1H, t, J = 8.4 Hz, 2-H), 1.92 (1H, br s, OH), 1.10 (3H, d, J = 6.1 Hz, Me). ¹³C NMR (125 MHz, CDCl₃) δ 159.3 (C Ar), 132.1 (C Ar), 132.7 (C-4), 129.8 (C Ar), 128.9 (2 x C-H Ar), 128.1 (2 x C-H Ar), 127.63 (2 x C-H Ar), 127.57 (C-3), 126.9 (C-H Ar), 114.1 (2 x C-H Ar), 70.8 (C-1), 58.5 (C-2),

55.5 (OMe), 20.9 (Me). **HRMS** (EI): calculated for $C_{18}H_{20}O_2$ [M]⁺ requires m/z 268.1458, found m/z 268.1466. **IR** (film) v_{max} : 3657, 2980, 1387, 1249, 1151, 1026 cm⁻¹.

5.12. (\pm) -(2R,3S,3E)-5-(4-Methoxyphenyl)-3-phenylpent-4-en-2-ol (E-1m)

1-Methoxy-4-vinylbenzene (0.358 g, 2.67 mmol), alcohol **S4** (0.217 g, 1.34 mmol) and Grubbs II (17.0 mg, 0.0200 mmol) were subjected to the general procedure except conducting the reaction in toluene at 100°C (FCC: gradient elution: 13% \rightarrow 20% Et₂O - pentane) to yield *E***-1m** as a yellow oil (0.149 g, 40%).

Data for *E*-1m: $\mathbf{R_f}$ 0.40 (60% $\mathrm{Et_2O}$ - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.40 (7H, m, Ar), 6.83 (2H, d, J = 8.8 Hz, Ar), 6.43 (1H, d, J = 15.8 Hz, 4-H), 6.26 (1H, dd, J = 15.8, 8.8 Hz, 3-H), 4.08-4.18 (1H, m, 1-H), 3.80 (3H, s, OMe), 3.38 (1H, t, J = 8.3 Hz, 2-H), 1.54 (1H, br s, OH), 1.29 (3H, d, J = 6.2 Hz, Me). ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (C Ar), 141.4 (C Ar), 131.5 (C-4), 130.1 (C Ar), 129.0 (2 x C-H Ar), 128.6 (2 x C-H Ar), 127.9 (C-3), 127.5 (2 x C-H Ar), 127.1 (C-H Ar), 114.1 (2 x C-H Ar), 71.0 (C-1), 58.4 (C-2), 55.4 (OMe), 21.0 (Me). HRMS (EI): calculated for $\mathrm{C_{18}H_{20}O_2}$ [M]+ requires m/z 268.1458, found m/z 268.1466. IR (film) ν_{max} : 3657, 2980, 1387, 1249, 1151, 1026 cm⁻¹.

5.13. (+)-(2S,3E)-4-(4-Methoxyphenyl)-2-phenylbut-3-en-1-ol [(+)-(E)-1q]

1-Methoxy-4-vinylbenzene (0.708 g, 5.28 mmol), alcohol (+)-S3 (0.391 g, 2.64 mmol) and Grubbs II (33.6 mg, 0.0396 mmol) were subjected to the general procedure except conducting the reaction in toluene at 100°C (FCC: gradient elution: 15% \rightarrow 20% Et₂O - pentane) to yield (+)-(*E*)-1q as a yellow solid (0.256 g, 38%). Spectroscopic properties matched those previously reported.¹⁸

Data for (+)-(*E*)-1q: R_f 0.40 (60% Et₂O - pentane). [α] $_{D}^{25}$ = +61.2 (0.01 g/mL, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.40 (7H, m, Ar), 6.84 (2H, d, J = 8.8 Hz, Ar), 6.48 (1H, d, J = 15.8 Hz, 4-H), 6.23 (1H, dd, J = 15.9, 8.0 Hz, 3-H), 3.87-3.93 (2H, m, 1-H₂), 3.80 (3H, s, OMe), 3.68 (1H, q, J = 7.2 Hz, 2-H), 1.53 (1H, s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C Ar), 141.2 (C Ar), 131.8 (C-4), 129.9 (C Ar), 129.0 (2 x CH Ar), 128.1 (2 x CH Ar), 127.6 (2 x CH Ar),

127.5 (C-3), 127.1 (CH Ar), 114.1 (2 x CH Ar), 66.6 (C-1), 55.4 (OMe), 52.0 (C-2). **HRMS** (CI): calculated for $C_{17}H_{18}O_2$ [M]⁺ requires m/z 254.1301, found m/z 254.1295.

Racemic (*E*)-1q (38% yield) was made via the same procedure using racemic alcohol S3.

5.14. (\pm) - (3E)-4-Phenylbut-3-en-2-ol (E-2i)

Styrene (1.000 g, 9.606 mmol), but-3-en-2-ol (1.380 g, 19.14 mmol) and Grubbs II (122.0 mg, 0.1438 mmol) were subjected to the general procedure (FCC: 30% Et₂O - pentane) to yield *E*-2i as a yellow oil (0.712 g, 50%). Spectroscopic properties matched those previously reported.¹⁹

Data for *E-2i*: $\mathbf{R_f}$ 0.30 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.41 (2H, m, Ar), 7.29-7.35 (2H, m, Ar), 7.21-7.27 (1H, m, Ar), 6.57 (1H, d, J = 15.8 Hz, 4-H), 6.27 (1H, dd, J = 15.9, 6.4 Hz, 3-H), 4.44-4.55 (1H, m, 2-H), 1.66 (1H, br s, OH), 1.38 (3H, d, J = 6.4 Hz, Me). ¹³C NMR (100 MHz, CDCl₃) δ 136.8 (C Ar), 133.7 (C-3), 129.5 (C-4), 128.7 (2 x C-H Ar), 127.8 (C-H Ar), 126.6 (2 x C-H Ar), 69.1 (C-2), 23.5 (Me).

5.15. (\pm) -1-Methylcyclopent-2-en-1-ol (Z-2l)

Linalool (0.500 g, 3.23 mmol) and Grubbs I (0.133 g, 0.161 mmol) were subjected to the general procedure except conducting the reaction at r.t. in CHCl₃ (FCC: gradient elution: 20% \rightarrow 50% Et₂O - pentane) to yield **Z-2l** as a yellow oil (0.250 g, 79%). Spectroscopic properties matched those previously reported.²⁰

Data for **Z-2l**: $\mathbf{R_f}$ 0.40 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 5.81 (1H, dt, J = 5.4, 2.3 Hz, 3-H), 5.69 (1H, dt, J = 5.4, 2.3 Hz, 2-H), 2.48 (1H, m, 4-H_A), 2.30 (1H, m, 4-H_B), 1.96 (1H, ddd, J = 13.4, 8.1, 4.8 Hz, 5-H_A), 1.89 (1H, ddd, J = 13.4, 8.1, 4.8 Hz, 5-H_B), 1.37 (3H, s, Me). ¹³C NMR (100 MHz, CDCl₃) δ 138.0 (C-2), 132.8 (C-3), 83.6 (C-1), 39.8 (C-5), 31.2 (C-4), 27.6 (Me).

6. General procedure for acetate deprotection

To a solution of acetate in MeOH (10.0 mL/mmol), 5.0 equiv of K₂CO₃ were added in one portion at 0°C. The reaction was monitored by TLC until completion. The mixture was filtered and the solvent was evaporated under reduced pressure to give the corresponding alcohol, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

6.1. (3*E*)-4-(4-Methoxyphenyl)but-3-en-1-ol (*E*-1a)

Acetate **S10** (3.510 g, 15.95 mmol) and K_2CO_3 (6.580 g, 47.68 mmol) were subjected to the general procedure (FCC: gradient elution: 50% \rightarrow 100% Et₂O - pentane) to yield *E***-1a** as a white solid (2.230 g, 79%). Spectroscopic properties matched those previously reported.²¹

Data for *E*-1a: R_f 0.33 (75 % Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (2H, d, J = 8.9 Hz, Ar), 6.84 (2H, d, J = 8.8 Hz, Ar), 6.45 (1H, d, J = 15.9 Hz, 4-H), 6.05 (1H, dt, J = 15.8, 7.2 Hz, 3-H), 3.80 (3H, s, OMe), 3.75 (2H, t, J = 7.5 Hz, 1-H₂), 2.43-2.50 (2H, m, 2-H₂), 1.47 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 159.0 (C Ar), 132.3 (C-4), 130.1 (C Ar), 127.2 (2 x CH Ar), 124.0 (C-3), 114.0 (2 x CH Ar), 62.1 (C-1), 55.3 (OMe), 36.4 (C-2). HRMS (Cl): calculated for $C_{11}H_{15}O_2$ [M+H]⁺ requires m/z 179.1072, found m/z 179.1067.

6.2. (3*E*)-4-(2-Bromo-4-methoxyphenyl)but-3-en-1-ol (*E*-1b)

Acetate **S11** (0.396 g, 1.32 mmol) and K_2CO_3 (0.913 g, 6.62 mmol) were subjected to the general procedure (FCC: gradient elution: 30% \rightarrow 100% Et₂O - pentane) to yield *E***-1b** as a yellow oil (0.296 g, 87%).

Data for *E*-1b: $\mathbf{R_f}$ 0.30 (80 % Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (1H, d, J = 8.7 Hz, Ar), 7.07 (1H, d, J = 2.6 Hz, Ar), 6.82 (1H, dd, J = 8.7, 2.6 Hz, Ar), 6.75 (1H, d, J = 15.8 Hz, 4-H), 6.03 (1H, dt, J = 16.0, 7.1 Hz, 3-H), 3.78 (3H, s, OMe), 3.76 (2H, t, J = 6.7 Hz, 1-H₂), 2.51 (2H, dq, J = 6.3, 1.3 Hz, 2-H₂), 1.59 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C Ar), 131.1 (C-4), 129.8 (C Ar), 127.6 (C-3), 127.5 (CH Ar), 123.6 (C Ar), 117.6 (CH Ar), 114.3 (CH Ar), 62.1 (C-1), 55.7 (OMe), 36.5 (C-2). HRMS (Cl): calculated for C₁₁H₁₄O₂Br [M+H]⁺ requires m/z 257.01717, found m/z 257.01703. IR (film) v_{max} : 3341, 2980, 1599, 1487, 1281, 1025 cm⁻¹.

6.3. (3*E*)-4-(3,4-Dimethylphenyl)but-3-en-1-ol (*E*-1c)

Acetate **S12** (0.351 g, 1.50 mmol) and K_2CO_3 (1.039 g, 7.529 mmol) were subjected to the general procedure (FCC: gradient elution: $40\% \rightarrow 50\%$ Et₂O - pentane) to yield *E***-1c** as a yellow oil (0.251 g, 83%).

Data for *E*-1c: $\mathbf{R_f}$ 0.45 (80 % Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (1H, d, J = 1.7 Hz, Ar), 7.03-7.12 (2H, m, Ar), 6.45 (1H, d, J = 15.9 Hz, 4-H), 6.14 (1H, dt, J = 15.8, 7.2 Hz, 3-H), 3.74 (2H, t, J = 6.3 Hz, 1-H₂), 2.47 (2H, qd, J = 6.3, 1.4 Hz, 2-H₂), 2.25 (3H, s, Me), 2.24 (3H, s, Me). ¹³C NMR (100 MHz, CDCl₃) δ 136.7 (C Ar), 135.9 (C Ar), 135.0 (C Ar), 132.9 (C-4), 129.9 (CH Ar), 127.5 (CH Ar), 126.1 (C-3), 123.7 (CH Ar), 62.2 (C-1), 36.6 (C-2), 19.9 (Me), 19.6 (Me). HRMS (EI): calculated for C₁₂H₁₆O [M]⁺ requires m/z 176.1196, found m/z 176.1194. IR (film) v_{max} : 3335, 2980, 1382, 1154, 1045, 965 cm⁻¹.

6.4. (3E)-4-(2-Bromophenyl)but-3-en-1-ol (E-1d)

Acetate **S13** (1.550 g, 5.784 mmol) and K_2CO_3 (4.000 g, 28.99 mmol) were subjected to the general procedure (FCC: gradient elution: 20% \rightarrow 30% Et₂O - pentane) to yield *E***-1d** as a colorless oil (1.138 g, 87%). Spectroscopic properties matched those previously reported.²²

Data for *E*-1d: R_f 0.4 (80% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (1H, dd, *J* = 8.0, 1.3 Hz, Ar), 7.50 (1H, dd, *J* = 7.8, 1.7 Hz, Ar), 7.22-7.28 (1H, m, Ar), 7.05-7.10 (1H, m, Ar), 6.83 (1H, d, *J* = 15.8 Hz, 4-H), 6.16 (1H, dt, *J* = 15.8, 7.1 Hz, 3-H), 3.79 (1H, t, *J* = 6.3 Hz, 1-H₂), 2.53 (1H, dtd, *J* = 7.7, 6.3, 1.5 Hz, 2-H₂), 1.57 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 137.3 (C Ar), 133.0 (CH Ar), 131.7 (C-4), 129.8 (C-3), 128.7 (CH Ar), 127.6 (CH Ar), 127.1 (CH Ar), 123.4 (C Ar), 62.1 (C-1), 36.6 (C-2). HRMS (CI): calculated for C₁₀H₁₀OBr [M-H]⁺ requires m/z 224.99113, found m/z 224.99095.

6.5. (3E)-4-Phenylbut-3-en-1-ol (E-1e)

Acetate **S14** (0.541 g, 2.85 mmol) and K_2CO_3 (1.970 g, 14.28 mmol) were subjected to the general procedure (FCC: gradient elution: $40\% \rightarrow 60\%$ Et₂O - pentane) to yield *E***-1e** as a colorless oil (0.369 g, 87%). Spectroscopic properties matched those previously reported.²³

Data for *E*-1e: R_f 0.4 (75% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.39 (4H, m, Ar), 7.19-7.25 (1H, m, Ar), 6.51 (1H, d, J = 15.8 Hz, 4-H), 6.21 (1H, dt, J = 15.9, 7.1 Hz, 3-H), 3.73-3.81 (2H, m, 1-H₂), 2.47-2.53 (2H, m, 2-H₂), 1.47 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 137.2 (C Ar), 132.9 (C-4), 128.6 (2 x CH Ar), 127.3 (CH Ar), 126.3 (C-3), 126.1 (2 x CH Ar), 62.0 (C-1), 36.4 (C-2). HRMS (CI): calculated for $C_{10}H_{17}ON$ [M+NH₄]⁺ requires m/z 166.1232, found m/z 166.1227.

6.6. 3-Cyclopentylidenepropan-1-ol (1f)

+ OAc
$$CH_2Cl_2$$
, r.t. CH_2Cl_3 , r.t. CH_2Cl_3 CH_2Cl_3 CH_3CO CH

To a solution of but-3-en-1-yl acetate (0.246 g, 2.19 mmol) in methylenecyclopentane (0.898 g, 11.0 mmol) at r.t. was added Grubbs II (26.0 mg, 0.0307 mmol). The mixture was stirred for 72 hours and concentrated in vacuo. To the crude was then added K_2CO_3 (1.600 g, 11.59 mmol) in MeOH (12 mL) at 0°C. The reaction was monitored by TLC until completion. The mixture was filtered and the solvent was evaporated under reduced pressure, that was purified (FCC: gradient elution: 20% \rightarrow 30% Et₂O - pentane) to afford **1f** as a colorless oil (0.120 g, 43%).

Data for **1f**: **R**_f 0.4 (50% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 5.20-5.27 (1H, m, 3-H), 3.63 (1H, t, J = 6.3 Hz, 1-H₂), 2.17-2.31 (6H, m, 2-H₂, 5-H₂ and 8-H₂), 1.56-1.72 (4H, m, 6-H₂ and 7-H₂), 1.49 (1H, br s, OH). ¹³**C NMR** (**100 MHz, CDCl**₃) δ 147.3 (C-4), 115.5 (C-3), 62.6 (C-1), 33.9 and 33.3 (C-5 and C-8), 29.0 (C-2), 26.52 and 26.45 (C-6 and C-7). **HRMS** (ESI): calculated for C₈H₁₅O [M+H]⁺ requires m/z 127.11174, found m/z 127.11185. **IR** (film) ν_{max} : 3332, 2980, 2887, 1432, 1251, 1047 cm⁻¹.

6.7. 3-(Tetrahydro-4*H*-pyran-4-ylidene)propan-1-ol (1g)

To a solution of but-3-en-1-yl acetate (0.182 g, 1.53 mmol), alkene S7 (0.300 g, 3.06 mmol) in CH_2Cl_2 (8 mL) at r.t. was added Grubbs II (20.0 mg, 0.0236 mmol). The mixture was stirred for

72 hours and concentrated in vacuo. To the crude was then added K_2CO_3 (1.060 g, 7.681 mmol) in MeOH (7.7 mL) at 0°C. The reaction was monitored by TLC until completion. The mixture was filtered and the solvent was evaporated under reduced pressure, that was purified by chromatography on silica gel (FCC: gradient elution: $50\% \rightarrow 100\%$ Et₂O - pentane) to afford **1g** as a colorless oil (0.033 g, 15%). Spectroscopic properties matched those previously reported.²⁴

Data for **1g**: **R**_f 0.30 (Et₂O). ¹**H NMR (400 MHz, CDCl₃) \delta** 5.20 (1H, t, J = 7.5 Hz, 3-H), 3.59-3.73 (6H, m, 1-H₂, 6-H₂ and 8-H₂), 2.19-2.35 (6H, m, 2-H₂, 5-H₂ and 9-H₂), 1.62 (1H, br s, OH). ¹³**C NMR (100 MHz, CDCl₃)** δ 137.7 (C-4), 119.9 (C-3), 69.8 and 69.0 (C-6 and C-8), 62.6 (C-1), 37.1 and 30.6 (C-5 and C-9), 30.0 (C-2). **HRMS**: stable ion was not found in ESI, EI and CI.

6.8. (1E)-2-(4-Methoxystyryl)phenol (E-1k)

Acetate **S15** (0.345 g, 1.29 mmol) and K_2CO_3 (0.888 g, 6.44 mmol) were subjected to the general procedure (FCC: gradient elution: $20\% \rightarrow 50\%$ Et₂O - pentane) to yield *E***-1k** as a white solid (0.230 g, 80%). Spectroscopic properties matched those previously reported.²⁵

Data for *E*-1k: $\mathbf{R_f}$ 0.4 (50 % Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.52 (3H, m, Ar), 7.21 (1H, d, J = 16.4 Hz, 2-H), 7.11 (1H, t, J = 7.5 Hz, Ar), 7.05 (1H, d, J = 16.4 Hz, 1-H), 6.93 (1H, t, J = 7.8 Hz, Ar), 6.89 (2H, d, J = 8.5 Hz, Ar), 6.79 (1H, d, J = 8.0 Hz, Ar), 5.12 (1H, s, OH), 3.82 (3H, s, OMe). ¹³C NMR (100 MHz, CDCl₃) δ 159.4 (C Ar), 153.0 (C Ar), 130.5 (C Ar), 129.9 (C-1), 128.4 (CH Ar), 127.9 (2 x CH Ar), 127.1 (CH Ar), 125.1 (C Ar), 121.2 (CH Ar), 121.0 (C-2), 116.0 (CH Ar), 114.2 (2 x CH Ar), 55.5 (OMe). HRMS (CI): calculated for C₁₅H₁₅O₂ [M+H]⁺ requires m/z 227.10666, found m/z 227.10658.

6.9. (4*E*)-5-(4-Methoxyphenyl)pent-4-en-1-ol (*E*-1n)

Acetate **S16** (0.304 g, 1.30 mmol) and K_2CO_3 (0.896 g, 6.50 mmol) were subjected to the general procedure (FCC: gradient elution: $40\% \rightarrow 100\%$ Et₂O - pentane) to yield *E***-1n** as a white solid (0.249 g, 99%). Spectroscopic properties matched those previously reported.²⁶

Data for *E*-1n: \mathbb{R}_f 0.30 (60% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (2H, d, *J* = 8.7 Hz, Ar), 6.84 (2H, d, *J* = 8.7 Hz, Ar), 6.36 (1H, d, *J* = 15.8 Hz, 5-H), 6.09 (1H, dt, *J* = 15.7,

6.9 Hz, 4-H), 3.80 (3H, s, OMe), 3.70 (2H, t, J = 6.5 Hz, 1-H₂), 2.29 (2H, qd, J = 7.3, 1.5 Hz, 3-H₂), 1.74 (2H, tt, J = 7.7, 6.4 Hz, 2-H₂), 1.44 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 158.8 (C Ar), 130.6 (C Ar), 129.8 (C-5), 128.0 (C-4), 127.2 (2 x CH Ar), 114.0 (2 x CH Ar), 62.6 (C-1), 55.4 (OMe), 32.5 (C-2), 29.4 (C-3). HRMS (Cl): calculated for $C_{12}H_{17}O_2$ [M+H]⁺ requires m/z 193.12231, found m/z 193.12245.

7. General procedure for the synthesis of *E*-styrenes with a carboxylic acid moiety.

To a solution of triphenylphosphonium salt (1.2 eq.) in THF (2 mL) was added dropwise a 1 M solution of NaHMDS (3.5 eq.) at 0 °C. The solution was then stirred for 30 min. After cooling to -78 °C, aldehyde (1.0 eq.) was added dropwise. The reaction was allowed to warm up to r.t. overnight. Add water and Et₂O and pour the mixture into a separatory funnel. Separate the aqueous layer and acidify with 1 M HCl until pH=1. Extract the aqueous layer with Et₂O twice. The organic layer was dried with MgSO₄. Then the solvent was evaporated under reduced pressure to give the acid. FCC afforded the corresponding carboxylic acid.

7.1. (3E)-4-(4-Methoxyphenyl)but-3-enoic acid (E-10)

(2-Carboxyethyl)(triphenyl)phosphonium chloride (1.500 g, 4.054 mmol), NaHMDS (1M, 11.5 mL, 11.5 mmol) and 4-methoxybenzaldehyde (0.460 g, 3.37 mmol) were subjected to the general procedure (FCC: 100% EtOAc) to yield *E-10* as a yellow solid (0.161 g, 25%). Spectroscopic properties matched those previously reported.²⁷

Data for *E*-10: **R**f: 0.5 (100% EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 10.07 (1H, br s, CO₂H), 7.31 (2H, d, J = 8.7 Hz, Ar), 6.85 (2H, d, J = 8.7 Hz, Ar), 6.46 (1H, d, J = 15.9 Hz, 4-H), 6.14 (1H, dt, J = 15.8, 7.1 Hz, 3-H), 3.81 (3H, s, OMe), 3.28 (2H, dd, J = 7.1, 1.5 Hz, 2-H₂). ¹³C NMR (100 MHz, CDCl₃) δ 178.3 (C=O), 159.35 (C Ar), 133.5 (C-4), 129.6 (C Ar), 127.6 (2 x CH Ar), 118.7 (C-3), 114.1 (2 x CH Ar), 55.4 (OMe), 38.2 (C-2). HRMS (Cl): calculated for C₁₁H₁₂O₃ [M]⁺ requires m/z 192.0786, found m/z 192.0788.

7.2. (4E)-5-(4-Methoxyphenyl)pent-4-enoic acid (E-1p)

(2-Carboxypropyl)(triphenyl)phosphonium chloride (1.560 g, 4.063 mmol), NaHMDS (1M, 11.5 mL, 11.5 mmol) and 4-methoxybenzaldehyde (0.460 g, 3.37 mmol) were subjected to the general procedure (FCC: 100% EtOAc) to yield *E-1p* as a white solid (0.187 g, 29%). Spectroscopic properties matched those previously reported.¹³

Data for *E*-1p: R_f: 0.5 (100% EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (2H, d, J = 8.6 Hz, Ar), 6.84 (2H, d, J = 8.6 Hz, Ar), 6.39 (1H, d, J = 15.9 Hz, 5-H), 5.99-6.12 (1H, m, 4-H), 3.80 (3H, s, OMe), 2.50- 2.55 (4 H, m, 2-H₂ and 3-H₂). ¹³C NMR (100 MHz, CDCl₃) δ 179.0 (C=O), 159.0 (C Ar), 130.7 (C-5), 130.2 (C Ar), 127.3 (2 x CH Ar), 125.9 (C-4), 114.1 (2 x CH Ar), 55.4 (OMe), 34.0 (C-3), 28.1 (C-2). HRMS (Cl): calculated for C₁₂H₁₄O₃ [M]⁺ requires m/z 206.0943, found m/z 206.0947.

8. Screening of reaction conditions for the cyclisation of 1a to 3a.

a) Solvent Screening: A range of different solvent and solvent ratios were examined for the model reaction.

MP	Solvent , 70 °C, 12h 2a (1.0 equiv.)	Ph———3a
Entry	Solvent	Yield 3 a
	(10 mL/mmol of 1a)	
1	HFIP	52%
2	TFE	Trace
3	Nonafluoro-tert-butyl alcohol	20%
4	Perfluoro-2-butyltetrahydrofuran	0%
5	CHCl₃	0%
6	DCM	0%
7	Toluene	0%
8	Et ₂ O	0%
9	EtOAc	0%
10	MeCN	0%
11	THF	0%
12	IPA	0%
13	MeOH	0%
14	†BuOH	0%
15	DMF	0%
16	DCM:HFIP 1:1	40%
17	DCM:HFIP 3:1	30%
18	DCM:HFIP 1:3	50%

Screening of different solvents

b) Initiator Screening A range of different initiators were examined for the model reaction.

* Complete consumption of both 1a and 2a

^c alcohols and Ph₄BF₄ were added simultaneously in one portion, and then the reaction was stirred for 12 hours See ref. 29

8.1. General procedure for the cyclization using alcohols as alkylating agents

To a microwave vial charged with a stirring bar, 1.0 eq. of alcohol **A**, 1.0 eq. of alcohol **B** and HFIP (10 mL/mmol of **A**) was added under argon. After fully dissolving the substrate, 30 mol% Ti(OⁱPr)₄ was added. The reaction was stirred for 12 hours at 70°C. Then the solvent was removed under vacuum. The residue was purified by silica gel column chromatography to give the corresponding heterocycle.

^a addition of alcohols into the solution of Ph₄BF₄ via syringe pump over 5 min.

^b addition of alcohols into the solution of Ph₄BF₄ via syringe pump over 5 min. and then the reaction was stirred for 12 hours

8.2. (\pm) -(2S,3S)-3-Cinnamyl-2-(4-methoxyphenyl)tetrahydrofuran (3a)

Alcohol *E*-1a (45.6 mg, 0.256 mmol), cinnamyl alcohol *E*-2a (31.8 mg, 0.256 mmol) and $Ti(O^iPr)_4$ (21.8 mg, 0.0767 mmol) were subjected to the general procedure (FCC: gradient elution: $12\% \rightarrow 20\%$ Et₂O - pentane) to yield 3a as a colorless oil (39.0 mg, 52%).

Data for **3a**: **R**_f 0.50 (50% Et₂O - pentane). ¹**H NMR** (**500 MHz, CDCl**₃) **δ** 7.26-7.31 (6H, m, Ar), 7.18-7.23 (1H, m, Ar), 6.89 (2H, d, J = 8.7 Hz, Ar), 6.41 (1H, d, J = 15.7 Hz, 8-H), 6.14 (1H, dt, J = 15.8, 7.0 Hz, 7-H), 4.43 (1H, d, J = 7.2 Hz, 2-H), 4.12 (1H, q, J = 7.2 Hz, 5-H_A), 4.02 (1H, td, J = 8.3, 4.6 Hz, 5-H_B), 3.81 (3H, s, OMe), 2.40-2.48 (1H, m, 6-H_A), 2.22-2.29 (2H, m, 6-H_B and 4-H_A), 2.22-2.15 (1H, m, 3-H), 1.82 (1H, dq, J = 11.3, 7.7 Hz, 4-H_B). ¹³**C NMR** (**125 MHz, CDCl**₃) **δ** 159.2 (C Ar), 137.6 (C Ar), 134.3 (C Ar), 131.5 (C-8), 128.6 (2 x C-H Ar), 128.6 (C-7), 127.8 (2 x C-H Ar), 127.2 (C-H Ar), 126.1 (2 x C-H Ar), 113.9 (2 x C-H Ar), 86.0 (C-2), 68.0 (C-5), 55.4 (OMe), 48.0 (C-3), 35.6 (C-6), 32.5 (C-4). **HRMS** (ESI): calculated for C₂₀H₂₃O₂ [M+H]⁺ requires m/z 295.16926, found m/z 295.16925. **IR** (film) v_{max} : 2930, 1512, 1244, 1031, 827, 692 cm⁻¹

8.3. (\pm) -(2S,3S)-2-(4-Methoxyphenyl)-3-[(2'E)-3'-(4-methoxyphenyl)allyl]tetrahydrofuran (3b)

Alcohols *E***-1a** (20.0 mg, 0.112 mmol) and *E***-2b** (16.6 mg, 0.112 mmol) and $Ti(O^{\dagger}Pr)_4$ (9.5 mg, 0.034 mmol) were subjected to the general procedure (FCC: gradient elution: $10\% \rightarrow 20\%$ Et₂O - pentane) to yield **3b** as a colorless oil (18.1 mg, 50%).

Data for **3b**: **R**_f 0.50 (50% Et₂O - pentane). ¹**H NMR** (**500 MHz, CDCl**₃) δ 7.27 (2H, d, J = 8.6 Hz, Ar), 7.22 (2H, d, J = 8.8 Hz, Ar), 6.87 (2H, d, J = 8.7 Hz, Ar), 6.82 (2H, d, J = 8.8 Hz, Ar), 6.34 (1H, d, J = 15.8 Hz, 8-H), 5.97 (1H, dt, J = 15.8, 7.0 Hz, 7-H), 4.41 (1H, d, J = 7.2 Hz, 2-H), 4.10 (1H, q, J = 7.2 Hz, 5-H_A), 4.00 (1H, td, J = 8.3, 4.7 Hz, 5-H_B), 3.90 (6H, s, 2 x OMe), 2.37-2.44 (1H, m, 6-H_A), 2.13-2.26 (3H, m, 3-H, 4-H_A and 6-H_B), 1.75-1.84 (1H, m, 4-H_B). ¹³**C NMR**

(125 MHz, CDCl₃) δ 159.1 (C Ar), 158.8 (C Ar), 134.3 (C Ar), 130.7 (C-8), 130.3 (C Ar), 127.6 (2 x CH Ar), 127.1 (2 x CH Ar), 126.2 (C-7), 113.9 (2 x CH Ar), 113.8 (2 x CH Ar), 85.8 (C-2), 67.8 (C-5), 55.3 (2 x OMe), 48.0 (C-3), 35.5 (C-6), 32.4 (C-4). **NOESY- 2D** (500 MHz, CDCl₃): between 2-H and 6-H_A, between 2-H and 7-H. HRMS (EI): calculated for C₂₁H₂₄O₃ [M]⁺ requires m/z 324.1725, found m/z 324.1720. IR (film) v_{max} : 2980, 1608, 1511, 1247, 1173, 1033 cm⁻¹.

8.4. (\pm) -(2S,3S)-3-(4-Methoxybenzyl)-2-(4-methoxyphenyl)tetrahydrofuran (3c)

Alcohol *E*-1a (42.5 mg, 0.239 mmol), 4-methoxybenzyl alcohol 2c (33.0 mg, 0.239 mmol) and $Ti(O^iPr)_4$ (20.3 mg, 0.0715 mmol) were subjected to the general procedure (FCC: gradient elution: $10\% \rightarrow 14\%$ Et₂O - pentane) to yield 3c as a yellow oil (53.4 mg, 75%).

Data for **3c**: **R**_f 0.50 (60% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.24 (2H, d, J = 8.9 Hz, Ar), 7.05 (2H, d, J = 8.6 Hz, Ar), 6.88 (2H, d, J = 8.8 Hz, Ar), 6.81 (2H, d, J = 8.6 Hz, Ar), 4.45 (1H, d, J = 7.6 Hz, 2-H), 4.06 (1H, q, J = 8.4 Hz, 5-H_A), 4.01 (1H, td, J = 8.6, 4.9 Hz, 5-H_B), 3.81 (3H, s, OMe), 3.78 (3H, s, OMe), 2.80 (1H, dd, J = 13.6, 5.1 Hz, 6-H_A), 2.51 (1H, dd, J = 13.6, 9.7 Hz, 6-H_B), 2.25-2.36 (1H, m, 3-H), 2.00-2.10 (1H, m, 4-H_A), 1.71-1.82 (1H, m, 4-H_B). ¹³**C NMR** (**100 MHz, CDCl**₃) δ 159.1 (C Ar), 158.0 (C Ar), 134.4 (C Ar), 132.6 (C Ar), 129.8 (2 x CH Ar), 127.6 (2 x CH Ar), 113.9 (2 x CH Ar), 113.8 (2 x CH Ar), 85.8 (C-2), 67.9 (C-5), 55.4 (OMe), 55.3 (OMe), 50.0 (C-3), 37.3 (C-6), 32.4 (C-4). **NOESY- 2D** (**500 MHz, CDCl**₃): between 2-H and 6-H_A, between 2-H and 6-H_B. **HRMS** (ESI): calculated for C₁₉H₂₂O₃Na [M+Na]⁺ requires m/z 321.14612, found m/z 321.14609. **IR** (film) v_{max} : 2916, 1611, 1510, 1241, 1030, 828 cm⁻¹.

8.5. (\pm) -(2S,3R)-3-Benzhydryl-2-(4-methoxyphenyl)tetrahydrofuran (3d)

Alcohol *E*-1a (19.8 mg, 0.111 mmol), diphenylmethanol 2d (20.5 mg, 0.111 mmol) and $Ti(O^iPr)_4$ (9.5 mg, 0.033 mmol) were subjected to the general procedure (FCC: gradient elution: $10\% \rightarrow 20\%$ Et₂O - pentane) to yield 3d as a yellow foam (31.2 mg, 83%).

Data for **3d**: **R**_f 0.50 (40% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl**₃) **δ** 7.16-7.25 (4H, m, Ar), 7.06-7.15 (5H, m, Ar), 7.01-7.06 (1H, m, Ar), 6.79 (2H, d, J = 8.4 Hz, Ar), 6.63 (2H, d, J = 8.3 Hz, Ar), 4.55 (1H, d, J = 4.3 Hz, 2-H), 4.06 (1H, td, J = 8.3, 4.5 Hz, 5-H_A), 3.91 (1H, q, J = 7.9 Hz, 5-H_B), 3.84 (1H, d, J = 11.5 Hz, 6-H), 3.68 (3H, s, OMe), 3.03 (1H, ddt, J = 12.1, 8.4, 4.4 Hz, 3-H), 2.00-2.12 (1H, m, 4-H_A), 1.65 (1H, ddt, J = 11.8, 7.9, 4.5 Hz, 4-H_B). ¹³**C NMR** (**100 MHz, CDCl**₃) **δ** 144.1 (C Ar), 143.6 (C Ar), 135.7 (C Ar), 128.7 (2 x C-H Ar), 128.6 (2 x C-H Ar), 128.5 (2 x C-H Ar), 128.2 (2 x C-H Ar), 127.2 (2 x C-H Ar), 126.6 (CH Ar), 126.5 (CH Ar), 125.6 (C Ar), 113.6 (2 x C-H Ar), 84.7 (C-2), 67.8 (C-5), 55.7 (C-6), 55.4 (OMe), 51.6 (C-3), 31.2 (C-4). **HRMS** (Cl): calculated for C₂₄H₂₄O₂Na [M+Na]⁺ requires m/z 367.16685, found m/z 367.16638. **IR** (film) v_{max} : 3656, 2980, 1492, 1239, 954, 750 cm⁻¹.

8.6. (\pm) -(2S,3S)-2-(4-Methoxyphenyl)-3-(3-methylbut-2-en-1-yl)tetrahydrofuran (3e)

Alcohol *E*-1a (21.1 mg, 0.119 mmol), 3-methyl-2-buten-1-ol 2e (0.03 mL, 0.3 mmol) and $Ti(O^iPr)_4$ (10.1 mg, 0.0356 mmol) were subjected to the general procedure except using 2.0 eq. of 3-methyl-2-buten-1-ol and conducting the reaction at 40°C (FCC: gradient elution: 5% \rightarrow 10% Et_2O - pentane) to yield 3e as a colorless oil (10.3 mg, 35%).

Data for **3e**: **R**_f 0.40 (30% Et₂O - pentane). ¹**H NMR (500 MHz, CDCl₃)** δ 7.24 (2H, d, J = 8.6 Hz, Ar), 6.87 (2H, d, J = 8.7 Hz, Ar), 5.08 (1H, t, J = 7.1 Hz, 7-H), 4.37 (1H, d, J = 7.3 Hz, 2-H), 4.07 (1H, q, J = 8.3 Hz, 5-H_A), 3.98 (1H, td, J = 8.3, 5.0 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.11-2.23 (2H, m, 4-H_A and 6-H_A), 1.98-2.10 (2H, m, 3-H and 6-H_B), 1.69-1.76 (1H, m, 4-H_B), 1.67 (3H, s, Me), 1.58 (3H, s, Me). ¹³**C NMR (125 MHz, CDCl₃)** δ 159.1 (C Ar), 134.7 (C Ar), 132.9 (C-8), 127.6 (2 x C-H Ar), 122.4 (C-7), 113.8 (2 x C-H Ar), 85.8 (C-2), 68.0 (C-5), 55.4 (OMe), 48.4 (C-3), 32.5 (C-4), 30.4 (C-6), 25.9 (Me), 18.0 (Me). **HRMS** (ESI): calculated for C₁₆H₂₃O₂ [M+H]⁺ requires m/z 247.16926, found m/z 247.16937. **IR** (film) v_{max} : 2980, 2360, 2341, 1513, 1380, 1246 cm⁻¹.

8.7. (\pm) -(2S,3S)-2-(4-Methoxyphenyl)-3-[(2'E,4'E)-penta-2,4-dien-1-yl]tetrahydrofuran (3f)

Alcohol *E*-1a (40.0 mg, 0.225 mmol), 1,4-pentadien-3-ol 2f (0.05 mL, 0.6 mmol) and $Ti(O^iPr)_4$ (19.1 mg, 0.0673 mmol) were subjected to the general procedure except using 2.0 eq. of 1,4-pentadien-3-ol and conducting the reaction at 40°C (FCC: gradient elution: 7% \rightarrow 10% Et₂O - pentane) to yield 3f as a colorless oil (16.5 mg, 30%).

Data for **3f**: **R**_f 0.40 (30% Et₂O - pentane). ¹**H NMR** (**500 MHz, CDCl**₃) **δ** 7.24 (2H, d, J = 8.5 Hz, Ar), 6.88 (2H, d, J = 8.5 Hz, Ar), 6.27 (1H, dt, J = 16.9, 10.2 Hz, 9-H), 6.06 (1H, dd, J = 15.2, 10.4 Hz, 8-H), 5.62 (1H, dt, J = 14.3, 6.8 Hz, 7-H), 5.10 (1H, d, J = 17.0 Hz, 10-H_A), 4.98 (1H, d, J = 10.1 Hz, 10-H_B), 4.36 (1H, d, J = 6.7 Hz, 2-H), 4.08 (1H, q, J = 8.6 Hz, 5-H_A), 3.98 (1H, td, J = 8.2, 4.9 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.26-2.35 (1H, m, 6-H_A), 2.14-2.24 (1H, m, 4-H_A), 2.05-2.14 (2H, m, 3-H and 6-H_B), 1.68-1.79 (1H, m, 4-H_B). ¹³C NMR (125 MHz, CDCl₃) **δ** 159.2 (C Ar), 137.1 (C-9), 134.3 (C Ar), 132.7 (C-7), 132.6 (C-8), 127.7 (2 x CH Ar), 115.6 (C-10), 113.9 (2 x CH Ar), 85.9 (C-2), 67.9 (C-5), 55.4 (OMe), 47.8 (C-3), 35.1 (C-6), 32.4 (C-4). HRMS (CI): calculated for C₁₆H₂₁O₂Na [M+H]⁺ requires m/z 245.15361, found m/z 245.15364. IR (film) v_{max} : 2980, 2360, 1513, 1381, 1246, 1072 cm⁻¹.

8.8. (\pm) -(2S, 3R)-3-[(1'S,2'E)-1,3-Diphenylallyl]-2-(4-methoxyphenyl)tetrahydrofuran and

(\pm) - (2S, 3S)-3-[(1'R, 2'E)-1,3-Diphenylallyl]-2-(4-methoxyphenyl)tetrahydrofuran (3g)

Alcohol *E-1a* (42.4 mg, 0.238 mmol), *trans*-1,3-diphenyl-2-propen-1-ol *E-2g* (20.0 mg, 0.238 mmol) and Ti(OⁱPr)₄ (20.0 mg, 0.0704 mmol) were subjected to the general procedure (FCC: 15% Et₂O - pentane) to yield an inseparable 6:1 mixture of diastereomers 3g as a colorless oil (87.1 mg, 99%).

Data for **major diastereomer A of 3g (from the mixture)**: $\mathbf{R}_{\mathbf{f}}$ 0.40 (40% Et₂O - pentane). **H NMR (500 MHz, CDCl₃)** δ 7.31-7.36 (2H, m, Ar), 7.15-7.29 (10H, m, Ar), 6.84 (2H, d, J = 8.7 Hz, Ar), 6.45 (1H, d, J = 15.7 Hz, 8-H), 6.12 (1H, dd, J = 15.7, 9.2 Hz, 7-H), 4.78 (1H, d, J = 6.0 Hz, 2-H), 4.11 (1H, td, J = 7.9, 5.8 Hz, 5-H_A), 3.96 (1H, dt, J = 8.4, 7.1 Hz, 5-H_B), 3.80 (3H, s, OMe), 3.49 (1H, t, J = 9.6 Hz, 6-H), 2.73 (1H, ddt, J = 10.3, 8.0, 6.1 Hz, 3-H), 1.96-2.08 (1H, m, 4-H_A), 1.72 (1H, ddt, J = 12.3, 7.6, 6.0 Hz, 4-H_B). **13C NMR (125 MHz, CDCl₃)** δ 159.0 (C Ar), 143.4 (C Ar), 137.2 (C Ar), 135.20 (C Ar), 133.0 (C-7), 130.4 (C-8), 128.8 (2 x C-H Ar), 128.5 (2 x C-H Ar), 128.3 (2 x C-H Ar), 128.0 (2 x C-H Ar), 127.3 (C-H Ar), 126.7 (C-H Ar), 126.4 (2 x C-H Ar), 113.9 (2 x C-H Ar), 84.9 (C-2), 67.92 (C-5), 55.39 (OMe), 53.7 (C-6), 52.5 (C-3), 31.5 (C-4). **HRMS** (Cl): calculated for C₂₆H₂₅O₂ [M-H]⁺ requires m/z 369.18491, found m/z 369.18475. **IR** (film) v_{max} : 2979, 1511, 1451, 1244, 1030, 694 cm⁻¹.

Partial data for **minor diastereomer B of 3g (from the mixture):** ¹**H NMR (500 MHz, CDCl3)** δ 7.36-7.39 (2H, m, Ar), 7.15-7.29 (8H, m, Ar), 6.95 (2H, d, J = 8.7 Hz, Ar), 6.77 (2H, d, J = 8.7 Hz, Ar), 6.49 (1H, d, J = 15.8 Hz, 8-H), 6.42 (1H, dd, J = 15.7, 8.7 Hz, 7-H), 4.60 (1H, d, J = 5.7 Hz, 2-H), 4.17 (1H, td, J = 8.0, 5.5 Hz, 5-H_A), 4.03 (1H, dt, J = 8.6, 7.3 Hz, 5-H_B), 3.79 (3H, s, OMe), 3.49 (1H, t, J = 9.6 Hz, 6-H), 2.66-2.69 (1H, m, 3-H), 2.15-2.19 (1H, m, 4-H_A), 2.06-2.12 (1H, m, 4-H_B). ¹³**C NMR (125 MHz, CDCl3)** δ 158.8 (C Ar), 143.0 (C Ar), 137.3 (C Ar), 135.15 (C Ar), 131.6 (C-7), 131.3 (C-8), 128.7 (2 x C-H Ar), 128.6 (2 x C-H Ar), 128.3 (2 x C-H Ar), 128.2 (2 x C-H Ar), 127.5 (C-H Ar), 127.3 (C-H Ar), 126.3 (2 x C-H Ar), 113.7 (2 x C-H Ar), 84.1 (C-2), 67.87 (C-5), 55.36 (OMe), 53.9 (C-6), 52.0 (C-3), 30.2 (C-4).

8.9. (\pm) -(2S, 3S)-2-(4-Methoxyphenyl)-3-[(1'S,2'E)-pent-3-en-2-yl]tetrahydrofuran and (\pm) -(2S, 3R)-2-(4-methoxyphenyl)-3-[(1'R,2'E)-pent-3-en-2-yl]tetrahydrofuran (3h)

Alcohols *E*-1a (59.3 mg, 0.334 mmol) *trans*-3-penten-2-ol *E*-2h (57.4 mg, 0.668 mmol) and $Ti(O^iPr)_4$ (28.0 mg, 0.100 mmol) were subjected to the general procedure except using 2 eq. of *E*-2h and conducting the reaction at $0^{\circ}C$ (FCC: gradient elution: $4\% \rightarrow 10\%$ Et₂O - pentane) to yield an inseparable 3:1 mixture of diastereomer 3h as a colorless oil (58.3 mg, 71%).

Data for **major diastereomer A of 3h (from the mixture):** $\mathbf{R}_{\mathbf{f}}$ 0.40 (25% Et₂O - pentane). **1H NMR (400 MHz, CDCl₃) &** 7.20 (2H, d, J = 8.6 Hz, Ar), 6.85 (2H, d, J = 8.8 Hz, Ar), 5.33-5.43 (1H, m, 7-H), 5.12 (1H, dqd, J = 15.2, 8.4, 1.6 Hz, 8-H), 4.54 (1H, d, J = 6.7 Hz, 2-H), 4.05 (1H, q, J = 8.2 Hz, 5-H_A), 3.91 (1H, td, J = 8.0, 5.4 Hz, 5-H_B), 3.79 (3H, s, OMe), 2.14-2.23 (1H, m, 6-H), 2.07-2.14 (1H, m, 4-H_A), 1.99-2.07 (1H, m, 3-H), 1.75-1.85 (1H, m, 4-H_B), 1.57 (3H, dd, J = 4.7, 1.5 Hz, Me), 0.99 (3H, d, J = 6.7 Hz, Me). ¹³C NMR (100 MHz, CDCl₃) δ 158.9 (C Ar), 136.2 (C-8), 133.8 (C Ar), 128.2 (2 x CH Ar), 124.2 (C-7), 113.7 (2 x CH Ar), 84.3 (C-2), 68.1 (C-5), 55.4 (OMe), 53.0 (C-3), 39.8 (C-6), 30.7 (C-4), 19.0 (Me), 17.9 (Me). HRMS (Cl): calculated for C₁₆H₂₃O₂ [M+H]⁺ requires m/z 247.16926, found m/z 247.16933. IR (film) ν_{max} : 3657, 2980, 2888, 1512, 1381, 1245 cm⁻¹.

Partial data for **minor diastereomer B of 3h (from the mixture):** ¹**H NMR (400 MHz, CDCl₃) &** 7.25 (2H, d, J = 8.7 Hz, Ar), 6.87 (2H, d, J = 8.8 Hz, Ar), 5.41-5.52 (1H, m, 7-H), 5.31-5.40 (1H, m, 8-H), 4.49 (1H, d, J = 7.3 Hz, 2-H), 4.03 (1H, q, J = 7.1 Hz, 5-H_A), 3.90 (1H, td, J = 8.2, 4.8 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.14-2.23 (1H, m, 6-H), 2.07-2.14 (1H, m, 4-H_A), 1.99-2.07 (1H, m, 3-H), 1.75-1.85 (1H, m, 4-H_B), 1.69 (3H, dd, J = 6.2, 1.5 Hz, Me), 0.95 (3H, d, J = 6.9 Hz, Me). ¹³**C NMR (100 MHz, CDCl₃) &** 158.9 (C Ar), 135.2 (C Ar), 133.8 (C-8), 127.9 (2 x CH Ar), 125.7 (C-7), 133.9 (2 x CH Ar), 84.0 (C-2), 68.0 (C-5), 55.4 (OMe), 53.2 (C-3), 37.7 (C-6), 29.2 (C-4), 20.5 (Me), 18.2 (Me).

8.10. (\pm)-(2S, 3S)-2-(4-Methoxyphenyl)-3-[(1'S, 2'E)-4-phenylbut-3-en-2-yl]tetrahydrofuran, (\pm)-(2S, 3R)-2-(4-methoxyphenyl)-3-[(1'R, 2'E)-4-phenylbut-3-en-2-yl]tetrahydrofuran, (2S,3R)-2-(4-methoxyphenyl)-3-[(1'S, 2'E)-1-phenylbut-2-en-1-yl]tetrahydrofuran and (2S,3R)-2-(4-methoxyphenyl)-3-[(1'R, 2'E)-1-phenylbut-2-en-1-yl]tetrahydrofuran (3i)

Alcohols *E*-1a (33.9 mg, 0.190 mmol), *E*-2i (28.2 mg, 0.190 mmol) and Ti(OⁱPr)₄ (16.2 mg, 0.0570 mmol) were subjected to the general procedure except conducting the reaction at 0°C (FCC: 10% Et₂O - pentane) to yield 3i as 4:1 dr mixture of diastereomer A, B, C and D (52.8 mg, 90%), which was partially separable into 2 clean fractions: first fraction of mixture of 13:1 diasteromer A and B (25.0 mg, 47%) as a colorless oil, and second fraction of mixture of 2:1 diastereomer C and

D as a colorless oil (10.0 mg, 19%).

Data for **diastereomer A of 3i:** R_f 0.45 (40% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.28 (2H, m, Ar), 7.15-7.22 (5H, m, Ar), 6.79 (2H, d, J = 8.7 Hz, Ar), 6.34 (1H, d, J = 15.8 Hz, 8-H), 5.84 (1H, dd, J = 15.8, 8.6 Hz, 7-H), 4.57 (1H, d, J = 6.8 Hz, 2-H), 4.05-4.12 (1H, m, 5-H_A), 3.95 (1H, td, J = 8.2, 5.0 Hz, 5-H_B), 3.76 (3H, s, OMe), 2.36-2.45 (1H, m, 6-H), 2.17-2.25 (2H, m, 3-H and 4-H_A), 1.83-1.92 (1H, m, 4-H_B), 1.13 (3H, d, J = 6.8 Hz, Me). ¹³C NMR (100 MHz, CDCl₃) δ 159.0 (C Ar), 137.58 (C Ar), 135.3 (C-8), 135.1 (C Ar), 129.0 (C-7), 128.5 (2 x CH Ar), 128.4 (CH Ar), 127.1 (2 x CH Ar), 126.2 (2 x CH Ar), 113.8 (2 x CH Ar), 84.6 (C-2), 68.1 (C-5), 55.40 (OMe), 53.3 (C-3), 40.6 (C-6), 31.1 (C-4), 19.2 (Me). NOESY- 2D (400 MHz, CDCl₃): between 2-H and 6-H, between 2-H and Me, between 2-H and 7-H, between 2-H and 8-H. HRMS (Cl): calculated for C₂₁H₂₅O₂ [M+H]⁺ requires m/z 309.18491, found m/z 309.18491. IR (film) v_{max} : 2980, 2885, 2360, 1512, 1243, 964 cm⁻¹.

Partial data **diastereomer B of 3i**: ¹H NMR (**400** MHz, CDCl₃) δ 7.14-7.38 (7H, m, Ar), 6.89 (2H, d, J = 8.6 Hz, Ar), 6.41 (1H, d, J = 15.8 Hz, 8-H), 6.16 (1H, dd, J = 15.8, 8.6 Hz, 7-H), 4.56 (1H, d, J = 7.4 Hz, 2-H), 4.05-4.12 (1H, m, 5-H_A), 3.95 (1H, td, J = 8.2, 5.0 Hz, 5-H_B), 3.81 (3H, s, OMe), 2.36-2.45 (1H, m, 6-H), 2.17-2.25 (2H, m, 3-H and 4-H_A), 1.83-1.92 (1H, m, 4-H_B), 1.08 (3H, d, J = 6.8 Hz, Me). ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (C Ar), 137.64 (C Ar), 134.9 (C Ar), 133.2 (C-8), 130.4 (C-7), 129.0 (2 x CH Ar), 128.7 (2 x CH Ar), 128.0 (2 x CH Ar), 127.3 (CH Ar), 114.0 (2 x CH Ar), 84.1 (C-2), 68.0 (C-5), 55.43 (OMe), 53.2 (C-3), 38.4 (C-6), 29.8 (C-4), 20.2 (Me).

Data for **diastereomer C of 3i: R**_f 0.50 (40% Et₂O - pentane). ¹**H NMR** (**500 MHz**, **CDCl₃**) δ 7.13-7.32 (7H, m, Ar), 6.87 (2H, d, J = 8.7 Hz, Ar), 5.52 (1H, dq, J = 15.2, 6.5 Hz, 8-H), 5.40 (1H, ddd, J = 15.1, 9.1, 1.5 Hz, 7-H), 4.72 (1H, d, J = 5.5 Hz, 2-H), 4.04 (1H, td, J = 8.2, 5.6 Hz, 5-H_A), 3.89 (1H, dt, J = 8.5, 7.2 Hz, 5-H_B), 3.81 (3H, s, OMe), 3.24-3.21 (1H, m, 6-H), 2.55 (1H, ddt, J = 10.7, 8.0, 5.6 Hz, 3-H), 1.91 (1H, dq, J = 12.7, 7.6 Hz, 4-H_A), 1.57-1.65 (1H, m, 4-H_B), 1.58 (3H, dd, J = 6.3, 1.6 Hz, Me). ¹³**C NMR** (**125 MHz**, **CDCl₃**) δ 158.9 (C Ar), 144.1 (C Ar), 135.7 (C Ar), 134.3 (C-7), 128.7 (2 x CH Ar), 128.1 (3 x CH Ar), 127.0 (CH Ar), 125.42 (C-8), 126.1 (CH Ar), 113.7 (2 x CH Ar), 84.7 (C-2), 67.90 (C-5), 55.44 (OMe), 53.4 (C-6), 52.3 (C-3), 31.1 (C-4), 18.0 (Me). **HRMS** (Cl): calculated for C₂₁H₂₅O₂ [M+H]⁺ requires m/z 309.18491, found m/z 309.18512. **IR** (film) v_{max} : 2980, 2360, 1728, 1513, 1245, 1062 cm⁻¹.

Partial data **diastereomer D of 3i**: ¹H NMR (**500 MHz, CDCl₃**) δ 7.18-7.21 (3H, m, Ar), 7.08-7.11 (2H, m, Ar), 6.90 (2H, d, J = 9.1 Hz, Ar), 6.72 (2H, d, J = 8.7 Hz, Ar), 5.65 (1H, ddd, J = 15.1, 8.9, 1.6 Hz, 7-H), 5.52 (1H, dq, J = 15.2, 6.5 Hz, 8-H), 4.49 (1H, d, J = 5.9 Hz, 2-H), 4.10 (1H, td, J = 8.0, 5.7 Hz, 5-H_A), 3.96 (1H, dt, J = 8.5, 7.2 Hz, 5-H_B), 3.76 (3H, s, OMe), 3.24-3.27 (1H, m, 6-H), 2.45-2.51 (1H, m, 3-H), 2.09 (1H, dq, J = 12.5, 7.5 Hz, 4-H_A), 2.00 (1H, ddt, J =

12.0, 7.5, 5.8 Hz, 4-H_B), 1.69 (3H, dd, J = 6.3, 1.5 Hz, Me). ¹³C NMR (125 MHz, CDCl₃) δ 158.7 (C Ar), 143.9 (C Ar), 135.4 (C Ar), 132.5 (C-7), 128.6 (2 x CH Ar), 127.9 (3 x CH Ar), 127.3 (2 x CH Ar), 125.39 (C-8), 113.6 (2 x CH Ar), 84.0 (C-2), 67.91 (C-5), 55.37 (OMe), 52.7 (C-3), 51.6 (C-6), 30.0 (C-4), 18.2 (Me).

8.11. (\pm) -(2S,3R)-3-[(1'R)-Cyclohex-2-en-1-yl]-2-(4-methoxyphenyl)tetrahydrofuran and (\pm) -(2S,3R)-3-[(1'S)-cyclohex-2-en-1-yl]-2-(4-methoxyphenyl)tetrahydrofuran (3j)

Alcohol *E*-1a (53.8 mg, 0.302 mmol) and *Z*-2j (29.6 mg, 0.302 mmol) and Ti(OⁱPr)₄ (25.7 mg, 0.0905 mmol) were subjected to the general procedure (FCC: 6% Et₂O - pentane) to yield an inseparable 2:1 mixture of diastereomer 3j as a colorless oil (50.6 mg, 65%).

Data for **major diastereomer A of 3j** (**from the mixture**): \mathbf{R}_f 0.50 (30% Et₂O - pentane). **¹H NMR (400 MHz, CDCl₃) δ** 7.26 (2H, d, J = 8.3 Hz, Ar), 6.87 (2H, d, J = 8.8 Hz, Ar), 5.76-5.82 (1H, m, 8-H), 5.66-5.71 (1H, m, 7-H), 4.56 (1H, d, J = 7.5 Hz, 2-H), 3.99-4.10 (1H, m, 5-H_A), 3.89-3.96 (1H, m, 5-H_B), 3.80 (3H, s, OMe), 2.21-2.28 (1H, m, 6-H), 2.13-2.20 (1H, m, 3-H), 2.05-2.13 (1H, m, 4-H_A), 1.92-1.99 (2H, m, CH₂ cyclohexenyl), 1.83-1.90 (1H, m, 4-H_B), 1.61-1.70 (2H, m, 2 x CH cyclohexenyl), 1.40-1.54 (1H, m, CH cyclohexenyl), 1.13-1.27 (1H, m, CH cyclohexenyl). **¹³C NMR (100 MHz, CDCl₃) δ** 159.10 (C Ar), 135.2 (C Ar), 129.3 (C-8), 128.7 (C-7), 128.06 (2 x CH Ar), 113.86 (2 x CH Ar), 83.9 (C-2), 68.1 (C-5), 55.4 (OMe), 52.2 (C-3), 36.8 (C-6), 29.8 (C-4), 29.1 (CH₂ cyclohexenyl), 25.44 (CH₂ cyclohexenyl), 21.96 (CH₂ cyclohexenyl). **HRMS** (CI): calculated for $\mathbf{C}_{17}\mathbf{H}_{23}\mathbf{O}_{2}$ [M+H]⁺ requires m/z 259.16926, found m/z 259.16922. **IR** (film) v_{max} : 3657, 2980, 2888, 1512, 1382, 1244 cm⁻¹.

Partial data for **minor diastereomer B of 3j (from the mixture)**: ¹H NMR (400 MHz, CDCl₃) δ 7.27 (2H, d, J = 8.5 Hz, Ar), 6.87 (2H, d, J = 8.8 Hz, Ar), 5.62-5.65 (1H, m, 8-H), 5.41-5.47 (1H, m, 7-H), 4.60 (1H, d, J = 7.3 Hz, 2-H), 3.99-4.10 (1H, m, 5-H_A), 3.89-3.96 (1H, m, 5-H_B), 3.80 (3H, s, OMe), 2.21-2.28 (1H, m, 6-H), 2.05-2.13 (2H, m, 3-H and 4-H_A), 1.92-1.99 (2H, m, CH₂ cyclohexenyl), 1.77-1.91 (2H, m, 4-H_B and CH cyclohexenyl), 1.72-1.76 (1H, m, CH cyclohexenyl), 1.40-1.54 (1H, m, CH cyclohexenyl), 1.28-1.35 (1H, m, CH cyclohexenyl). ¹³C NMR (100 MHz, CDCl₃) δ 159.13 (C Ar), 135.0 (C Ar), 130.4 (C-7), 128.1 (C-8), 128.05 (2 x CH Ar), 113.90 (2 x CH Ar), 83.7 (C-2), 67.9 (C-5), 55.4 (OMe), 52.0 (C-3), 37.2 (C-6), 30.2 (C-4), 26.8 (CH₂ cyclohexenyl), 25.35 (CH₂ cyclohexenyl), 22.01 (CH₂ cyclohexenyl).

8.12. (\pm) -(2S,3R)-3-[(1'R)-Cyclopent-2-en-1-yl]-2-(4-methoxyphenyl)tetrahydrofuran and (\pm) -(2S,3R)-3-[(1'S)-cyclopent-2-en-1-yl]-2-(4-methoxyphenyl)tetrahydrofuran (3k)

Alcohol *E*-1a (53.0 mg, 0.298 mmol) and *Z*-2k (50.0 mg, 0.596 mmol) and Ti(OⁱPr)₄ (25.4 mg, 0.0894 mmol) were subjected to the general procedure except using 2 eq. of the *Z*-2k and conducting the reaction at r.t. (FCC: 6% Et₂O - pentane) to yield an inseparable 3:1 mixture of diastereomer (3.5:1 dr shown in crude NMR) 3k as a colorless oil (64.7 mg, 89%).

Data for **major diastereomer A of 3k (from the mixture):** $\mathbf{R_f}$ 0.50 (30% Et₂O - pentane). **¹H NMR (400 MHz, CDCl₃)** δ 7.26 (2H, d, J = 8.5 Hz, Ar), 6.87 (2H, d, J = 8.7 Hz, Ar), 5.79-5.83 (1H, m, 7-H), 5.69-5.74 (1H, m, 8-H), 4.48 (1H, d, J = 6.3 Hz, 2-H), 4.06 (1H, q, J = 7.2 Hz, 5-Ha), 3.95 (1H, td, J = 8.4, 4.7 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.74-2.83 (1H, m, 6-H), 2.20-2.28 (2H, m, 9-H₂), 2.06-2.17 (2H, m, 3-H and 4-Ha), 1.87-1.97 (1H, m, 10-Ha), 1.75-1.86 (1H, m, 4-H_B), 1.25-1.36 (1H, m, 10-H_B). **¹3C NMR (100 MHz, CDCl₃)** δ 159.2 (C Ar), 134.9 (C Ar), 132.5 (C-7), 132.4 (C-8), 128.1 (2 x CH Ar), 113.8 (2 x CH Ar), 85.2 (C-2), 68.0 (C-5), 55.4 (OMe), 52.6 (C-3), 47.3 (C-6), 32.3 (C-9), 30.4 (C-4), 29.0 (C-10). **HRMS** (EI): calculated for C₁₆H₂₀O₂ [M]⁺ requires m/z 244.1458, found m/z 244.1466. **IR** (film) v_{max} : 3677, 2988, 2898, 1510, 1342, 1244 cm⁻¹.

Partial data for **minor diastereomer B of 3k** (**from the mixture**): ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.26 (2H, d, J = 8.5 Hz, Ar), 6.87 (2H, d, J = 8.7 Hz, Ar), 5.67-5.69 (1H, m, 7-H), 5.45-5.50 (1H, m, 8-H), 4.50 (1H, d, J = 7.5 Hz, 2-H), 4.07 (1H, q, J = 7.1 Hz, 5-H_A), 3.95 (1H, td, J = 8.4, 4.7 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.74-2.83 (1H, m, 6-H), 2.28-2.34 (2H, m, 9-H₂), 2.06-2.17 (2H, m, 3-H and 4-H_A), 1.99-2.05 (1H, m, 10-H_A), 1.75-1.86 (1H, m, 4-H_B), 1.50-1.57 (1H, m, 10-H_B). ¹³**C NMR** (**100 MHz, CDCl**₃) δ 159.2 (C Ar), 134.8 (C Ar), 133.5 (C-7), 131.4 (C-8), 128.0 (2 x CH Ar), 113.9 (2 x CH Ar), 84.9 (C-2), 67.9 (C-5), 55.4 (OMe), 52.2 (C-3), 47.3 (C-6), 32.2 (C-9), 30.6 (C-4), 29.0 (C-10).

8.13. (\pm) -(2S,3R)-2-(4-Methoxyphenyl)-3-[(1'S)-3-methylcyclopent-2-en-1-yl]tetrahydrofuran and (\pm) -(2S,3R)-2-(4-methoxyphenyl)-3-[(1'R)-3-methylcyclopent-2-en-1-yl]tetrahydrofuran (3l)

Alcohol *E*-1a (20.7 mg, 0.116 mmol) and *Z*-2l (22.9 mg, 0.232 mmol) and $Ti(O^iPr)_4$ (9.9 mg, 0.035 mmol) were subjected to the general procedure except using 2.0 eq. of alcohol *Z*-2l and conducting reaction at r.t. (FCC: gradient elution: $6\% \rightarrow 12\%$ Et₂O - pentane) to yield 2 clean fractions: first fraction of mixture of 10:1 **diasteromer A** and **B** (10.0 mg, 33%) as a colorless oil, and second fraction of mixture of 5.5:1 **diasteromer A** and **B** as a colorless oil (12.1 mg, 41%).

Data for **major diastereomer A of 3l (from the mixture):** $\mathbf{R}_{\mathbf{f}}$ 0.40 (30% Et₂O - pentane). **1H NMR (500 MHz, CDCl₃)** $\boldsymbol{\delta}$ 7.25 (2H, d, J = 8.9 Hz, Ar), 6.86 (2H, d, J = 8.7 Hz, Ar), 5.28-5.33 (1H, m, 7-H), 4.46 (1H, d, J = 7.3 Hz, 2-H), 4.06 (1H, q, J = 8.1 Hz, 5-H_A), 3.94 (1H, td, J = 8.3, 4.7 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.72-2.81 (1H, m, 6-H), 2.12-2.20 (2H, m, 9-H₂), 2.03-2.11 (2H, m, 3-H and 4-H_A), 1.94 (1H, ddt, J = 13.2, 8.3, 6.7 Hz, 10-H_A), 1.77-1.86 (1H, m, 4-H_B), 1.72 (3H, s, Me), 1.35 (1H, dtd, J = 12.8, 8.1, 6.4 Hz, 10-H_B). ¹³C NMR (125 MHz, CDCl₃) $\boldsymbol{\delta}$ 159.1 (C Ar), 142.3 (C-8), 135.1 (C Ar), 128.03 (2 x C-H Ar), 126.2 (C-7), 113.8 (2 x C-H Ar), 85.2 (C-2), 68.0 (C-5), 55.4 (OMe), 53.0 (C-3), 47.5 (C-6), 36.6 (C-9), 30.4 (C-4), 29.9 (C-10), 16.9 (Me). NOESY-2D (500 MHz, CDCl₃): between 2-H and 6-H, between 2-H and 7-H, between 2-H and 10-H_B. HRMS (ESI): calculated for C₁₇H₂₂O₂Na [M+Na]⁺ requires m/z 281.15120, found m/z 281.15128. IR (film) v_{max} : 2930, 1611, 1512, 1245, 1031, 828 cm⁻¹.

Partial data for **minor diastereomer B of 3l (from the mixture):** ¹H NMR (500 MHz, CDCl₃) δ 7.25 (2H, d, J = 8.9 Hz, Ar), 6.86 (2H, d, J = 8.7 Hz, Ar), 5.08-5.11 (1H, m, 7-H), 4.49 (1H, d, J = 7.4 Hz, 2-H), 4.06 (1H, q, J = 8.1 Hz, 5-H_A), 3.94 (1H, td, J = 8.3, 4.7 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.72-2.81 (1H, m, 6-H), 2.12-2.20 (2H, m, 9-H₂), 2.03-2.11 (2H, m, 3-H and 4-H_A), 1.94 (1H, ddt, J = 13.2, 8.3, 6.7 Hz, 10-H_A), 1.77-1.86 (1H, m, 4-H_B), 1.72 (3H, s, Me), 1.35 (1H, dtd, J = 12.8, 8.1, 6.4 Hz, 10-H_B). ¹³C NMR (125 MHz, CDCl₃) δ 159.1 (C Ar), 141.2 (C-8), 135.1 (C Ar), 127.95 (2 x C-H Ar), 127.3 (C-7), 113.9 (2 x C-H Ar), 84.8 (C-2), 67.9 (C-5), 55.4 (OMe), 52.5 (C-3), 47.6 (C-6), 36.5 (C-9), 30.6 (C-4), 28.3 (C-10), 16.8 (Me).

8.14. (\pm) -(2S,3R)-2-(4-Methoxyphenyl)-3-[(1'S)-3-phenylcyclopent-2-en-1-yl]tetrahydrofuran (3m)

Alcohol *E*-1a (38.0 mg, 0.212 mmol) and *Z*-2m (34.0 mg, 0.212 mmol) and $Ti(O^iPr)_4$ (18.0 mg, 0.0633 mmol) were subjected to the general procedure except conducting reaction at r.t. (FCC: gradient elution: $7\% \rightarrow 15\%$ Et₂O - pentane) to yield 3m as a yellow oil (67.5 mg, 99%).

Data for **3m**: **R**_f 0.50 (40% Et₂O - pentane). ¹**H NMR** (**400 MHz**, **CDCl**₃) **δ** 7.43 (2H, d, J = 8.6 Hz, Ar), 7.21-7.36 (5H, m, Ar), 6.88 (2H, d, J = 8.7 Hz, Ar), 6.15 (1H, q, J = 2.0 Hz, 7-H), 4.56 (1H, d, J = 7.2 Hz, 2-H), 4.13 (1H, q, J = 7.1 Hz, 5-H_A), 3.98 (1H, td, J = 8.4, 4.7 Hz, 5-H_B), 3.81 (3H, s, OMe), 2.96-3.04 (1H, m, 6-H), 2.61-2.71 (2H, m, 9-H₂), 2.19-2.27 (2H, m, 3-H and 4-H_A), 2.11 (1H, dtd, J = 13.1, 8.3, 5.0 Hz, 10-H_A), 1.90 (1H, ddd, J = 8.3, 7.3, 3.8 Hz, 4-H_B), 1.54 (1H, ddt, J = 12.9, 9.0, 7.1 Hz, 10-H_B). ¹³**C NMR** (**100 MHz**, **CDCl**₃) **δ** 159.2 (C Ar), 143.8 (C-8), 136.5 (C Ar), 134.9 (C Ar), 128.4 (2 x C-H Ar), 128.1 (2 x C-H Ar), 127.5 (C-7), 127.4 (C-H Ar), 125.8 (2 x C-H Ar), 113.9 (2 x C-H Ar), 85.1 (C-2), 68.1 (C-5), 55.4 (OMe), 52.7 (C-3), 47.9 (C-6), 32.9 (C-9), 30.6 (C-4), 29.2 (C-10). **NOESY- 2D** (**400 MHz**, **CDCl**₃): between 2-H and 6-H, between 2-H and 7-H, between 2-H and 10-H_B. **HRMS** (ESI): calculated for C₂₂H₂₄O₂Na [M+Na]⁺ requires m/z 343.16685, found m/z 343.16690. **IR** (film) v_{max} : 2965, 1712, 1512, 1245, 1030, 827 cm⁻¹.

8.15. (\pm) -(2S,3S)-2-(2-Bromo-4-methoxyphenyl)-3-cinnamyltetrahydrofuran (3n)

Alcohol *E*-1b (66.8 mg, 0.261 mmol), cinnamyl alcohol *E*-2a (35.0 mg, 0.261 mmol) and $Ti(O^{i}Pr)_{4}$ (22.0 mg, 0.0774 mmol) were subjected to the general procedure (FCC: gradient elution: $8\% \rightarrow 12\%$ Et₂O - pentane) to yield 3n as a colorless oil (39.7 mg, 45%).

Data for **3n**: **R**_f 0.45 (30% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) δ** 7.25-7.36 (5H, m, Ar), 7.17-7.22 (1H, m, Ar), 7.07 (1H, d, J = 2.6 Hz, Ar), 6.87 (1H, dd, J = 8.6, 2.6 Hz, Ar), 6.42 (1H, d, J = 15.8 Hz, 8-H), 6.18 (1H, dt, J = 15.8, 7.0 Hz, 7-H), 4.93 (1H, d, J = 5.6 Hz, 2-H), 4.19

(1H, td, J = 8.1, 5.6 Hz, 5-H_A), 4.01-4.08 (1H, m, 5-H_B), 3.78 (3H, s, OMe), 2.58 (1H, dddd, J = 13.0, 6.4, 4.6, 1.4 Hz, 6-H_A), 2.30-2.38 (1H, m, 6-H_B), 2.20-2.30 (1H, m, 3-H), 2.13 (1H, dq, J = 14.3, 7.3 Hz, 4-H_A), 1.77-1.88 (1H, m, 4-H_B). ¹³C NMR (125 MHz, CDCl₃) δ 159.3 (C Ar), 137.6 (C Ar), 134.0 (C Ar), 131.5 (C-8), 128.6 (3 x CH Ar), 128.5 (C-7), 127.2 (CH Ar), 126.1 (2 x CH Ar), 122.7 (C Ar), 117.7 (CH Ar), 114.0 (CH Ar), 84.4 (C-2), 68.2 (C-5), 55.7 (OMe), 47.8 (C-3), 35.9 (C-6), 31.0 (C-4). HRMS (CI): calculated for C₂₀H₂₂BrO₂ [M+H]⁺ requires m/z 373.07977, found m/z 373.07950. IR (film) v_{max} : 3658, 2980, 1602, 1491, 1283, 964 cm⁻¹.

8.16. (\pm) -(2S,3S)-3-Cinnamyl-2-(3,4-dimethylphenyl)tetrahydrofuran (3o)

Alcohol *E*-1c (59.3 mg, 0.31 mmol), cinnamyl alcohol *E*-2a (41.6 mg, 0.310 mmol) and $Ti(O^{i}Pr)_{4}$ (26.4mg, 0.0930 mmol) were subjected to the general procedure (FCC: gradient elution: $6\% \rightarrow 20\%$ Et₂O - pentane) to yield 3o as a colorless oil (50.2 mg, 53%).

Data for **30**: **R**_f 0.50 (25% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) &** 7.27-7.31 (4H, m, Ar), 7.16-7.23 (1H, m, Ar), 7.05-7.13 (3H, m, Ar), 6.41 (1H, d, J = 15.8 Hz, 8-H), 6.14 (1H, dt, J = 15.8, 6.9 Hz, 7-H), 4.42 (1H, d, J = 6.3 Hz, 2-H), 4.12 (1H, dt, J = 8.4, 7.1 Hz, 5-H_A), 4.02 (1H, td, J = 8.3, 4.7 Hz, 5-H_B), 2.40-2.52 (1H, m, 6-H_A), 2.25 (6H, s, 2 x Me), 2.16-2.24 (3H, m, 3-H, 4-H_A and 6-H_B), 1.80 (1H, dddd, J = 13.4, 6.1, 3.9, 2.4 Hz, 4-H_B). ¹³**C NMR (125 MHz, CDCl₃) &** 139.8 (C Ar), 137.6 (C Ar), 136.7 (C Ar), 135.9 (C Ar), 131.4 (C-8), 129.7 (CH Ar), 128.6 (2 x CH Ar and C-7), 127.7 (CH Ar), 127.2 (CH Ar), 126.1 (2 x CH Ar), 123.9 (CH Ar), 86.1 (C-2), 68.0 (C-5), 48.0 (C-3), 35.7 (C-6), 32.5 (C-4), 20.0 (Me), 19.6 (Me). **HRMS** (ESI): calculated for C₂₁H₂₅O [M+H]⁺ requires m/z 293.18999, found m/z 293.18997. **IR** (film) v_{max} : 2971, 1497, 1449, 964, 743, 692 cm⁻¹

8.17. (\pm) -(2S,3R)-3-Benzhydryl-2-(2-bromophenyl)tetrahydrofuran (3p)

Alcohol *E*-1d (69.6 mg, 0.308 mmol), benzhydrol 2d (56.7 mg, 0.308 mmol) and $Ti(O^{i}Pr)_{4}$ (26.2 mg, 0.0923 mmol) were subjected to the general procedure (FCC: gradient elution: $5\% \rightarrow 7\%$ Et₂O - pentane) to yield 3p as a white foam (90.5 mg, 75%).

Data for **3p**: **R**_f 0.50 (30% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.25-7.39 (4H, m, Ar), 7.17-7.24 (4H, m, Ar), 6.98-7.12 (6H, m, Ar), 5.08 (1H, d, J = 5.1 Hz, 2-H), 4.21 (1H, td, J = 8.3, 5.0 Hz, 5-H_A), 4.02 (1H, q, J = 8.0 Hz, 5-H_B), 4.00 (1H, d, J = 10.6 Hz, 6-H), 3.29 (1H, ddt, J = 10.6, 7.4, 5.1 Hz, 3-H), 2.11-2.23 (1H, m, 4-H_A), 1.79-1.89 (1H, m, 4-H_B). ¹³**C NMR (100 MHz, CDCl₃)** δ 144.0 (C Ar), 142.8 (C Ar), 141.6 (C Ar), 132.9 (CH Ar), 132.8 (CH Ar), 128.72 (3 x CH Ar), 128.69 (3 x CH Ar), 128.2 (3 x CH Ar), 127.2 (CH Ar), 126.5 (CH Ar), 126.4 (CH Ar), 122.8 (C Ar), 84.4 (C-2), 68.0 (C-5), 55.2 (C-6), 50.1 (C-3), 31.3 (C-4). **HRMS** (ESI): calculated for C₂₃H₂₁OBrNa [M+Na]⁺ requires m/z 415.06680, found m/z 415.06686. **IR** (film) v_{max} : 3649, 2980, 2887, 1450, 1521, 1037 cm⁻¹.

8.18. (\pm) -(2S,3S)-3-(4-Methoxybenzyl)-2-phenyltetrahydrofuran (3q)

Alcohol *E*-1e (207.4 mg, 1.401 mmol), 4-methoxybenzylic alcohol 2c (192.4 mg, 1.401 mmol) and $Ti(O^iPr)_4$ (119.3 mg, 0.4201 mmol) were subjected to the general procedure (FCC: gradient elution: $7\% \rightarrow 15\%$ Et₂O - pentane) to yield 3q as a colorless oil (274.0 mg, 73%).

Data for **3q**: **R**_f 0.50 (40% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.24-7.37 (5H, m, Ar), 7.06 (2H, J = 8.6 Hz, Ar), 6.81 (2H, d, J = 8.6 Hz, Ar), 4.53 (1H, d, J = 7.2 Hz, 2-H), 4.09 (1H, q, J = 7.3 Hz, 5-H_A), 4.04 (1H, td, J = 8.2, 5.2 Hz, 5-H_B), 3.79 (3H, s, OMe), 2.84 (1H, dd, J = 13.6, 5.4 Hz, 6-H_A), 2.55 (1H, dd, J = 13.6, 9.5 Hz, 6-H_B), 2.34 (1H, dqd, J = 9.5, 7.5, 5.4 Hz, 3-H), 2.01-2.11 (1H, m, 4-H_A), 1.78 (1H, dq, J = 12.3, 7.8 Hz, 4-H_B). ¹³**C NMR (125 MHz, CDCl₃)** δ 158.1 (C Ar), 142.6 (C Ar), 132.6 (C Ar), 129.9 (2 x C-H Ar), 128.5 (2 x C-H Ar), 127.5 (C-H Ar), 126.2 (2 x C-H Ar), 113.9 (2 x C-H Ar), 85.6 (C-2), 68.1 (C-5), 55.4 (OMe), 50.2 (C-3), 37.5 (C-6), 32.4 (C-4). **HRMS** (ESI): calculated for C₁₈H₂₀O₂Na [M+Na]⁺ requires m/z 291.13555, found m/z 291.13568. **IR** (film) v_{max} : 2980, 1510, 1243, 1177, 1034, 699 cm⁻¹.

8.19. (\pm) -(2S,3R)-3-Benzhydryl-2-phenyltetrahydrofuran (3r)

Alcohol *E*-1e (57.3 mg, 0.387 mmol), benzhydrol 2d (71.2 mg, 0.387 mmol) and $Ti(O^{i}Pr)_{4}$ (33.0 mg, 0.116 mmol) were subjected to the general procedure (FCC: gradient elution: $7\% \rightarrow 10\%$ Et₂O - pentane) to yield 3**r** as a colorless oil (93.8 mg, 78%).

Data for **3r**: **R**_f 0.50 (30% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) &** 7.14-7.39 (13H, m, Ar), 7.01 (2H, d, J = 7.6 Hz, Ar), 4.76 (1H, d, J = 4.0 Hz, 2-H), 4.21 (1H, dt, J = 8.3, 4.2 Hz, 5-H_A), 4.07 (1H, q, J = 8.0 Hz, 5-H_B), 3.99 (1H, d, J = 11.6 Hz, 6-H), 3.19 (1H, ddt, J = 11.6, 7.9, 4.0 Hz, 3-H), 2.12-2.23 (1H, m, 4-H_A), 1.72-1.82 (1H, m, 4-H_B). ¹³**C NMR (100 MHz, CDCl₃) &** 144.0 (C Ar), 143.7 (C Ar), 143.6 (C Ar), 128.7 (2 x C-H Ar), 128.6 (2 x C-H Ar), 128.4 (2 x C-H Ar), 128.09 (2 x C-H Ar), 128.07 (2 x C-H Ar), 126.9 (C-H Ar), 126.5 (C-H Ar), 126.4 (C-H Ar), 125.8 (2 x C-H Ar), 84.8 (C-2), 67.9 (C-5), 55.6 (C-6), 51.7 (C-3), 30.9 (C-4). **HRMS** (ESI): calculated for C₂₃H₂₂ONa [M+Na]⁺ requires m/z 337.15629, found m/z 337.15631. **IR** (film) v_{max} : 2980, 2360, 1493, 1451, 1382, 1058 cm⁻¹.

8.20. (\pm) -(3R)-4-Benzhydryl-1-oxaspiro[4.4]nonane (3s)

OH + OH Ph Ph Ph
$$\frac{30 \text{ mol}\% \text{ Ti}(O^{j}\text{Pr})_{4}}{16}$$
 $\frac{OH}{Ph}$ $\frac{HFIP}{70 \text{ °C}}$ $\frac{9 \text{ 10}}{10}$ $\frac{2^{1} \text{ 5}}{3 \text{ 4}}$ $\frac{3}{3}$ $\frac{4}{3}$ $\frac{1}{3}$ $\frac{1}{3$

Alcohol **1f** (41.4 mg, 0.329 mmol), benzhydrol **2d** (60.4 mg, 0.329 mmol) and $Ti(O^{i}Pr)_{4}$ (28.0 mg, 0.0986 mmol) were subjected to the general procedure (FCC: gradient elution: $5\% \rightarrow 7\%$ Et₂O - pentane) to yield **3s** as a white foam (72.0 mg, 75%).

Data for **3s**: **R**_f 0.50 (30% Et₂O - pentane). ¹H **NMR** (**500 MHz, CDCl₃**) **δ** 7.33-7.37 (4H, m, Ar), 7.22-7.28 (4H, m, Ar), 7.11-7.16 (2H, m, Ar), 3.79 (1H, d, J = 11.7 Hz, 6-H), 3.72 (1H, dt, J = 8.8, 4.4 Hz, 5-H_A), 3.69 (1H, q, J = 8.3 Hz, 5-H_B), 3.10 (1H, ddd, J = 11.7, 10.0, 7.6 Hz, 3-H), 1.93 (1H, dtd, J = 12.7, 7.5, 4.0 Hz, 4-H_A), 1.46-1.64 (6H, m, 4-H_B, 7-H_A, 8-H_A, 9-H_A and 10-H₂), 1.37-1.45 (1H, m, 9-H_B), 1.05-1.16 (2H, m, 7-H_B and 8-H_B). ¹³C **NMR** (**125 MHz, CDCl₃**) **δ** 145.3 (C Ar), 143.8 (C Ar), 128.73 (2 x C-H Ar), 128.65 (2 x C-H Ar), 128.2 (2 x C-H Ar), 127.8 (2 x C-H Ar), 126.5 (C-H Ar), 126.3 (C-H Ar), 93.2 (C-2), 63.6 (C-5), 54.8 (C-6), 47.6 (C-3), 37.8 (C-7),

33.6 (C-4), 31.6 (C-10), 23.7 (C-9), 23.1 (C-8). **HRMS** (EI): calculated for $C_{21}H_{24}O$ [M]⁺ requires m/z 292.1822, found m/z 292.1818. **IR** (film) v_{max} : 2980, 2888, 1493, 1451, 1153, 947 cm⁻¹.

8.21. (\pm) -(3R)-4-Benzhydryl-1,8-dioxaspiro[4.5]decane (3t)

Alcohol **1g** (13.6 mg, 0.096 mmol), benzhydrol **2d** (17.7 mg, 0.096 mmol) and $Ti(O^{i}Pr)_{4}$ (8.2 mg, 0.029 mmol) were subjected to the general procedure (FCC: gradient elution: 12% \rightarrow 16% Et₂O - pentane) to yield **3t** as a yellow foam (17.7 mg, 60%).

Data for **3t**: $\mathbf{R_f}$ 0.40 (60% Et₂O - pentane). ¹**H NMR** (**400 MHz**, **CDCl**₃) **δ** 7.31-7.39 (4H m, Ar), 7.22-7.32 (4H, m, Ar), 7.11-7.19 (2H, m, Ar), 3.61-3.82 (6H, m, 6-H, 5-H₂, CH₂ tetrahydropyranyl and CH tetrahydropyranyl), 3.55 (1H, ddd, J = 11.1, 4.6, 2.4 Hz, CH tetrahydropyranyl), 2.84 (1H, td, J = 11.4, 7.5 Hz, 3-H), 1.89 (1H, dtd, J = 12.8, 7.5, 3.2 Hz, 4-H_A), 1.59-1.75 (2H, m, 4-H_B and CH tetrahydropyranyl), 1.53 (1H, dd, J = 13.1, 2.2 Hz, CH tetrahydropyranyl), 1.14-1.23 (2H, m, CH₂ tetrahydropyranyl). ¹³C NMR (100 MHz, CDCl₃) **δ** 145.1 (C Ar), 143.2 (C Ar), 128.9 (2 x C-H Ar), 128.8 (2 x C-H Ar), 128.1 (2 x C-H Ar), 127.7 (2 x C-H Ar), 126.4 (C-H Ar), 125.7 (C-H Ar), 80.2 (C-2), 65.0 (C-5), 64.0 (CH₂ tetrahydropyranyl), 63.9 (CH₂ tetrahydropyranyl), 53.5 (C-6), 51.8 (C-3), 37.8 (CH₂ tetrahydropyranyl), 32.7 (C-4), 31.2 (CH₂ tetrahydropyranyl). **HRMS** (ESI): calculated for C₂₁H₂₄O₂Na [M+Na]⁺ requires m/z 331.16685, found m/z 331.16690. **IR** (film) v_{max} : 3657, 2980, 2888, 1382, 1251, 1151 cm⁻¹.

8.22. (\pm) -(2S,3R)-2-(4-Methoxyphenyl)-3-[(1'S)-3-phenylcyclopent-2-en-1-yl]-1-oxaspiro[4.5]decane (3u)

Alcohols **E-1h** (50.0 mg, 0.203 mmol) and **Z-2m** (32.5 mg, 0.203 mmol) and $Ti(O^{i}Pr)_{4}$ (17.3 mg, 0.0609 mmol) were subjected to the general procedure except conducting the reaction at r.t. (FCC: gradient elution: $5\% \rightarrow 20\%$ Et₂O - pentane) to yield **3u** as a yellow foam (78.3 mg, 99%).

Data for **3u**: **R**_f 0.40 (20% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) &** 7.40-7.46 (2H, m, Ar), 7.29-7.36 (4H, m, Ar), 7.21-7.28 (1H, m, Ar), 6.88 (2H, d, J = 8.7 Hz, Ar), 6.13 (1H, q, J = 2.0 Hz, 7-H), 4.60 (1H, d, J = 9.6 Hz, 2-H), 3.81 (3H, s, OMe), 2.83-2.94 (1H, m, 6-H), 2.53-2.66 (2H, m, 9-H₂), 2.18-2.27 (1H, m, 3-H), 2.14 (1H, dd, J = 11.9, 7.5 Hz, 4-H_A), 1.96 (1H, dtd, J = 13.2, 8.3, 4.9 Hz, 10-H_A), 1.59-1.82 (7H, m, 4-H_B and 3 x CH₂ cyclohexyl), 1.31-1.50 (5H, m, 10-H_B and 2 x CH₂ cyclohexyl). ¹³**C NMR (100 MHz, CDCl₃) &** 159.3 (C Ar), 143.6 (C-8), 136.5 (C Ar), 134.4 (C Ar), 128.6 (2 x C-H Ar), 128.4 (2 x C-H Ar), 127.5 (C-7), 127.3 (C-H Ar), 125.7 (2 x C-H Ar), 113.8 (2 x C-H Ar), 84.4 (C-2), 81.8 (C-5), 55.4 (OMe), 52.9 (C-3), 47.1 (C-6), 41.3 (C-4), 39.2 (CH₂ cyclohexyl), 38.9 (CH₂ cyclohexyl), 32.9 (C-9), 29.4 (C-10), 25.8 (CH₂ cyclohexyl), 24.2 (CH₂ cyclohexyl), 23.8 (CH₂ cyclohexyl). **HRMS** (ESI): calculated for C₂₇H₃₃O₂ [M+H]⁺ requires m/z 389.24751, found m/z 389.24783. **IR** (film) v_{max} : 3656, 2980, 2929, 1512, 1244, 1072 cm⁻¹.

8.23. (\pm) -(2S,3R)-2-(4-Methoxyphenyl)-3-[(1'S)-3-phenylcyclopent-2-en-1-yl]-1,8-dioxaspiro[4.5]decane (3v)

Alcohols *E*-1i (60.0 mg, 0.242 mmol) and *Z*-2m (38.7 mg, 0.242 mmol) and $Ti(O^{i}Pr)_{4}$ (20.6 mg, 0.0725 mmol) were subjected to the general procedure except conducting the reaction at r.t. (FCC: gradient elution: 20% \rightarrow 35% Et₂O - pentane) to yield 3v as a yellow solid (94.0 mg, 99%).

Data for **3v**: \mathbf{R}_f 0.30 (60% Et₂O - pentane). **M.p.**: 89 °C (10% EtOAc - pentane). ¹**H NMR** (**500 MHz, CDCl**₃) δ 7.43 (2H, d, J = 7.9 Hz, Ar), 7.23-7.36 (5H, m, Ar), 6.90 (2H, d, J = 7.9 Hz, Ar), 6.12 (1H, q, J = 2.0 Hz, 7-H), 4.62 (1H, d, J = 9.6 Hz, 2-H), 3.85-3.97 (2H, m, CH₂ tetrahydropyranyl), 3.68-3.75 (1H, m, CH tetrahydropyranyl), 3.59-3.68 (1H, m, CH tetrahydropyranyl), 2.86-2.95 (1H, m, 6-H), 2.55-2.68 (2H, m, 9-H₂), 2.22-2.31 (1H, m, 3-H), 2.15-2.21 (1H, m, 4-H_A), 1.99 (1H, dtd, J = 13.2, 8.2, 4.5 Hz, 10-H_A), 1.85-1.93 (1H, m, CH tetrahydropyranyl), 1.76-1.82 (3H, m, CH tetrahydropyranyl and CH₂ tetrahydropyranyl), 1.72 (1H, t, J = 11.6 Hz, 4-H_B), 1.38 (1H, dq, J = 15.2, 7.8 Hz, 10-H_B). ¹³C NMR (125 MHz, CDCl₃) δ 159.4 (C Ar), 143.9 (C-8), 136.4 (C Ar), 133.8 (C Ar), 128.54 (2 x C-H Ar), 128.45 (2 x C-H Ar), 127.4 (C-H Ar), 127.1 (C-7), 125.8 (2 x C-H Ar), 113.9 (2 x C-H Ar), 84.6 (C-2), 78.5 (C-5), 65.6 (CH₂ tetrahydropyranyl), 65.5 (CH₂ tetrahydropyranyl), 55.4 (OMe), 52.6 (C-3), 46.9 (C-6), 41.9 (C-4), 39.4 (CH₂ tetrahydropyranyl), 39.0 (CH₂ tetrahydropyranyl), 32.9 (C-9), 29.4 (C-10). **HRMS**

(ESI): calculated for $C_{26}H_{30}O_3Na$ [M+Na]⁺ requires m/z 413.20872, found m/z 413.21051. **IR** (film) v_{max} : 3657, 2980, 1461, 1248, 1152, 1073 cm⁻¹.

8.24. (\pm) -(2S,3S)-3-Cinnamyl-2-(4-methoxyphenyl)-5,5-dimethyltetrahydrofuran (3w)

Alcohol *E*-1j (62.2 mg, 0.302 mmol), cinnamyl alcohol *E*-2a (40.5 mg, 0.302 mmol) and $Ti(O^{i}Pr)_{4}$ (25.7 mg, 0.0905 mmol) were subjected to the general procedure (FCC: gradient elution: 20% \rightarrow 35% Et₂O - pentane) to yield 3w as a colorless oil (51.8 mg, 55%).

Data for **3w**: **R**_f 0.50 (35% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl**₃) & 7.23-7.33 (6H, m, Ar), 7.15-7.22 (1H, m, Ar), 6.88 (2H, d, J = 8.7 Hz, Ar), 6.34 (1H, d, J = 15.8 Hz, 8-H), 6.05 (1H, dt, J = 15.8, 6.7 Hz, 7-H), 4.46 (1H, d, J = 9.4 Hz, 2-H), 3.79 (3H, s, OMe), 2.35 (1H, dddd, J = 13.5, 6.6, 4.2, 1.5 Hz, 6-H_A), 2.25 (1H, dddd, J = 9.2, 7.9, 3.9, 2.2 Hz, 3-H), 2.09-2.18 (2H, m, 4-H_A and 6-H_B), 1.61-1.71 (1H, m, 4-H_B), 1.39 (3H, s, Me), 1.38 (3H, s, Me). ¹³**C NMR** (**100 MHz, CDCl**₃) & 159.3 (C Ar), 137.6 (C Ar), 133.6 (C Ar), 131.1 (C-8), 128.6 (C-7), 128.6 (2 x CH Ar), 128.2 (CH Ar), 127.1 (2 x CH Ar), 126.1 (2 x CH Ar), 113.9 (2 x CH Ar), 85.8 (C-2), 80.0 (C-5), 55.4 (OMe), 48.7 (C-3), 46.1 (C-4), 34.8 (C-6), 29.9 (Me), 29.6 (Me). **HRMS** (ESI): calculated for C₂₂H₂₇O₂ [M+H]⁺ requires m/z 323.20056, found m/z 323.20053. **IR** (film) v_{max} : 2980, 2889, 1512, 1461, 1245, 1153 cm⁻¹.

8.25. (\pm) -(2S,3S)-3-Cinnamyl-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran (3x)

Alcohol E-1k (69.2 mg, 0.306 mmol), cinnamyl alcohol E-2a (41.0 mg, 0.306 mmol) and $Ti(O^{i}Pr)_{4}$ (26.0 mg, 0.0915 mmol) were subjected to the general procedure (FCC: 3% Et₂O - pentane) to yield 3x as a colorless oil (30.8 mg, 33%).

Data for **3x**: **R**_f 0.30 (10% Et₂O - pentane). ¹**H NMR** (**500 MHz, CDCl**₃) δ 7.25-7.34 (6H, m, Ar), 7.16-7.24 (3H, m, Ar), 6.84-6.94 (4H, m, Ar), 6.50 (1H, d, J = 16.0 Hz, 6-H), 6.17 (1H, dt, J = 14.4, 7.2 Hz, 5-H), 5.35 (1H, d, J = 7.1 Hz, 2-H), 3.79 (3H, s, OMe), 3.58 (1H, q, J = 7.2 Hz, 3-H), 2.61-2.81 (2H, m, 4-H₂). ¹³**C NMR** (**125 MHz, CDCl**₃) δ 159.62 (C Ar), 159.59 (C Ar), 137.3

(C Ar), 133.6 (C Ar), 132.7 (C-6), 127.0 (C Ar), 128.7 (3 x CH Ar), 127.7 (2 x CH Ar), 127.4 (CH Ar), 127.2 (C-5), 126.3 (2 x CH Ar), 124.5 (CH Ar), 120.8 (CH Ar), 114.1 (2 x CH Ar), 109.7 (CH Ar), 89.4 (C-2), 55.4 (OMe), 50.5 (C-3), 38.1 (C-4). **NOESY- 2D** (**500 MHz, CDCl**₃): between 2-H and 4-H₂, between 2-H and 5-H, between 2-H and 6-H. **HRMS** (ESI): calculated for $C_{24}H_{23}O_2$ [M+H]⁺ requires m/z 343.16926, found m/z 343.16937. **IR** (film) v_{max} : 3658, 2980, 1513, 1247, 956, 826 cm⁻¹.

8.26. (\pm) -(2S,3S)-3-Benzhydryl-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran (3y)

Alcohol **E-1k** (20.2 mg, 0.0891 mmol), benzhydrol **2d** (16.4 mg, 0.0891 mmol) and $Ti(O^iPr)_4$ (7.6 mg, 0.027 mmol) were subjected to the general procedure (FCC: gradient elution: 4% \rightarrow 10% Et₂O - pentane) to yield **3y** as a white foam (20.7 mg, 60%).

Data for **3y**: **R**_f 0.40 (15% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.19 -7.32 (10H, m, Ar), 7.13 (1H, t, J = 7.7 Hz, Ar), 6.83-6.89 (3H, m, Ar), 6.75 (2H, d, J = 8.7 Hz, Ar), 6.59 (1H, t, J = 7.6 Hz, Ar), 6.14 (1H, d, J = 7.6 Hz, Ar), 5.30 (1H, d, J = 4.1 Hz, 2-H), 4.26 (1H, dd, J = 11.5, 4.1 Hz, 3-H), 4.09 (1H, d, J = 11.5 Hz, 6-H), 3.77 (3H, s, OMe). ¹³**C NMR (100 MHz, CDCl₃)** δ 160.0 (C-4), 159.4 (C-5), 142.7 (C Ar), 142.6 (C Ar), 134.5 (C Ar), 128.82 (5 x C-H Ar), 128.78 (2 x C-H Ar), 128.7 (C Ar), 128.5 (2 x C-H Ar), 127.2 (2 x C-H Ar), 126.96 (C-H Ar), 126.95 (C-H Ar), 126.3 (C-H Ar), 120.0 (C-H Ar), 113.9 (2 x C-H Ar), 109.4 (C-H Ar), 88.2 (C-2), 58.1 (C-6), 55.4 (OMe), 55.0 (C-3). **HRMS** (ESI): calculated for C₂₈H₂₄O₂Na [M+Na]⁺ requires m/z 415.16685, found m/z 415.16687. **IR** (film) v_{max} : 2980, 2887, 2360, 1457, 1302, 1022 cm⁻¹.

8.27. (\pm)-(2S,3S,4R,5R)-3-Benzhydryl-2-(4-methoxyphenyl)-5-methyl-4-phenyltetrahydrofuran and (\pm)-(2S,3S,4S,5S)-3-benzhydryl-2-(4-methoxyphenyl)-5-methyl-4-phenyltetrahydrofuran (3z)

Alcohol *E*-11 (5.0 mg, 0.019 mmol), benzhydrol 2d (3.5 mg, 0.019 mmol) and $Ti(O^{i}Pr)_{4}$ (1.7 mg, 0.0057 mmol) were subjected to the general procedure except conducting the reaction at

0°C for 24 hours (FCC: gradient elution: $5\% \rightarrow 10\%$ Et₂O - pentane) to yield inseparable 8:1 mixture of diastereomers 3z as a colorless oil (8.0 mg, 99%).

Data for **major diastereomer A of 3z (from the mixture):** R_f 0.50 (30% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.23 (2H, d, J = 8.1 Hz, Ar), 7.15 (2H, t, J = 7.5 Hz, Ar), 6.95-7.11 (11H, m, Ar), 6.76 (2H, d, J = 8.7 Hz, Ar), 6.65-6.68 (2H, m, Ar), 4.95 (1H, d, J = 4.6 Hz, 2-H), 4.26 (1H, dq, J = 8.7, 5.9 Hz, 5-H), 4.06 (1H, d, J = 11.1 Hz, 6-H), 3.79 (3H, s, OMe), 3.47 (1H, ddd, J = 11.4, 7.1, 4.7 Hz, 3-H), 2.64 (1H, dd, J = 8.8, 7.1 Hz, 4-H), 1.24 (3H, d, J = 6.0 Hz, Me). ¹³C NMR (125 MHz, CDCl₃) δ 158.6 (C Ar), 143.6 (C Ar), 142.5 (C Ar), 142.1 (C Ar), 135.7 (C Ar), 128.7 (2 x C-H Ar), 128.63 (2 x C-H Ar), 128.46 (2 x C-H Ar), 128.3 (2 x C-H Ar), 128.13 (2 x C-H Ar), 128.10 (2 x C-H Ar), 127.4 (2 x C-H Ar), 126.6 (C-H Ar), 126.3 (C-H Ar), 126.04 (C-H Ar), 113.8 (2 x C-H Ar), 84.6 (C-2), 83.4 (C-5), 61.3 (C-4), 60.9 (C-3), 59.5 (C-6), 55.4 (OMe), 19.5 (Me). NOESY- 2D (500 MHz, CDCl₃): between 2-H and Me, between 2-H and 6-H, between 2-H and 4-H, between 3-H and 5-H. HRMS (ESI): calculated for $C_{31}H_{30}O_{2}Na$ [M+ Na]⁺ requires m/z 457.21380, found m/z 457.21353. IR (film) v_{max} : 2980, 2888, 1382, 1248, 1152, 954 cm⁻¹.

Partial data for **minor diastereomer B of 3z (from the mixture): ¹H NMR (500 MHz, CDCl₃) δ 7.23 (2H, d,** *J* **= 8.1 Hz, Ar), 6.95-7.17 (13H, m, Ar), 6.80 (2H, d,** *J* **= 8.4 Hz, Ar), 6.53 (2H, d,** *J* **= 8.7 Hz, Ar), 4.77 (1H, d,** *J* **= 9.3 Hz, 2-H), 4.39-4.44 (1H, m, 5-H), 3.72 (3H, s, OMe), 3.62-3.68 (1H, m, 3-H), 3.49 (1H, d,** *J* **= 12.4 Hz, 6-H), 3.26 (1H, dd,** *J* **= 8.3, 4.1 Hz, 4-H), 1.49 (3H, d,** *J* **= 6.2 Hz, Me). ¹³C NMR (125 MHz, CDCl₃) δ 158.6 (C Ar), 143.7 (C Ar), 142.1 (C Ar), 140.6 (C Ar), 129.1 (C Ar), 128.57 (2 x C-H Ar), 128.53 (2 x C-H Ar), 128.4 (2 x C-H Ar), 128.0 (2 x C-H Ar), 127.9 (2 x C-H Ar), 127.8 (2 x C-H Ar), 127.4 (2 x C-H Ar), 126.5 (C-H Ar), 126.1 (C-H Ar), 125.95 (C-H Ar), 113.4 (2 x C-H Ar), 85.9 (C-2), 81.3 (C-5), 56.2 (C-4), 55.4 (OMe), 53.3 (C-3), 52.3 (C-6), 22.7 (Me). NOESY- 2D (500 MHz, CDCl₃): between 2-H and 5-H, between 2-H and 6-H.**

8.28. (\pm) -(2S,3S,4R,5S)-3-Benzhydryl-2-(4-methoxyphenyl)-5-methyl-4-phenyltetrahydrofuran and (\pm) -(2S,3S,4S,5R)-3-benzhydryl-2-(4-methoxyphenyl)-5-methyl-4-phenyltetrahydrofuran (3aa)

Alcohol E-1m (23.9 mg, 0.0864 mmol), benzhydrol 2d (15.9 mg, 0.0864 mmol) and $Ti(O^iPr)_4$ (7.3 mg, 0.026 mmol) were subjected to the general procedure except conducting the

reaction at 0°C for 24 hours (FCC: gradient elution: $5\% \rightarrow 6\%$ Et₂O - pentane) to yield inseparable 13:1 mixture of diastereomers **3aa** as a colorless oil (37.7 mg, 99%).

Data for **major diastereomer A of 3aa (from the mixture):** \mathbf{R}_f 0.50 (30% $\mathbf{E}_{t2}\mathbf{O}$ pentane). $^1\mathbf{H}$ **NMR** (**500 MHz, CDCl₃**) $\mathbf{\delta}$ 7.17-7.27 (3H, m, Ar), 7.07-7.15 (5H, m, Ar), 6.96-7.06 (7H, m, Ar), 6.86 (2H, d, J = 8.7 Hz, Ar), 6.64 (2H, d, J = 8.8 Hz, Ar), 4.58 (1H, d, J = 7.5 Hz, 2-H), 4.32 (1H, quint, J = 6.3 Hz, 5-H), 4.09 (1H, d, J = 11.4 Hz, 6-H), 3.75 (3H, s, OMe), 3.35 (1H, ddd, J = 11.2, 7.5, 3.5 Hz, 3-H), 3.01 (1H, dd, J = 6.4, 3.4 Hz, 4-H), 0.98 (3H, d, J = 6.3 Hz, Me). 13 C **NMR** (**125 MHz, CDCl₃**) $\mathbf{\delta}$ 158.8 (C Ar), 143.6 (C Ar), 143.3 (C Ar), 142.7 (C Ar), 133.1 (C Ar), 129.2 (2 x C-H Ar), 128.59 (2 x C-H Ar), 128.57 (2 x C-H Ar), 128.51 (2 x C-H Ar), 128.41 (2 x C-H Ar), 128.37 (2 x C-H Ar), 128.07 (2 x C-H Ar), 126.5 (C-H Ar), 126.4 (C-H Ar), 126.1 (C-H Ar), 113.46 (2 x C-H Ar), 86.6 (C-2), 77.8 (C-5), 60.9 (C-3), 58.3 (C-6), 56.5 (C-4), 55.38 (OMe), 16.7 (Me). **NOESY- 2D** (**500 MHz, CDCl₃**): between 2-H and 4-H, between 2-H and 5-H, between 2-H and 6-H, between 4-H and 6-H. **HRMS** (ESI): calculated for $\mathbf{C}_{31}\mathbf{H}_{30}\mathbf{O}_{2}\mathbf{Na}$ [M+Na]⁺ requires m/z 457.21380, found m/z 457.21353. **IR** (film) \mathbf{v}_{max} : 2980, 2888, 1382, 1248, 1152, 954 cm⁻¹.

Partial data for **minor diastereomer B of 3aa (from the mixture):** ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.42 (3H, m, Ar), 7.07-7.15 (5H, m, Ar), 6.96-7.06 (7H, m, Ar), 6.77 (2H, d, J = 8.6 Hz, Ar), 6.56 (2H, d, J = 8.6 Hz, Ar), 4.85-4.89 (1H, m, 5-H), 4.84 (1H, d, J = 7.5 Hz, 2-H), 3.80-3.87 (1H, m, 3-H), 3.73 (3H, s, OMe), 3.52 (1H, d, J = 11.9 Hz, 6-H), 3.31-3.34 (1H, m, 4-H), 1.02 (3H, d, J = 6.3 Hz, Me). ¹³C NMR (125 MHz, CDCl₃) δ 158.4 (C Ar), 143.5 (C Ar), 137.2 (C Ar), 136.6 (C Ar), 128.63 (C Ar), 128.59 (2 x C-H Ar), 128.46 (2 x C-H Ar), 128.23 (2 x C-H Ar), 128.22 (2 x C-H Ar), 128.12 (2 x C-H Ar), 127.92 (2 x C-H Ar), 127.85 (2 x C-H Ar), 126.7 (C-H Ar), 126.6 (C-H Ar), 126.3 (C-H Ar), 113.48 (2 x C-H Ar), 84.8 (C-2), 78.9 (C-5), 57.3 (C-3), 55.41 (OMe), 54.8 (C-4), 53.1 (C-6), 16.9 (Me). NOESY- 2D (500 MHz, CDCl₃): between 2-H and 6-H, between 3-H and 5-H.

8.29. (\pm) -(2S,3R)-3-Cinnamyl-2-(4-methoxyphenyl)tetrahydro-2H-pyran (3ab)

Alcohol *E*-1n (50.5 mg, 0.263 mmol), cinnamyl alcohol *E*-2a (35.2 mg, 0.263 mmol) and $Ti(O^{i}Pr)_{4}$ (22.4 mg, 0.0789 mmol) were subjected to the general procedure (FCC: gradient elution: $7\% \rightarrow 12\%$ Et₂O - pentane) to yield 3ab as a colorless oil (40.0 mg, 50%).

Data for **3ab**: **R**_f 0.50 (30% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) &** 7.24-7.33 (6H, m, Ar), 7.15-7.23 (1H, m, Ar), 6.90 (2H, d, J = 8.7 Hz, Ar), 6.22 (1H, d, J = 15.7 Hz, 9-H), 6.00 (1H, dt, J = 14.9, 7.2 Hz, 8-H), 4.09 (1H, dt, J = 11.6, 4.1 Hz, 6-H_A), 3.94 (1H, d, J = 9.1 Hz, 2-H), 3.81 (3H, s, OMe), 3.54 (1H, td, J = 11.5, 2.6 Hz, 6-H_B), 2.04-2.12 (1H, m, 4-H_A), 1.96-2.04 (1H, m, 7-H_A), 1.72-1.87 (3H, m, 3-H, 5-H_A and 7-H_B), 1.62-1.70 (1H, m, 5-H_B), 1.34 (1H, qd, J = 13.0, 4.1 Hz, 4-H_B). ¹³**C NMR (100 MHz, CDCl₃) &** 159.4 (C Ar), 137.7 (C Ar), 133.6 (C Ar), 131.5 (C-9), 128.8 (2 x C-H Ar), 128.6 (2 x C-H Ar), 128.2 (C-8), 127.0 (C-H Ar), 126.0 (2 x C-H Ar), 113.9 (2 x C-H Ar), 85.6 (C-2), 69.0 (C-6), 55.4 (OMe), 42.2 (C-3), 36.0 (C-7), 30.0 (C-4), 26.7 (C-5). **HRMS** (ESI): calculated for C₂₁H₂₅O₂ [M+H]⁺ requires m/z 309.18491, found m/z 309.18488. **IR** (film) v_{max} : 3658, 2980, 2933, 1512, 1241, 1075 cm⁻¹.

8.30. (\pm) -(4S,5S)-4-Cinnamyl-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one (3ac)

Carboxylic acid *E***-1o** (45.6 mg, 0.238 mmol), cinnamyl alcohol *E***-2a** (31.8 mg, 0.238 mmol) and $Ti(O^iPr)_4$ (20.0 mg, 0.0704 mmol) were subjected to the general procedure (FCC: gradient elution: 15% \rightarrow 45% Et₂O - pentane) to yield **3ac** as a colorless oil (55.0 mg, 75%).

Data for **3ac**: **R**_f 0.50 (40% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl**₃) **δ** 7.19-7.34 (7H, m, Ar), 6.92 (2H, d, J = 8.7 Hz, Ar), 6.45 (1H, d, J = 15.9 Hz, 8-H), 6.04 (1H, dt, J = 15.8, 7.1 Hz, 7-H), 5.08 (1H, d, J = 7.6 Hz, 5-H), 3.82 (3H, s, OMe), 2.81 (1H, dd, J = 17.2, 7.9 Hz, 3-H_a), 2.54-2.68 (1H, m, 4-H), 2.46-2.54 (1H, m, 6-H_a), 2.42 (1H, dd, J = 17.2, 7.9 Hz, 3-H_b), 2.31-2.39 (1H, m, 6-H_b). ¹³**C NMR** (**100 MHz, CDCl**₃) **δ** 176.0 (C=O), 160.0 (C Ar), 136.9 (C Ar), 133.0 (C-8), 130.1 (C Ar), 128.7 (2 x C-H Ar), 127.7 (2 x C-H Ar), 127.6 (C-H Ar), 126.2 (2 x C-H Ar), 125.9 (C-7), 114.2 (2 x C-H Ar), 86.1 (C-5), 55.4 (OMe), 44.5 (C-4), 35.4 (C-6), 35.0 (C-3). **HRMS** (Cl): calculated for $C_{20}H_{21}O_3$ [M+H]⁺ requires m/z 309.14852, found m/z 309.14856. **IR** (film) v_{max} : 2980, 1774, 1514, 1248, 1144, 1029 cm⁻¹.

8.31. (\pm) -(4R,5S)-4-[(1'R,2'E)-1,3-diphenylallyl]-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one and (\pm) -(4R,5S)-4-[(1'S,2'E)-1,3-diphenylallyl]-5-(4-methoxyphenyl)dihydrofuran-2(3H)- one (3ad)

Carboxylic acid **E-1o** (200.0 mg, 1.031 mmol), trans-1,3-diphenyl-2-propen-1-ol **E-2g** (219.0 mg, 1.031 mmol) and $Ti(O^iPr)_4$ (88.6 mg, 0.312 mmol) were subjected to the general procedure except conducting the reaction at at 0°C (FCC: gradient elution: 15% \rightarrow 30% Et₂O - pentane) to yield separable 4:1 mixture of diastereomers **3ad** as a colorless oil (399.0 mg, 99%).

Data for **major diastereomer A of 3ad:** R_f 0.40 (70% Et₂O - pentane). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.37 (2H, m, Ar), 7.17-7.30 (10H, m, Ar), 6.86 (2H, d, J = 8.7 Hz, Ar), 6.51 (1H, d, J = 15.7 Hz, 8-H), 6.10 (1H, dd, J = 15.7, 9.2 Hz, 7-H), 5.37 (1H, d, J = 5.7 Hz, 5-H), 3.79 (3H, s, OMe), 3.54 (1H, t, J = 9.5 Hz, 6-H), 2.96-3.06 (1H, m, 4-H), 2.64 (1H, dd, J = 18.0, 8.7 Hz, 3-H_A), 2.35 (1H, dd, J = 18.0, 7.1 Hz, 3-H_B). ¹³C NMR (125 MHz, CDCl₃) δ 176.0 (C=O), 159.8 (C Ar), 141.3 (C Ar), 136.6 (C Ar), 132.0 (C-8), 131.1 (C Ar), 130.6 (C-7), 129.2 (2 x C-H Ar), 128.6 (2 x C-H Ar), 128.0 (2 x C-H Ar), 127.79 (2 x C-H Ar), 127.75 (C-H Ar), 127.3 (C-H Ar), 126.4 (2 x C-H Ar), 114.3 (2 x C-H Ar), 84.9 (C-5), 55.4 (OMe), 52.6 (C-6), 48.6 (C-4), 33.6 (C-3). HRMS (ESI): calculated for C₂₆H₂₄O₃Na [M+ Na]⁺ requires m/z 407.16177, found m/z 407.16190. IR (film) v_{max} : 2982, 1764, 1524, 1278, 1124, 1019 cm⁻¹.

Data for **minor diastereomer B of 3ad: R**_f 0.50 (70% Et₂O - pentane). ¹**H NMR (500 MHz, CDCl₃) &** 7.28-7.35 (6H, m, Ar), 7.17-7.26 (4H, m, Ar), 6.91 (2H, d, J = 8.7 Hz, Ar), 6.79 (2H, d, J = 8.8 Hz, Ar), 6.50 (1H, d, J = 15.7 Hz, 8-H), 6.27 (1H, dd, J = 15.7, 9.0 Hz, 7-H), 5.17 (1H, d, J = 4.8 Hz, 5-H), 3.78 (3H, s, OMe), 3.49 (1H, t, J = 9.2 Hz, 6-H), 2.90-2.97 (1H, m, 4-H), 2.81 (1H, dd, J = 17.9, 8.6 Hz, 3-H_A), 2.66 (1H, dd, J = 17.9, 5.9 Hz, 3-H_B). ¹³**C NMR (125 MHz, CDCl₃) &** 176.4 (C=O), 159.6 (C Ar), 141.3 (C Ar), 136.6 (C Ar), 132.7 (C-8), 131.2 (C Ar), 129.5 (C-7), 129.2 (2 x C-H Ar), 128.8 (2 x C-H Ar), 128.1 (2 x C-H Ar), 128.0 (C-H Ar), 127.4 (C-H Ar), 126.9 (2 x C-H Ar), 126.5 (2 x C-H Ar), 114.2 (2 x C-H Ar), 84.2 (C-5), 55.5 (OMe), 52.6 (C-6), 48.6 (C-4), 32.7 (C-3).

8.32. (\pm) -(5R,6S)-5-Cinnamyl-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (3ae)

Carboxylic acid E-1p (45.9 mg, 0.224 mmol), cinnamyl alcohol E-2a (30.0 mg, 0.224 mmol) and $Ti(O^iPr)_4$ (19.0 mg, 0.0669 mmol) were subjected to the general procedure (FCC: gradient elution: $18\% \rightarrow 25\%$ Et₂O - pentane) to yield **3ae** as a colorless oil (38.9 mg, 55%).

Data for **3ae**: **R**_f 0.50 (50% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl**₃) **δ** 7.24-7.31 (6H, m, Ar), 7.17-7.26 (1H, m, Ar), 6.92 (2H, d, J = 8.7 Hz, Ar), 6.32 (1H, d, J = 15.8 Hz, 9-H), 6.00 (1H, ddd, J = 15.6, 8.2, 6.3 Hz, 8-H), 4.97 (1H, d, J = 9.4 Hz, 2-H), 3.81 (3H, s, OMe), 2.75 (1H, ddd, J = 17.9, 7.1, 4.6 Hz, 5-H_A), 2.61 (1H, ddd, J = 17.8, 9.5, 6.8 Hz, 5-H_B), 2.15-2.23 (1H, m, 7-H_A), 2.04-2.14 (2H, m, 3-H and 4-H_A), 1.91-2.04 (1H, m, 7-H_B), 1.74 (1H, dddd, J = 15.0, 11.3, 6.8, 4.7 Hz, 4-H_B). ¹³**C NMR** (**100 MHz, CDCl**₃) **δ** 171.1 (C-6), 159.7 (C Ar), 136.8 (C Ar), 132.6 (C-9), 130.1 (C Ar), 128.4 (2 x C-H Ar), 128.3 (2 x C-H Ar), 127.2 (C-H Ar), 125.9 (C-8), 125.8 (2 x C-H Ar), 113.8 (2 x C-H Ar), 86.1 (C-2), 55.1 (OMe), 39.4 (C-3), 34.7 (C-7), 29.3 (C-5), 24.3 (C-4). **HRMS** (Cl): calculated for C₂₁H₂₂O₃ [M+H]⁺ requires m/z 323.16417, found m/z 323.16418. **IR** (film) v_{max} : 2980, 1727, 1514, 1246, 1072, 966 cm⁻¹.

8.33. (+)-(2R,3R,4S)-3-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-4-phenyltetrahydrofuran and (+)-(2S,3S,4S)-3-(4-methoxybenzyl)-2-(4-methoxyphenyl)-4-phenyltetrahydrofuran [(+)-3af]

Alcohol (+)-(E)-1 \mathbf{q} (30.0 mg, 0.118 mmol), 4-methoxybenzylic alcohol 2 \mathbf{c} (15.7 mg, 0.118 mmol) and Ti(OⁱPr)₄ (9.7 mg, 0.034 mmol) were subjected to the general procedure except conducting the reaction at at 0°C (FCC: gradient elution: 10% \rightarrow 15% Et₂O - pentane) to yield inseparable 5:1 mixture of diastereomers (+)-3 \mathbf{af} as a colorless oil (43.8 mg, 99%, 99% ee).

Data for **major diastereomer A of** (+)-3af (from the mixture): **R**_f 0.50 (50% Et₂O - pentane). [α] $_{D}^{25}$ = +39.6 (c = 6.75, CHCl₃). 1 H (500 MHz, CDCl₃) δ 7.23-7.31 (4H, m, Ar), 7.14-7.22 (4H, m, Ar), 6.82-6.90 (3H, m, Ar), 6.68 (2H, d, J = 8.7 Hz, Ar), 4.61 (1H, d, J = 8.8 Hz, 2-H), 4.24 (1H, t, J = 8.4 Hz, 5-H_A), 4.06 (1H, t, J = 8.1 Hz, 5-H_B), 3.81 (3H, s, OMe), 3.75 (3H, s, OMe), 3.24 (1H, q, J = 8.2 Hz, 4-H), 2.66-2.79 (2H, m, 6-H₂), 2.59 (1H, m, 3-H). 13 C NMR (125 MHz,

CDCl₃) δ 159.3 (C Ar), 158.0 (C Ar), 142.1 (C Ar), 133.6 (C Ar), 130.9 (C Ar), 130.5 (2 x C-H Ar), 128.7 (2 x C-H Ar), 128.1 (2 x C-H Ar), 127.7 (2 x C-H Ar), 126.5 (C-H Ar), 113.93 (2 x C-H Ar), 113.6 (2 x C-H Ar), 86.2 (C-2), 75.3 (C-5), 57.0 (C-3), 55.40 (OMe), 55.38 (OMe), 51.3 (C-4), 35.7 (C-6). **HRMS** (ESI): calculated for C₂₅H₂₆O₃Na [M+Na]⁺ requires m/z 397.17742, found m/z 397.17747. **IR** (film) v_{max} : 2980, 2889, 1510, 1381, 1243, 1031 cm⁻¹.

Partial data for **minor diastereomer B of** (+)-3af (from the mixture): ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.37 (2H, m, Ar), 7.14-7.22 (4H, m, Ar), 6.82-6.90 (5H, m, Ar), 6.76 (2H, d, J = 8.7 Hz, Ar), 4.77 (1H, d, J = 7.7 Hz, 2-H), 5.50-5.56 (1H, m, 5-H_A), 4.30 (1H, dd, J = 8.6, 4.3 Hz, 5-H_B), 3.81 (3H, s, OMe), 3.78 (3H, s, OMe), 3.56 (1H, q, J = 6.1 Hz, 4-H), 2.66-2.79 (1H, m, 3-H), 2.43 (1H, dd, J = 14.6, 6.4 Hz, 6-H_A), 2.19 (1H, dd, J = 14.4, 8.8 Hz, 6-H_B). ¹³C NMR (125 MHz, CDCl₃) δ 158.0 (C Ar), 157.9 (C Ar), 140.3 (C Ar), 134.8 (C Ar), 132.1 (C Ar), 129.9 (2 x C-H Ar), 129.0 (2 x C-H Ar), 128.4 (2 x C-H Ar), 127.5 (2 x C-H Ar), 126.6 (C-H Ar), 113.87 (2 x C-H Ar), 113.7 (2 x C-H Ar), 84.4 (C-2), 74.0 (C-5), 55.38 (OMe), 55.34 (OMe), 54.2 (C-3), 47.7 (C-4), 32.4 (C-6).

Racemic (\pm)-3af (99%, 5:1 dr) was made with the same procedure with racemic alcohol (\pm) -(E)-1q.

8.34. (+)-(2R,3R,4S)-3-Benzhydryl-2-(4-methoxyphenyl)-4-phenyltetrahydrofuran and (+)-(2S,3S,4S)-3-benzhydryl-2-(4-methoxyphenyl)-4-phenyltetrahydrofuran [(+)-3ag]

Alcohol (+)-(*E*)-1q (22.7 mg, 0.0894 mmol), benzhydrol 2d (16.4 mg, 0.0894 mmol) and $Ti(O^iPr)_4$ (7.6 mg, 0.027 mmol) were subjected to the general procedure except conducting the reaction at at 0°C (FCC: gradient elution: $10\% \rightarrow 20\%$ Et₂O - pentane) to yield inseparable 8:1 mixture of diastereomers (+)-3ag as a white foam (37.4 mg, 99%, 99% ee).

Data for major diastereomer A of (+)-3ag (from the mixture): \mathbf{R}_f 0.30 (25% Et₂O - pentane). [α] $_D^{25}$ = +2.5 (c = 10.0, CHCl₃). $^1\mathbf{H}$ NMR (500 MHz, CDCl₃) δ 7.00-7.23 (12H, m, Ar), 6.81-6.88 (5H, m, Ar), 6.67 (2H, d, J = 7.8 Hz, Ar), 4.64 (1H, d, J = 6.3 Hz, 2-H), 4.25 (1H, dd, J = 9.3, 7.3 Hz, 5-H_A), 4.17 (1H, dd, J = 9.3, 4.2 Hz, 5-H_B), 4.03 (1H, d, J = 11.3 Hz, 6-H), 3.76 (3H, s, OMe), 3.26 (1H, ddd, J = 11.1, 6.3, 4.5 Hz, 3-H), 3.19 (1H, dt, J = 7.2, 4.4 Hz, 4-H). 13 C NMR (125 MHz, CDCl₃) δ 158.8 (C Ar), 145.3 (C Ar), 143.3 (C Ar), 142.8 (C Ar), 134.0 (C Ar), 128.7 (2 x C-H Ar), 128.5 (3 x C-H Ar), 128.44 (2 x C-H Ar), 128.40 (2 x C-H Ar), 128.3 (2 x C-H Ar), 128.1 (C-H Ar), 127.6 (2 x C-H Ar), 126.62 (C-H Ar), 126.56 (C-H Ar), 126.1 (C-H Ar), 113.6 (2 x

C-H Ar), 87.4 (C-2), 75.1 (C-5), 60.8 (C-3), 58.7 (C-6), 55.4 (OMe), 52.1 (C-4). **NOESY- 2D (500 MHz, CDCl₃)**: between 2-H and 6-H, between 2-H and 4-H, between 4-H and 6-H. **HRMS** (ESI): calculated for $C_{30}H_{28}O_2Na$ [M+Na]⁺ requires m/z 443.19815, found m/z 443.19785. **IR** (film) v_{max} : 3649, 2980, 1513, 1453, 1302, 1248cm⁻¹.

Partial data for **minor diastereomer B of** (+)-3ag (from the mixture): ¹H NMR (500 MHz, CDCl₃) δ 7.00-7.23 (11H, m, Ar), 6.89-6.94 (2H, m, Ar), 6.78-6.81 (2H, m, Ar), 6.74 (2H, d, J = 8.7 Hz, Ar), 6.54 (2H, d, J = 8.7 Hz, Ar), 4.77 (1H, d, J = 9.0 Hz, 2-H), 4.60 (1H, dd, J = 8.7, 5.4 Hz, 5-H_A), 4.19-4.23 (1H, m, 5-H_B), 3.73 (3H, s, OMe), 3.64-3.71 (1H, m, 3-H), 3.56-3.62 (1H, m, 4-H), 3.39 (1H, d, J = 11.8 Hz, 6-H). ¹³C NMR (125 MHz, CDCl₃) δ 158.4 (C Ar), 143.6 (C Ar), 142.7 (C Ar), 141.1 (C Ar), 135.6 (C Ar), 129.1 (C-H Ar), 128.5 (3 x C-H Ar), 128.44 (2 x C-H Ar), 128.40 (2 x C-H Ar), 128.2 (2 x C-H Ar), 128.00 (2 x C-H Ar), 127.98 (2 x C-H Ar), 126.7 (C-H Ar), 126.3 (C-H Ar), 126.2 (C-H Ar), 113.4 (2 x C-H Ar), 84.6 (C-2), 75.2 (C-5), 55.5 (C-3), 55.4 (OMe), 52.8 (C-6), 49.7 (C-4). NOESY- 2D (500 MHz, CDCl₃): between 2-H and 6-H.

Racemic (\pm)-3ag (99%, 8:1 dr) was made with the same procedure with racemic alcohol (\pm)-(E)-1q.

8.35. (+)-(2R,3R,4S)-2-(4-Methoxyphenyl)-3-[(2'E)-penta-2,4-dien-1-yl]-4-phenyltetrahydrofuran and (+)-(2S,3S,4S)-2-(4-methoxyphenyl)-3-[(2'E)-penta-2,4-dien-1-yl]-4-phenyltetrahydrofuran [(+)-3ah]

Alcohol (+)-(*E*)-1q (30.0 mg, 0.118 mmol), bis-allyl alcohol 2f (15.7 mg, 0.118 mmol) and $Ti(O^{i}Pr)_{4}$ (9.7 mg, 0.034 mmol) were subjected to the general procedure except conducting the reaction at at 0°C for 36 hours (FCC: gradient elution: 7% \rightarrow 9% Et₂O - pentane) to yield inseparable 5:1 mixture of diastereomers (+)-3ah as a colorless oil (11.3 mg, 30%, 99% ee).

Data for **major diastereomer A of** (+)-3ah (from the mixture): **R**_f 0.50 (25% Et₂O - pentane). [α] $_{D}^{25}$ = +20.0 (c = 1.35, CHCl₃). 1 H (500 MHz, CDCl₃) δ 7.19-7.37 (7H, m, Ar), 6.90 (2H, d, J = 8.7 Hz, Ar), 6.12 (1H, dt, J = 16.9, 10.2 Hz, 9-H), 5.97 (1H, dd, J = 15.1, 10.4 Hz, 8-H), 5.38-5.48 (1H, m, 7-H), 5.05 (1H, dd, J = 16.8, 1.7 Hz, 10-H_A), 4.94 (1H, dd, J = 10.0, 1.8 Hz, 10-H_B), 4.58 (1H, d, J = 8.9 Hz, 2-H), 4.28 (1H, t, J = 8.5 Hz, 5-H_A), 4.09 (1H, dd, J = 8.7, 7.8 Hz, 5-H_B), 3.82 (3H, s, OMe), 3.26 (1H, q, J = 8.3 Hz, 4-H), 2.27-2.34 (1H, m, 3-H), 2.20-2.27 (2H, m, 6-H₂). ¹³C **NMR** (125 MHz, CDCl₃) δ 159.4 (C Ar), 142.0 (C Ar), 136.9 (C-9), 133.5 (C Ar), 133.3

(C-8), 131.5 (C-7), 128.8 (2 x C-H Ar), 128.1 (2 x C-H Ar), 127.9 (2 x C-H Ar), 126.8 (C-H Ar), 115.6 (C-10), 114.00 (2 x C-H Ar), 86.4 (C-2), 75.3 (C-5), 56.2 (C-3), 55.5 (OMe), 51.6 (C-4), 33.1 (C-6). **HRMS**: stable ion was not found in ESI, EI and CI. **IR** (film) v_{max} : 2980, 2888, 1461, 1382, 1252, 1152 cm⁻¹.

Partial data for **minor diastereomer B of** (+)-**3ah** (**from the mixture**): ¹**H NMR** (**500 MHz, CDCl₃**) δ 7.19-7.37 (7H, m, Ar), 6.90 (2H, d, J = 8.7 Hz, Ar), 6.21 (1H, dt, J = 17.0, 10.3 Hz, 9-H), 5.84 (1H, dd, J = 15.3, 10.4 Hz, 8-H), 5.38-5.48 (1H, m, 7-H), 5.03 (1H, dd, J = 16.8, 1.7 Hz, 10-H_A), 4.94 (1H, dd, J = 10.0, 1.8 Hz, 10-H_B), 4.66 (1H, d, J = 8.5 Hz, 2-H), 4.51 (1H, dd, J = 8.7, 6.2 Hz, 5-H_A), 4.26 (1H, dd, J = 8.6, 3.7 Hz, 5-H_B), 3.81 (3H, s, OMe), 3.61 (1H, ddd, J = 10.3, 6.8, 3.4 Hz, 4-H), 2.42 (1H, qd, J = 8.6, 6.2 Hz, 3-H), 1.85-1.96 (1H, m, 6-H_A), 1.66-1.77 (1H, m, 6-H_B). ¹³**C NMR** (**125 MHz, CDCl₃**) δ 159.3 (C Ar), 140.4 (C Ar), 137.1 (C-9), 134.5 (C Ar), 132.7 (C-7), 132.6 (C-8), 128.9 (2 x C-H Ar), 128.5 (2 x C-H Ar), 127.8 (2 x C-H Ar), 126.8 (C-H Ar), 115.4 (C-10), 113.95 (2 x C-H Ar), 84.5 (C-2), 74.3 (C-5), 55.5 (OMe), 52.6 (C-3), 48.3 (C-4), 30.6 (C-6).

Racemic (\pm)-3ah (30%, 5:1 dr) was made with the same procedure with racemic alcohol (\pm)-(E)-1q.

8.36. (+)-(2*R*,3*R*,4*S*)-2-(4-Methoxyphenyl)-4-phenyl-3-[(1'*S*)-3-phenylcyclopent-2-en-1-yl]tetrahydrofuran and (+)-(2*S*,3*S*,4*S*)-2-(4-methoxyphenyl)-4-phenyl-3-[(1'*R*)-3-phenylcyclopent-2-en-1-yl]tetrahydrofuran [(+)-3ai]

Alcohol (+)-(*E*)-1q (30.0 mg, 0.114 mmol) and (*E*)-2m (18.2 mg, 0.114 mmol) and $\text{Ti}(O^i\text{Pr})_4$ (9.7 mg, 0.034 mmol) were subjected to the general procedure except conducting the reaction at at 0°C (FCC: gradient elution: $10\% \rightarrow 15\%$ Et₂O - pentane) to yield inseparable 7:1 mixture of diastereomers (+)-3ai as a yellow oil (41.7 mg, 91%, 99% ee).

Data for **major diastereomer A of** (+)-3ai (from the mixture): \mathbf{R}_f 0.40 (30% Et₂O - pentane). [α] $_{\mathrm{D}}^{25}$ = +57.2 (c = 10.0, CHCl₃). 1 H NMR (400 MHz, CDCl₃) δ 7.19-7.44 (12H, m, Ar), 6.89 (2H, d, J = 8.7 Hz, Ar), 5.95 (1H, q, J = 2.0 Hz, 7-H), 4.73 (1H, d, J = 8.9 Hz, 2-H), 4.27 (1H, t, J = 8.5 Hz, 5-H_A), 4.10 (dd, J = 8.8, 7.3 Hz, 5-H_B), 3.82 (3H, s, OMe), 3.37 (1H, td, J = 8.4, 7.3 Hz, 4-H), 3.11 (1H, dtd, J = 11.7, 6.5, 6.0, 2.2 Hz, 6-H), 2.51-2.65 (3H, m, 3-H and 9-H₂), 1.97-2.08 (1H, m, 10-H_A), 1.48-1.56 (1H, m, 10-H_B). 13 C NMR (100 MHz, CDCl₃) δ 159.4 (C Ar),

143.5 (C-8), 143.4 (C Ar), 136.4 (C Ar), 134.4 (C Ar),128.9 (2 x C-H Ar), 128.5 (2 x C-H Ar), 128.39 (2 x C-H Ar), 127.8 (2 x C-H Ar), 127.6 (C-H Ar), 127.3 (C-7), 126.7 (C-H Ar), 125.8 (2 x C-H Ar),114.0 (2 x C-H Ar), 85.6 (C-2), 76.0 (C-5), 60.1 (C-3), 55.4 (OMe), 50.3 (C-4), 47.1 (C-6), 32.8 (C-9), 27.7 (C-10). **HRMS** (ESI): calculated for $C_{28}H_{28}O_2Na$ [M+Na]⁺ requires m/z 419.19815, found m/z 419.19800. **IR** (film) v_{max} : 2980, 1611, 1512, 1381, 1247, 1172 cm⁻¹.

Partial data for **minor diastereomer B of** (+)-3ai (from the mixture): ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.44 (12H, m, Ar), 6.89 (2H, d, J = 8.7 Hz, Ar), 5.93 (1H, q, J = 2.1 Hz, 7-H), 4.90 (1H, d, J = 7.8 Hz, 2-H), 4.50 (1H, dd, J = 8.6, 6.0 Hz, 5-H_A), 4.22 (1H, dd, J = 8.6, 3.3 Hz, 5-H_B), 3.82 (3H, s, OMe), 3.73 (1H, td, J = 6.1, 3.2 Hz, 4-H), 2.51-2.65 (2H, m, 3-H and 6-H), 2.39-2.49 (2H, m, 9-H₂), 1.97-2.08 (1H, m, 10-H_A), 1.48-1.56 (1H, m, 10-H_B). ¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C Ar), 142.9 (C-8), 141.4 (C Ar), 136.5 (C Ar), 135.6 (C Ar),129.01 (2 x C-H Ar), 128.95 (2 x C-H Ar), 128.7 (C-7), 128.6 (2 x C-H Ar), 128.35 (2 x C-H Ar), 127.2 (C-H Ar), 126.8 (C-H Ar), 125.7 (2 x C-H Ar), 113.9 (2 x C-H Ar), 84.2 (C-2), 74.6 (C-5), 57.1 (C-3), 55.4 (OMe), 49.7 (C-4), 45.8 (C-6), 33.0 (C-9), 29.2 (C-10).

Racemic (\pm)-3ai (91%, 7:1 dr) was made with the same procedure with racemic alcohol (\pm)-(E)-1q.

8.37. (\pm) -(2S,3S)-3-Cinnamyl-2-phenyltetrahydrofuran (*trans*-3aj)

Alcohol *E*-1e (64.3 mg, 0.434 mmol), cinnamyl alcohol *E*-2a (58.0 mg, 0.434 mmol) and $Ti(O^iPr)_4$ (37.0 mg, 0.130 mmol) were subjected to the general procedure (FCC: gradient elution: $6\% \rightarrow 12\%$ Et₂O - pentane) to yield *trans*-3aj as a colorless oil (40.9 mg, 36%).

Data for *trans-3aj*: **R**_f 0.40 (20% Et₂O - pentane). ¹**H NMR (400 MHz, CDCl₃) &** 7.35 (4H, d, J = 4.3 Hz, Ar), 7.28-7.31 (5H, m, Ar), 7.17-7.24 (1H, m, Ar), 6.42 (1H, d, J = 15.8 Hz, 8-H), 6.14 (1H, dt, J = 15.8, 6.9 Hz, 7-H), 4.49 (1H, d, J = 6.8 Hz, 2-H), 4.14 (1H, dt, J = 8.4, 7.1 Hz, 5-H_A), 4.04 (1H, td, J = 8.3, 4.7 Hz, 5-H_B), 2.47 (1H, dddd, J = 11.1, 6.6, 4.3, 1.4 Hz, 6-H_A), 2.17-2.32 (3H, m, 3-H, 4-H_A and 6-H_B), 1.78-1.87 (1H, m, 4-H_B). ¹³**C NMR (100 MHz, CDCl₃) &** 142.5 (C Ar), 137.5 (C Ar), 131.6 (C-8), 128.6 (2 x CH Ar), 128.5 (2 x CH Ar), 128.4 (C-7), 127.6 (CH Ar), 127.2 (CH Ar), 126.4 (2 x CH Ar), 126.1 (2 x CH Ar), 86.1 (C-2), 68.2 (C-5), 48.2 (C-3), 35.7 (C-6), 32.5 (C-4). **NOESY- 2D (400 MHz, CDCl₃)**: between 2-H and 6-H_A, between 2-H and 6-H_B. **HRMS** (ESI): calculated for C₁₉H₂₁O [M+H]⁺ requires m/z 265.15869, found m/z 265.15872. **IR** (film) v_{max} : 3657, 2980, 1451, 1251, 1153, 964 cm⁻¹.

8.38. (\pm) -(2S,3R)-3-Cinnamyl-2-phenyltetrahydrofuran and (\pm) -(2S,3S)-3-Cinnamyl-2-phenyltetrahydrofuran (cis-3aj and trans-3aj)

Alcohol **Z-1e** (53.5 mg, 0.361 mmol), cinnamyl alcohol *E***-2a** (48.4 mg, 0.361 mmol) and $Ti(O^{i}Pr)_{4}$ (30.1 mg, 0.106 mmol) were subjected to the general procedure (FCC: gradient elution: $6\% \rightarrow 12\%$ Et₂O - pentane) to yield *cis*-3aj: *trans*-3aj as 3:1 dr mixture (19.7 mg, 20%), which was partially separable into 2 fractions: first fraction of *cis*-3aj (7.4 mg, 8%) as a colorless oil, and second fraction of 1.5:1 of diastereomers *cis*-3aj: *trans*-3aj as a colorless oil (12.3 mg, 12%).

Data for *cis*-3aj: R_f 0.40 (20% Et₂O - pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.38 (8H, m, Ar), 7.17-7.23 (2H, m, Ar), 6.25 (1H, d, J = 15.8 Hz, 8-H), 6.01 (1H, ddd, J = 15.8, 7.9, 6.3 Hz, 7-H), 5.06 (1H, d, J = 6.7 Hz, 2-H), 4.22 (1H, td, J = 8.1, 5.1 Hz, 5-H_A), 3.95 (1H, q, J = 7.7 Hz, 5-H_B), 2.56 (1H, dqd, J = 11.2, 6.6, 4.7 Hz, 3-H), 2.17-2.22 (1H, m, 4-H_A), 1.85-1.97 (2H, m, 4-H_B and 6-H_A), 1.54-1.74 (1H, m, 6-H_B). ¹³C NMR (100 MHz, CDCl₃) δ 140.6 (C Ar), 137.7 (C Ar), 131.2 (C-8), 129.2 (C-7), 128.6 (2 x CH Ar), 128.2 (2 x CH Ar), 127.2 (CH Ar), 127.1 (CH Ar), 126.6 (2 x CH Ar), 126.0 (2 x CH Ar), 83.4 (C-2), 67.6 (C-5), 43.5 (C-3), 33.7 (C-6), 31.1 (C-4). NOESY- 2D (400 MHz, CDCl₃): between 2-H and 3-H. HRMS (ESI): calculated for C₁₉H₂₁O [M+H]⁺ requires m/z 265.15869, found m/z 265.15875. IR (film) v_{max} : 3657, 2980, 2888, 1382, 1152, 954 cm⁻¹.

Data for *trans-3*aj matched those previously reported.

9. General proceure for the hydrogenation of an alkene.

Heterocycle **3** (1 eq.), EtOAc (2 mL) and 10 wt. % of Pd/C (10 wt. %) were added to a two-necked r.b.f. The flask was submerged in an ice bath, and then evacuated and backfilled with hydrogen five times. The reaction mixture was stirred vigorously under hydrogen atmosphere (balloon pressure) at 0°C for 2 hours. The reaction mixture was filtered through celite and flushed with EtOAc. The crude product was then concentrated in vacuo, and purified by flash column chromatography to afford the corresponding products.

9.1. (\pm) -(2S,3R)-3-Cyclohexyl-2-(4-methoxyphenyl)tetrahydrofuran (6a)

Alkene **3j** (31.0 mg, 0.120 mmol), Pd/C (3.1 mg) and EtOAc (2 mL) were subjected to the general procedure (FCC: gradient elution: $7\% \rightarrow 15\%$ Et₂O - pentane) to yield **6a** as a colorless oil (27.2 mg, 87%).

Data for **6a**: **R**_f 0.40 (40% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl₃**) **δ** 7.26 (2H, d, J = 8.6 Hz, Ar), 6.87 (2H, d, J = 8.7 Hz, Ar), 4.54 (1H, d, J = 7.7 Hz, 2-H), 4.02 (1H, q, J = 8.3 Hz, 5-H_A), 3.91 (1H, td, J = 8.1, 4.6 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.10 (1H, dddd, J = 11.4, 8.0, 6.8, 4.6 Hz, 4-H_A), 1.96-2.05 (1H, m, 3-H), 1.80-1.87 (1H, m, 4-H_B), 1.70-1.80 (2H, m, 2 x CH cyclohexyl), 1.53-1.65 (2H, m, 2 x CH cyclohexyl), 1.29-1.39 (1H, m, 6-H), 1.06-1.28 (4H, m, 2 x CH₂ cyclohexyl), 0.96-1.05 (1H, m, CH cyclohexyl), 0.79-0.91(1H, m, CH cyclohexyl). ¹³**C NMR** (**100 MHz, CDCl₃**) **δ** 159.0 (C Ar), 135.5 (C Ar), 128.2 (2 x CH Ar), 113.8 (2 x CH Ar), 84.1 (C-2), 68.0 (C-5), 55.4 (OMe), 52.9 (C-3), 39.9 (C-6), 32.7 (CH₂ cyclohexyl), 30.5 (CH₂ cyclohexyl), 30.3 (C-4), 26.6 (CH₂ cyclohexyl), 26.53 (CH₂ cyclohexyl), 26.49 (CH₂ cyclohexyl). **HRMS** (ESI): calculated for C₁₇H₂₄O₂Na [M+Na]⁺ requires m/z 283.16685, found m/z 283.16675. **IR** (film) v_{max} : 2980, 1764, 1612, 1514, 1247, 1161 cm⁻¹.

9.2. (\pm) -(2S,3R)-3-Cyclopentyl-2-(4-methoxyphenyl)tetrahydrofuran (6b)

Alkene **3k** (30.0 mg, 0.122 mmol), Pd/C (3.0 mg) and EtOAc (2 mL) were subjected to the general procedure (FCC: gradient elution: $7\% \rightarrow 15\%$ Et₂O - pentane) to yield **6b** as a colorless oil (18.1 mg, 60%).

Data for **6b**: $\mathbf{R_f}$ 0.40 (40% Et₂O - pentane). ¹**H NMR** (**400 MHz, CDCl₃**) **δ** 7.26 (2H, d, J = 8.7 Hz, Ar), 6.86 (2H, d, J = 8.7 Hz, Ar), 4.46 (1H, d, J = 7.4 Hz, 2-H), 4.06 (1H, q, J = 8.3 Hz, 5-H_A), 3.94 (1H, td, J = 8.2, 5.1 Hz, 5-H_B), 3.80 (3H, s, OMe), 2.11-2.20 (1H, m, 4-H_A), 2.06 (1H, quint, J = 7.7 Hz, 3-H), 1.75-1.84 (3H, m, 4-H_B, 6-H and CH cyclopentyl), 1.42-1.66 (5H, m, CH

cyclopentyl and 2 x CH₂ cyclopentyl), 1.16-1.28 (1H, m, CH cyclopentyl), 0.85-0.96 (1H, m, CH cyclopentyl). 13 C NMR (100 MHz, CDCl₃) δ 159.1 (C Ar), 135.2 (C Ar), 128.2 (2 x CH Ar), 113.8 (2 x CH Ar), 85.9 (C-2), 67.9 (C-5), 55.4 (OMe), 52.8 (C-3), 42.7 (C-6), 31.8 (CH₂ cyclopentyl), 31.6 (C-4), 31.0 (CH₂ cyclopentyl), 25.5 (CH₂ cyclopentyl), 25.0 (CH₂ cyclopentyl). HRMS (ESI): calculated for $C_{16}H_{22}O_2Na$ [M+Na]⁺ requires m/z 269.15120, found m/z 269.15128. IR (film) v_{max} : 2980, 1764, 1514, 1246, 1169, 1032 cm⁻¹.

9.3. (+)-(2R,3R,4S)-2-(4-Methoxyphenyl)-4-phenyl-3-[(1'S,3'R)-3-phenylcyclopentyl]tetrahydrofuran and (+)-(2S,3S,4S)-2-(4-methoxyphenyl)-4-phenyl-3-[(1'R,3'S)-3-phenylcyclopentyl]tetrahydrofuran [(+)-6c]

Alkene (+)-3ai (36.3 mg, 0.0917 mmol), Pd/C (3.6 mg) and EtOAc (2 mL) were subjected to the general procedure (FCC: gradient elution: $6\% \rightarrow 8\%$ Et₂O - pentane) to yield an inseparable 7:1 mixture of diastereomer (+)-6c as a colorless oil (38.9 mg, 99%).

Data for **major diastereomer A of** (+)-6c (from the mixture): \mathbf{R}_f 0.50 (25% Et₂O pentane). [α] $_D^{25}$ = +52.8 (c = 4.2, CHCl₃). $^1\mathbf{H}$ NMR (500 MHz, CDCl₃) δ 7.40 (2H, d, J = 8.7 Hz, Ar), 7.19-7.38 (7H, m, Ar), 7.08-7.17 (3H, m, Ar), 6.92 (2H, d, J = 8.7 Hz, Ar), 4.64 (1H, d, J = 8.4 Hz, 2-H), 4.23 (1H, dd, J = 8.9, 8.0 Hz, 5-H_A), 4.08 (1H, dd, J = 8.9, 6.3 Hz, 5-H_B), 3.83 (3H, s, OMe), 3.34 (1H, td, J = 7.9, 6.3 Hz, 4-H), 2.96 (1H, dtd, J = 11.5, 9.0, 6.3 Hz, 8-H), 2.46 (1H, q, J = 8.0 Hz, 3-H), 2.15-2.26 (1H, m, 6-H), 2.10 (1H, dt, J = 12.3, 6.2 Hz, 7-H_A), 1.91-2.04 (1H, m, 9-H_A), 1.70 (1H, dddd, J = 14.2, 9.3, 8.1, 6.1 Hz, 10-H_A), 1.46-1.55 (1H, m, 9-H_B), 1.24 (1H, q, J = 11.9 Hz, 7-H_B), 1.13-1.21 (1H, m, 10-H_B). 13 C NMR (125 MHz, CDCl₃) δ 159.44 (C Ar), 146.0 (C Ar), 144.4 (C Ar), 134.2 (C Ar), 128.87 (2 x CH Ar), 128.85 (2 x CH Ar), 128.38 (2 x CH Ar), 127.7 (2 x CH Ar), 127.10 (2 x CH Ar), 126.6 (CH Ar), 126.0 (CH Ar), 114.0 (2 x CH Ar), 87.1 (C-2), 75.9 (C-5), 60.7 (C-3), 55.4 (OMe), 51.8 (C-4), 45.4 (C-8), 43.5 (C-8), 43.5 (C-6), 40.4 (C-7), 33.55 (C-9), 30.2 (C-10). NOESY-2D (500 MHz, CDCl₃): between 2-H and 4-H, between 2-H and 6-H, between 2-H and 7-H_A, between 6-H and 8-H. HRMS (ESI): calculated for C₂₈H₃₀O₂Na [M+Na]⁺ requires m/z 421.21380, found m/z 421.21384. IR (film) v_{max} : 2980, 2888, 1513, 1461, 1382, 1249 cm⁻¹.

Partial data for **minor diastereomer B** (+)-6c (from the mixture): ¹H NMR (500 MHz, CDCl₃) δ 7.40 (2H, d, J = 8.7 Hz, Ar), 7.19-7.38 (7H, m, Ar), 7.08-7.17 (3H, m, Ar), 6.92 (2H, d, J

= 8.7 Hz, Ar), 4.86 (2H, d, *J* = 9.2 Hz, 2-H), 4.49 (1H, dd, *J* = 8.5, 5.8 Hz, 5-H_A), 4.13 (1H, dd, *J* = 8.6, 2.2 Hz, 5-H_B), 3.83 (3H, s, OMe), 3.53-3.60 (1H, m, 4-H), 2.70-2.80 (1H, m, 8-H), 2.55 (1H, td, *J* = 9.6, 6.9 Hz, 3-H), 2.06-2.16 (1H, m, 7-H_A), 1.91-2.04 (1H, m, 9-H_A), 1.75-1.81 (1H, m, 10-H_A), 1.62-1.66 (1H, m, 6-H), 1.40-1.46 (1H, m, 9-H_B), 1.20-1.29 (1H, m, 7-H_B), 1.11-1.19 (1H, m, 10-H_B). ¹³C NMR (125 MHz, CDCl₃) δ 159.36 (C Ar), 146.5 (C Ar), 142.0 (C Ar), 135.7 (C Ar), 129.0 (2 x CH Ar), 128.5 (2 x CH Ar), 128.42 (2 x CH Ar), 127.8 (2 x CH Ar), 127.06 (2 x CH Ar), 126.7 (CH Ar), 125.89 (CH Ar), 113.9 (2 x CH Ar), 84.8 (C-2), 75.0 (C-5), 58.4 (C-3), 55.4 (OMe), 50.4 (C-4), 44.8 (C-8), 42.0 (C-7), 40.1 (C-6), 33.63 (C-10), 30.7 (C-9). NOESY-2D (500 MHz, CDCl₃): between 2-H and 6-H, between 6-H and 8-H.

10. (\pm) -2-[(2S,3S)-2-(4-Methoxyphenyl)-2,3-dihydrobenzofuran-3-yl]acetaldehyde (7)

Alkene 3x (10.0 mg, 0.0292 mmol) and CH₂Cl₂ were added to a r.b.f. charged with a stirring bar under -78°C. The solution was bubbled with O₃ for 7-10 min until the blue color was observed, leave it for 2-3 min. Then bubbling O₂ for few min. and switch to N₂ bubbling for 3-4 min. until no blue color was seen. DMS was added under dry-ice bath, leave it for 10min. and let it warmed up to r.t. The crude product was then concentrated in vacuo, and then purified by flash column chromatography to afford **7** as a colorless oil (5.3 mg, 67%).

Data for **7**: **R**_f 0.30 (40% Et₂O - pentane). ¹**H NMR** (**500 MHz, CDCl₃**) **δ** 9.84 (1H, s, 5-H), 7.34 (2H, d, J = 8.6 Hz, Ar), 7.20 (1H, t, J = 7.7 Hz, Ar), 7.13 (1H, d, J = 8.6 Hz, Ar), 6.86-6.92 (4H, m, Ar), 5.25 (1H, d, J = 6.7 Hz, 2-H), 3.93 (1H, q, J = 6.7 Hz, 3-H), 3.80 (3H, s, OMe), 2.85-2.99 (2H, m, 4-H₂). ¹³**C NMR** (**125 MHz, CDCl₃**) **δ** 200.4 (C-5), 159.9 (C Ar), 159.4 (C Ar), 132.5 (C Ar), 129.1 (C-H Ar), 129.0 (C Ar), 127.7 (2 x C-H Ar), 124.6 (C-H Ar), 121.2 (C-H Ar), 114.2 (2 x C-H Ar), 109.9 (C-H Ar), 89.6 (C-2), 55.5 (OMe), 49.0 (C-3), 44.9 (C-4). **HRMS** (ESI): calculated for $C_{17}H_{17}O_3$ [M+H]⁺ requires m/z 269.11722, found m/z 269.11731. **IR** (film) v_{max} : 3649, 2980, 2360, 1382, 1251, 1152 cm⁻¹.

11. General procedure for the Ru-catalyzed oxidation of aromatic rings to carboxylic acids

To a cold (0°C) solution of cyclobutane in 10.0 mL/mmol of a 2:2:3 mixture of CCl₄:MeCN:pH 7 buffer (Na₂HPO₄), NaIO₄ (20.0 equiv) was added in one portion. The mixture was stirred at that temperature for 15 min and RuCl₃ (5 mol%) was added in one portion. The

mixture was warmed up to room temperature. The reaction was monitored by TLC until completion, diluted with Et₂O and H₂O and extracted with Et₂O (3 x 3 mL/mmol). The water layer was acidified until pH 1 using concentrated HCl, and extracted with Et₂O (3 x 3 mL/mmol). The combined organic layers were dried using Na₂SO₄, filtered and the solvent was evaporated under reduced pressure to give the corresponding carboxylic acid, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

11.1. (\pm) -(2S,3R)-3-Benzhydryltetrahydrofuran-2-carboxylic acid (8)

$$\begin{array}{c} \text{MeO} \\ \text{Ph} \\ \text{Ph} \\ \text{Ph} \\ \text{3d} \end{array} \begin{array}{c} \text{5.0 mol\% RuCl}_3 \\ \text{20 eq. NalO}_4 \\ \text{MeCN/CCl}_4/ \\ \text{phosphate buffer} \\ \text{40\%} \end{array} \begin{array}{c} \text{Ph} \\ \text{Ph} \\ \text{8} \end{array}$$

Tetrahydrofurane **3d** (49.0 mg, 0.142 mmol), RuCl₃ (1.5 mg, 0.0071 mmol), NaIO₄ (0.588 g, 2.84 mmol) and CCl₄:MeCN: Na₂HPO₄ buffer (3 mL) were subjected to the general procedure (FCC: 5% DCM - MeOH) to yield **8** (16.0 mg, 40%) as a colorless oil.

Data for **8**: **R**_f 0.20 (10% DCM - MeOH). ¹**H NMR** (**500 MHz, CDCl**₃) **δ** 7.38 (2H, d, J = 7.6 Hz, Ar), 7.24-7.33 (6H, m, Ar), 7.16-7.21 (2H, m, Ar), 4.28 (1H, d, J = 2.4 Hz, 2-H), 4.03-4.14 (2H, m, 5-H₂), 3.87 (1H, d, J = 11.9 Hz, 6-H), 3.51 (1H, ddt, J = 12.0, 7.7, 2.5 Hz, 3-H), 1.96-2.06 (1H, m, 4-H_A), 1.69-1.76 (1H, m, 4-H_B). ¹³**C NMR** (**125 MHz, CDCl**₃) **δ** 175.5 (C=O), 143.2 (C Ar), 142.9 (C Ar), 129.0 (2 x C-H Ar), 128.9 (2 x C-H Ar), 128.4 (2 x C-H Ar), 128.2 (2 x C-H Ar), 127.0 (C-H Ar), 126.9 (C-H Ar), 80.6 (C-2), 68.8 (C-5), 54.4 (C-6), 47.5 (C-3), 29.5 (C-4). **NOESY-2D** (**500 MHz, CDCl**₃): between 2-H and 6-H. **HRMS** (ESI): calculated for C₁₈H₁₈O₃Na [M+Na]⁺ requires m/z 305.11482, found m/z 305.11484. **IR** (film) v_{max} : 3658, 2980, 2888, 1461, 1461, 1252 cm⁻¹.

11.2. (\pm) -2-[(2S,3R)-2-Phenyltetrahydrofuran-3-yl]acetic acid (9)

$$\begin{array}{c} \text{2.5 mol\% RuCl}_3\\ \text{20 eq. NalO}_4\\ \\ \text{MeCN/CCl}_4/\\ \text{phosphate buffer}\\ \\ \textbf{3q} \\ \end{array} \begin{array}{c} \text{20 eq. NalO}_4\\ \\ \text{Ph} \\ \text{21 5}\\ \text{3 4}\\ \\ \text{HO}_2\text{C} \\ \end{array} \begin{array}{c} \text{O}\\ \text{3 4}\\ \\ \text{9}\\ \end{array}$$

Tetrahydrofurane **3q** (80.0 mg, 0.299 mmol), RuCl₃ (1.6 mg, 0.0075 mmol), NaIO₄ (1.270 g, 5.937 mmol) and CCl₄:MeCN: Na₂HPO₄ buffer (3 mL) were subjected to the general procedure except using 2.5mol% of RuCl₃ (FCC: 5% DCM - MeOH) to yield **9** (18.8 mg, 30%) as a colorless oil.

Data for **9**: **R**_f 0.20 (5% DCM - MeOH). ¹**H NMR (400 MHz, CDCl**₃) **δ** 7.31-7.35 (4H, m, Ar), 7.25-7.30 (1H, m, Ar), 4.45 (1H, d, J = 7.3 Hz, 2-H), 4.16 (1H, dt, J = 8.4, 7.3 Hz, 5-H_A), 4.04 (1H, td, J = 8.4, 5.1 Hz, 5-H_B), 2.56 (1H, dd, J = 15.0, 4.5 Hz, 6-H_A), 2.42-2.51 (1H, m, 3-H), 2.31-2.41 (2H, m, 4-H_A and 6-H_B), 1.79 (1H, dq, J = 12.3, 7.8 Hz, 4-H_B). ¹³**C NMR (100 MHz, CDCl**₃) **δ** 177.7 (C=O), 141.3 (C Ar), 128.6 (2 x C-H Ar), 128.0 (C-H Ar), 126.4 (2 x C-H Ar), 85.7 (C-2), 68.0 (C-5), 44.2 (C-3), 36.2 (C-6), 32.3 (C-4). **HRMS** (ESI): calculated for C₁₂H₁₃O₃ [M-H]⁺ requires m/z 205.08702, found m/z 205.08693. **IR** (film) v_{max} : 3658, 2980, 2888, 1461, 1461, 1252 cm⁻¹.

12. General procedure for the acylation and alkylation of a lactone.

To a solution of diisopropylamine (1.15 eq.) in dry THF (1.92 mL/mmol) at -78 °C was added *n*-butyllithium (2.5 M in hexanes, 1.10 eq.) dropwise. The solution was stirred at 0 °C for 30 min and then cooled to -78 °C at which time lactone (1eq.) in THF (0.22 mL/mmol) was added over 10 min. The mixture was stirred at -78 °C for 0.5 hours and electrophile (1.0-1.5 eq.) was added quickly. The mixture was allowed to warm to room temperature, stirred for 3 hours, and quenched with saturated aqueous NH₄Cl. The mixture was extracted with Et₂O (50 mL × 3), and the organic phase was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel to give the corresponding product.

12.1. (\pm) -(3S,4S,5S)-3-Benzyl-4-cinnamyl-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one (10a)

Lactone **3ac** (50.0 mg, 0.162 mmol), benzyl bromide (41.5 mg, 0.243 mmol), diisopropylamine (28.3 mg, 0.280 mmol) and n-BuLi (2.5M, 0.11 mL) were subjected to the general procedure (FCC: gradient elution: 15% \rightarrow 25% Et₂O - pentane) to yield **10a** as a colorless oil (35.4 mg, 55%).

Data for **10a**: **R**_f 0.50 (60% Et₂O - pentane). ¹H **NMR** (**500 MHz, CDCl₃**) δ 7.16-7.34 (10H, m, Ar), 7.03 (2H, d, J = 8.7 Hz, Ar), 6.81 (2H, d, J = 8.7 Hz, Ar), 6.21 (1H, d, J = 15.7 Hz, 8-H), 5.84 (1H, dt, J = 15.4, 7.4 Hz, 7-H), 4.95 (1H, d, J = 9.0 Hz, 5-H), 3.77 (3H, s, OMe), 3.17 (1H, dd, J = 14.0, 5.2 Hz, 9-H_A), 3.07 (1H, dd, J = 14.0, 6.6 Hz, 9-H_B), 2.86 (1H, ddd, J = 10.5, 6.5, 5.2 Hz, 3-H), 2.34 (1H, ddt, J = 10.6, 8.8, 5.9 Hz, 4-H), 2.20-2.27 (2H, m, 6-H₂). ¹³C **NMR** (**125 MHz, CDCl₃**) δ 177.7 (C=O), 160.1 (C Ar), 138.0 (C Ar), 136.7 (C Ar), 133.5 (C-8), 130.2 (C Ar), 129.7 (2 x C-H Ar), 128.9 (2 x C-H Ar), 128.7 (2 x C-H Ar), 128.3 (2 x C-H Ar), 127.7 (C-H Ar), 127.0 (C-H Ar), 126.2 (2 x C-H Ar), 125.3 (C-7), 114.2 (2 x C-H Ar), 83.9 (C-5), 55.5 (OMe), 48.3 (C-4),

47.0 (C-3), 35.3 (C-9), 33.9 (C-6). **NOESY-2D** (**500 MHz, CDCl₃**): between 5-H and 6-H₂, between 5-H and 7-H, between 5-H and 8-H, between 5-H and 3-H, between 3-H and 6-H₂. **HRMS** (ESI): calculated for $C_{27}H_{26}O_3Na$ [M+Na]⁺ requires m/z 421.17742, found m/z 421.17722. **IR** (film) v_{max} : 2980, 1764, 1514, 1248, 1160, 1030 cm⁻¹.

12.2. (\pm) -Methyl-(3R,4S,5S)-4-cinnamyl-5-(4-methoxyphenyl)-2-oxotetrahydrofuran-3-carboxylate (10b)

Lactone **3ac** (40.0 mg, 0.130 mmol), methyl chloroformate (18.3 mg, 0.195 mmol), diisopropylamine (15.2 mg, 0.149 mmol) and n-BuLi (2.5M, 0.057 mL) were subjected to the general procedure (FCC: gradient elution: 25% \rightarrow 35% Et₂O - pentane) to yield **10b** as a colorless oil (24.7 mg, 52%).

Data for **10b**: **R**_f 0.50 (70% Et₂O - pentane). ¹**H NMR (500 MHz, CDCl₃) δ** 7.34 (2H, d, *J* = 8.7 Hz, Ar), 7.19-7.30 (5H, m, Ar), 6.94 (2H, d, *J* = 8.7 Hz, Ar), 6.43 (1H, d, *J* = 15.6 Hz, 8-H), 5.95 (1H, ddd, *J* = 15.8, 8.4, 6.5 Hz, 7-H), 5.03 (1H, d, *J* = 9.8 Hz, 5-H), 3.83 (3H, s, OMe), 3.66 (3H, s, OMe), 3.54 (1H, d, *J* = 11.7 Hz, 3-H), 3.14 (1H, dddd, *J* = 11.7, 9.8, 8.5, 5.0 Hz, 4-H), 2.47-2.56 (1H, m, 6-H_A), 2.29-2.38 (1H, m, 6-H_B). ¹³**C NMR (125 MHz, CDCl₃) δ** 170.8 (C=O), 168.2 (C=O), 160.5 (C Ar), 136.7 (C Ar), 133.6 (C-8), 128.73 (2 x C-H Ar), 128.69 (2 x C-H Ar), 128.6 (C Ar), 127.8 (C-H Ar), 126.3 (2 x C-H Ar), 125.0 (C-7), 114.4 (2 x C-H Ar), 85.0 (C-5), 55.5 (OMe), 53.3 (C-3), 53.1 (OMe), 48.9 (C-4), 33.8 (C-6). **NOESY-2D (500 MHz, CDCl₃)**: between 5-H and 6-H_A, between 5-H and 6-H_B, between 5-H and 7-H, between 5-H and 3-H, between 3-H and 6-H_A, between 3-H and 6-H_B. **HRMS** (ES1): calculated for C₂₂H₂₂O₅Na [M+Na]⁺ requires *m/z* 389.13594, found *m/z* 389.13577. **IR** (film) ν_{max}: 2980, 1777, 1736, 1515, 1250, 1147 cm⁻¹.

12.3. (\pm) -(3S,4S,5S)-4-[(2'E)-1,3-Diphenylallyl]-3-(4-iodobenzyl)-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one (10c)

Lactone **3ad-minor diastereomer B** (100.0 mg, 0.2603 mmol), benzyl bromide (77.3 mg, 0.260 mmol), diisopropylamine (45.5 mg, 0.450 mmol) and n-BuLi (2.5M, 0.17 mL) were subjected to the general procedure except using 1.73 eq. of diisopropylamine, 1.63 eq. of n-BuLi (FCC: gradient elution: $15\% \rightarrow 25\%$ Et₂O - pentane) to yield **10c** as a white solid (124.8 mg, 80%).

Data for **10c**: **R**_f 0.40 (50% Et₂O - pentane). **M.p.**: 78°C (10% EtOAc - pentane). ¹**H NMR** (**500 MHz, CDCl₃**) δ 7.52 (2H, d, J = 8.2 Hz, Ar), 7.16-7.36 (8H, m, Ar), 7.06-7.10 (2H, m, Ar), 6.72 (2H, d, J = 8.2 Hz, Ar), 6.70 (2H, d, J = 8.7 Hz, Ar), 6.50 (2H, d, J = 8.6 Hz, Ar), 6.43 (1H, d, J = 15.6 Hz, 8-H), 5.84 (1H, dd, J = 15.6, 9.7 Hz, 7-H), 5.08 (1H, d, J = 4.9 Hz, 5-H), 3.78 (3H, s, OMe), 3.43 (1H, t, J = 9.7 Hz, 6-H), 2.98 (1H, dt, J = 7.8, 5.3 Hz, 3-H), 2.90 (1H, dd, J = 13.6, 5.0 Hz, 9-H_A), 2.81 (1H, dd, J = 13.6, 7.9 Hz, 9-H_B), 2.59-2.66 (1H, m, 4-H). ¹³C **NMR** (**125 MHz, CDCl₃**) δ 178.2 (C=O), 159.4 (C Ar), 141.1 (C Ar), 138.0 (2 x C-H Ar), 137.4 (C Ar), 136.4 (C Ar), 132.7 (C-8), 132.1 (C Ar), 131.9 (2 x C-H Ar), 129.3 (C-7), 129.2 (2 x C-H Ar), 128.8 (2 x C-H Ar), 128.2 (2 x C-H Ar), 128.0 (C-H Ar), 127.5 (C-H Ar), 126.7 (2 x C-H Ar), 126.5 (2 x C-H Ar), 114.0 (2 x C-H Ar), 92.4 (C Ar), 82.8 (C-5), 55.4 (OMe), 53.8 (C-6), 51.3 (C-4), 46.6 (C-3), 36.3 (C-9). **NOESY-2D** (500 MHz, CDCl₃): between 5-H and 3-H, between 5-H and 6-H, between 5-H and 7-H, between 3-H and 6-H. **HRMS** (ES1): calculated for C₃₃H₂₉IO₃Na [M+Na]⁺ requires m/z 623.10536, found m/z 623.10535. **IR** (film) v_{max} : 2980, 2360, 1764, 1461, 1382, 1251 cm⁻¹.

13. HPLC chromatograms.

Chiral high performance liquid chromatography (HPLC) was performed on Agilent 1200 series instruments using 4.6 mm * 250 mmL Chiralpak IC columns.

i) HPLC traces of (\pm) -3af and (+)-3af

Compound (+)-3af was determined to be > 99% ee by chiral HPLC (Chiralpak IC); 90:10 Hexane– *i*-PrOH at 1.0 mL/min; 210 nm.

ii) HPLC traces of (\pm) -3ag and (+)-3ag

Compound (+)-3ag was determined to be > 99% ee by chiral HPLC (Chiralpak IC); 90:10 Hexane-i-PrOH at 1.0 mL/min; 210 nm.

iii) HPLC traces of (\pm) -3ah and (+)-3ah

Compound (+)-3ah was determined to be > 99% ee by chiral HPLC (Chiralpak IC); 90:10 Hexane—*i*-PrOH at 1.0 mL/min; 210 nm.

iv) HPLC traces of (±)-3ai and (+)-3ai

Compound (+)-3ai was determined to be > 99% ee by chiral HPLC (Chiralpak IC); 90:10 Hexane—i-PrOH at 1.0 mL/min; 210 nm.

14. NMR study of compounds 3b, 3aa and (+)-6c

The 1 H NMR spectrum of **3b** presents 2-H as a doublet (J = 7.2 Hz) that has COSY crosspeaks with 3-H, while 6-H_A is a multiplet that has COSY cross-peaks with 3-H, 6-H_B and 7-H. Unfortunately 6-H_B is overlapped with 3-H and 4-H_A appears as a multiplet.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of **3b**, that showed interactions between 2-H and 6-H_A and between 2-H and 7-H, among others, confirming the *trans* relative stereochemistry.

The ¹H NMR spectrum of **3aa** presents 2-H as a doublet (J = 7.5 Hz) that has COSY crosspeaks with 3-H, while 4-H is a doublet of doublet (J = 6.4, 3.4 Hz) that has COSY cross-peaks with 3-H and 5-H. Moreover, 5-H is a quintet (J = 6.3 Hz) that has COSY cross-peaks with 4-H and Me. Finally, 6-H is a doublet (J = 11.4 Hz) that has COSY cross-peaks with 3-H.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of **3aa**, that showed interactions between 2-H and 4-H, between 2-H and 5-H, between 2-H and 6-H, between 4-H and 6-H, among others, confirming the *trans-trans-cis* relative stereochemistry.

The ¹H NMR spectrum of (+)-6c presents 2-H as a doublet (J = 8.7 Hz) that has COSY crosspeaks with 3-H, while 4-H is a triplet of doublet (J = 7.9, 6.3 Hz) that has COSY crosspeaks

with 3-H and 5-H₂. Moreover, 6-H is a multiplet that has COSY crosspeaks with 3-H, 7-H_A, 7-H_B and 10-H₂. Finally, 8-H is a doublet of triplet of doublet (J = 11.5, 9.0, 6.3 Hz) that has COSY crosspeaks with 7-H_A, 7-H_B and 9-H₂.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of (+)-6c, that showed interactions between 2-H and 4-H, between 2-H and 6-H, between 2-H and 7-H_A, between 6-H and 8-H, among others, confirming the relative stereochemistry below.

15. Mechanistic study

a) Evidence for an allyl cation intermediate

For those examples that involve allyl alcohols as alkylating agents, using two different regioisomeric allyl alcohols, **2a** and **2a**′, the same product *trans-3a* was obtained in similar yields, under identical conditions. These results support the formation of a common allyl cationic intermediate.

b) Evidence for concerted mechanism

The possible influence of double bond geometry in homoallyl alcohol 1 was investigated. While the *E* isomer gives the *trans* diastereoisomer as a sole product, the *Z* isomer leads to a major *cis* product (stereochemistry was determined by NOESY-2D). These results point towards an asynchronous concerted mechanism.

c) Proposed mechanism

$$\mathbf{2a} \xrightarrow{\text{Ti}(Oi\text{-Pr})_4} \underbrace{\downarrow \text{HFIP}}_{\text{Ti}(Oi\text{-Pr})_2(OHFIP)_2} \underbrace{\downarrow \text{-PrO} \quad Oi\text{-Pr} \quad Ii \dots IO}_{\text{i-PrO} \quad OCF_3} \underbrace{\downarrow \text{HFIP}}_{\text{HFIP}} \underbrace{\downarrow \text{HFIP}}_{\text{H}} \underbrace{\downarrow \text{HFIP}}_{\text{H}}$$

i) Isolation of stable titanium complex Ti(Oi-Pr)₂(OHFIP)₂

S69

To a microwave vial charged with a stirring bar was added Ti(O*i*-Pr)₄ (100.0 mg, 0.3521 mmol) and HFIP (0.74 mL, 7.0 mmol), the solution was stirred under Ar at 70°C for 2 hours. Then the solvent was removed under reduced pressure to obtain a white foam.

Data for 4 Ti(O*i*-Pr)₂(OHFIP)₂: ¹H NMR (500 MHz, CDCl₃) δ 4.82 (2H, m, 2 x 1-H), 4.64 (2H, m, 2 x 2-H), 1.29 (12H, d, J = 6.1 Hz, 4 x Me). ¹³C NMR (125 MHz, CDCl₃) δ 121.8 (q, J = 284.4 Hz, 4 x CF₃), 82.0 (2 x C-2), 78.9 (2 x C-1), 25.7 (4 x Me). ¹⁹F NMR (471 MHz, CDCl₃) δ -76.15 (12F, s, 4 x CF₃). ¹⁹F (471 MHz, CDCl₃) - ¹H(500 MHz, CDCl₃) HOESY: between CF₃ and Me (irradiate ¹⁹F @ -76.15 ppm). HRMS (EI): m/z (ESI+) 147.0 [100], 295.0 [81], 499.0 [1.2], 500.0 [0.3], 501.0 [0.8], C₁₂H₁₆F₁₂O₄Ti [M]⁺ predicted m/z 500.0331, found m/z 500.0311, Delta = +3.9 ppm.

ii) Evidence of intermediate complex 5

Ph 2a
$$\frac{\text{Me}}{\text{Me}}$$
 $\frac{\text{Me}}{\text{Me}}$ $\frac{\text{Me}}{\text{Me}}$ $\frac{\text{Me}}{\text{Me}}$ $\frac{\text{Me}}{\text{F}_3\text{C}}$ $\frac{\text{Me}}{\text{CF}_3}$ $\frac{\text{Me}}{\text{S}_3\text{C}}$ $\frac{\text{Me}}{\text{S}_$

To a microwave vial charged with a stirring bar was added cinnamyl alcohol *E-2a* (23.5 mg, 0.175 mmol), Ti(O*i*-Pr)₂(OHFIP)₂ **4** (74.6 mg, 0.353 mmol) and CDCl₃ (2.0 mL). The solution was stirred under Ar for 10 min. and then the solution was transferred to an NMR tube for NMR experiments (the present of broad peaks in proton NMR made integration difficult).

Data for 5': ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.40 (5H, m, Ar), 6.60 (1H, d, J = 15.9 Hz, 5-H), 6.37 (1H, dt, J = 14.9, 5.8 Hz, 4-H), 4.38-4.66 (3H, m, 1-H and 3-H₂), 3.95-4.24 (2H, m, 2 x 2-H), 1.22 (12H, d, J = 6.2 Hz, 4 x Me). ¹⁹F NMR (471 MHz, CDCl₃) δ -75.65 (6F, s, 2 x CF₃). NOESY- 2D (500 MHz, CDCl₃): between 3-H₂ and Me, between 2-H and Me.

iii) Evidence of formation of product 3a from complex 5

$$\begin{array}{c} \text{Ti}(\text{O}\textit{i-Pr})_4 \\ \text{HFIP} \\ \text{2a} & \begin{array}{c} \text{O}\textit{i-Pr} \\ \text{HFIP} \end{array} & \begin{array}{c} \text{O}\textit{i-Pr} \\ \text{O}\textit{i-Pr} \\ \text{O} \\ \text{O} \\ \text{F}_3\text{C} & \text{CF}_3 \end{array} & \begin{array}{c} \text{H} \\ \text{HFIP} \end{array} & \begin{array}{c} \text{OH} \\ \text{PMP}, \\ \text{II} \\$$

To a microwave vial charged with a stirring bar was added cinnamyl alcohol E-2a (23.5 mg, 0.175 mmol), Ti(Oi-Pr)₂(OHFIP)₂ 4 (74.6 mg, 0.353 mmol) and CDCl₃ (2.0 mL). The solution was stirred under Ar for 10 min. and then alcohol 1a (31.1 mg, 0.175 mmol) and HFIP (1.75 mL) were added. The reaction was heated overnigh at 70°C. Solvent was then removed by evaporator. Purification using silica gel flash chromatography (gradient elution: $12\% \rightarrow 20\%$ Et₂O - pentane) afforded 3a as a colorless oil (20.6 mg, 40%).

Data for **3a** matched those previously reported.

16. References

- (1) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139 (29), 9819–9822.
- (2) Carreño, M. C.; García-Cerrada, S.; Urbano, A.; Di Vitta, C. J. Org. Chem. 2000, 65 (14), 4355–4363.
- (3) Shibuya, M.; Ito, S.; Takahashi, M.; Iwabuchi, Y. Org. Lett. **2004**, 6 (23), 4303–4306.
- (4) Limnios, D.; Kokotos, C. G. J. Org. Chem. **2014**, 79 (10), 4270–4276.
- (5) Moskalenko, A. I.; Belopukhov, S. L.; Ivlev, A. A.; Boev, V. I. Russian J. Org. Chem. 2011, 47 (7), 1091– 1096.
- (6) Chintalapudi, V.; Galvin, E. A.; Greenaway, R. L.; Anderson, E. A. Chem. comm. 2016, 693–696.
- (7) Lee, J.; Torker, S.; Hoveyda, A. H. Angewandte Chemie Int. Ed. 2017, 56(3), 821–826.
- (8) Nuzzi, A.; Fiasella, A.; Antonio, J.; Pagliuca, C.; Ponzano, S.; Pizzirani, D.; Mandrup, S.; Ottonello, G.; Tarozzo, G.; Reggiani, A. *J. Med. Chem.* **2016**, *111*, 138–159.
- (9) Grigg, R. D.; Van Hoveln, R.; Schomaker, J. M. J. Am. Chem. Soc. 2012, 134 (39), 16131–16134.
- (10) Cho, S. J.; Jensen, N. H.; Kurome, T.; Kadari, S.; Manzano, M. L.; Malberg, J. E.; Caldarone, B.; Roth, B. L.; Kozikowski, A. P. *J. Med. Chem.* **2009**, *52* (7), 1885–1902.
- (11) Poplata, S.; Bach, T. J. Am. Chem. Soc. 2018, 140 (9), 3228–3231.
- (12) Yang, F.; Rauch, K.; Kettelhoit, K.; Ackermann, L. Angewandte Chemie Int. Ed. 2014, 1 (II), 11285–11288.
- (13) Liu, G.; Wurst, J. M.; Tan, D. S. Org. Lett. 2009, 11 (16), 3670–3673.
- (14) Colomer, I.; Coura Barcelos, R.; Donohoe, T. J. Angewandte Chemie Int. Ed. 2016, 55 (15), 4748–4752.
- (15) Karimi, B.; Maleki, J. J. Org. Chem. 2003, 68 (12), 4951–4954.
- (16) Chong, K.-W.; Hong, F.-J.; Thomas, N. F.; Low, Y.-Y.; Kam, T.-S. J. Org. Chem. 2017, 82 (12), 6172–6191.
- (17) Patel, N. R.; Kelly, C. B.; Jouffroy, M.; Molander, G. A. Org. Lett. 2016, 18 (4), 764–767.
- (18) Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. ACS Catal. 2017, 7 (4), 2425–2429.
- (19) Sinisterra, V.; Pregnolato, M. Tetrahedron Letters. 2011, 67, 2670–2675.
- (20) Luan, X.; Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.; Linden, A.; Dorta, R. *J. Am. Chem. Soc.* **2008**, *130* (21), 6848–6858.
- (21) Li, P.; Yi, C.; Qu, J. Biomolecular Chemistry. **2015**, 13(17), 5012–5021.
- (22) Alamillo-Ferrer, C.; Karabourniotis-Sotti, M.; Kennedy, A. R.; Campbell, M.; Tomkinson, N. C. O. *Org. Lett.* **2016**, *18* (13), 3102–3105.
- (23) Chromans, F.; Alder, I. H. Chemistry A European Journal. 2010, 10210, 1445–1448.
- (24) Baldwin, John J.; Claremon, David A.; Tice, Colin M.; Cacatian, Salvacion; Dillard, Lawrence W.; Ishchenko, Alexey V.; Yuan, Jing; Xu, Zhenrong; Mcgeehan, Gerard; Zhao, Wei; Simpson, Robert D.; Singh, Suresh B.; Flaherty, Patrick T. WO 2007117557A2, Oct 18, 2007
- (25) Yong, S.; Chem, G. Chem. Soc. Rev. 2018, 47, 53-68.
- (26) Denmark, S. E.; Wang, Z. Org. Lett. **2001**, *3* (7), 1073–1076.
- (27) Nagarajan, S. R.; Lu, H.; Gasiecki, A. F.; Khanna, I. K.; Parikh, M. D.; Desai, B. N.; Rogers, T. E.; Clare, M.; Chen, B. B.; Russell, M. A. *Bioorg. Med. Chem.* **2007**, *15*, 3390–3412.
- (28) Marie K.; Brands J.; Brewer S. E.; Davies A. J.; Dolling Ulf H.; Hammond D. C.; Lieberman D. R.; Scott J. P. WO2005080309A1, 01 Sep **2005**.
- (29) Tian Y.; Xu X.; Zhang L.; Qu J. Org. Lett., **2016**, 18 (2), pp 268–271.
- (30) Yamauchi Y.; Miyake Y.; Nishibayashi Y. Organometallics 2009, 28, 1, 48-50.