HFIP solvent enables alcohols to act as alkylating agents in stereoselective heterocyclization

Yuxiang Zhu, Ignacio Colomer, Amber L. Thompson and Timothy J. Donohoe*

[^0]
Table of Contents

1. General experimental details S5
2. Synthesis of allyl alcohols. S5
2.1. Synthesis of (\boldsymbol{E})-2b S5
2.2. Synthesis of (Z)-2k S6
2.3. Synthesis of (Z)-2m S6
3. Synthesis of homoallyl alcohols. S7
3.1. Synthesis of S1 S7
3.2. Synthesis of $\mathbf{S 2}$ S7
3.3. Synthesis of (+)-S3 S8
3.4. Synthesis of S4 S9
3.5. Synthesis of (Z)-1e S9
4. General procedure for the synthesis of styrenes S10
4.1. Synthesis of $\mathbf{S 5}$ S10
4.2. Synthesis of S6 S10
4.3. Synthesis of S 7 S11
4.4. Synthesis of S8 S12
4.5. Synthesis of S 9 S12
5. General procedure for the Ru-catalyzed alkene metathesis reaction S13
5.1. Synthesis of S10 S13
5.2. Synthesis of S11 S13
5.3. Synthesis of S12 S14
5.4. Synthesis of S13 S14
5.5. Synthesis of S14 S15
5.6. Synthesis of S15 S15
5.7. Synthesis of S16 S16
5.8. Synthesis of ($\boldsymbol{E})-1 \mathrm{~h}$ S16
5.9. Synthesis of (E)-1i S17
5.10.Synthesis of $(E)-1 \mathrm{j}$ S17
5.11.Synthesis of (E)-11 S18
5.12.Synthesis of (E)-1m S19
5.13.Synthesis of $(E)-1 q$ S19
5.14.Synthesis of (E)-2i S20
5.15.Synthesis of (Z)-21 S20
6. General procedure for acetate deprotection S21
6.1. Synthesis of $(E)-1 \mathrm{a}$ S21
6.2. Synthesis of $(E)-1 b$ S21
6.3. Synthesis of $(E)-1 \mathrm{c}$ S22
6.4. Synthesis of $(E)-1 d$ S22
6.5. Synthesis of (E)-1e S22
6.6. Synthesis of $1 f$ S23
6.7. Synthesis of 1 g S23
6.8. Synthesis of (\boldsymbol{E})-1k S24
6.9. Synthesis of $(E)-1 n$ S24
7. General procedure for the synthesis of \boldsymbol{E}-styrenes with a carboxylic acid moiety S25
7.1. Synthesis of $(E)-10$ S25
7.2. Synthesis of (E)-1p S26
8. Screening of reaction conditions for the cyclisation of 1a to 3a S26
8.1. General procedure for the cyclization using alcohols as alkylating agents S27
8.2. Synthesis of 3a S28
8.3. Synthesis of 3b S28
8.4. Synthesis of 3c S29
8.5. Synthesis of 3d S29
8.6. Synthesis of 3 e S30
8.7. Synthesis of $\mathbf{3 f}$ S31
8.8. Synthesis of 3g S31
8.9. Synthesis of 3h S32
8.10. Synthesis of 3i S33
8.11. Synthesis of 3 j S35
8.12. Synthesis of 3 k S35
8.13. Synthesis of 31 S37
8.14. Synthesis of 3m S37
8.15. Synthesis of 3n S38
8.16. Synthesis of 30 S39
8.17. Synthesis of 3p S39
8.18. Synthesis of 3q S40
8.19. Synthesis of 3r S41
8.20. Synthesis of 3s S41
8.21. Synthesis of 3t S42
8.22. Synthesis of 3u S42
8.23. Synthesis of 3v S43
8.24. Synthesis of 3w S43
8.25. Synthesis of $3 x$ S44
8.26. Synthesis of 3y S45
8.27. Synthesis of $3 z$ S45
8.28. Synthesis of 3aa S46
8.29. Synthesis of 3ab S47
8.30. Synthesis of 3ac S48
8.31. Synthesis of 3ad S49
8.32. Synthesis of 3ae S50
8.33. Synthesis of $(+)$-3af S50
8.34. Synthesis of (+)-3ag S51
8.35. Synthesis of (+)-3ah S52
8.36. Synthesis of (+)-3ai S53
8.37. Synthesis of trans-3aj S54
8.38. Synthesis of cis-3aj S54
9. General procedure for the alkene hydrogenation S55
9.1. Synthesis of 6a S56
9.2. Synthesis of $\mathbf{6 b}$ S56
9.3. Synthesis of (+)-6c S56
10. Synthesis of 7 S57
11. General procedure for the oxidation of an aromatic ring to a carboxylic acid S58
11.1. Synthesis of 8 S58
11.2. Synthesis of 9 S59
12. General procedure for the acylation and alkylation of a lactone S60
12.1. Synthesis of $\mathbf{1 0 a}$ S60
12.2. Synthesis of $\mathbf{1 0 b}$ S60
12.3. Synthesis of 10 c S61
13. HPLC chromatograms S63
14. NMR study of compounds 3 b , 3 aa and (+)-6c S67
15. Mechanistic study S69
16. References S72

1. General experimental details

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz or 500 MHz spectrometer in CDCl_{3} and referenced to residual solvent peaks. Chemical shifts were quoted in ppm (parts per million) to the nearest 0.01 ppm with signal splitting recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint) septet (sept), multiplet (m) and broad singlet (br s). Coupling constants, J, were measured in Hz to the nearest $0.1 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature. All diastereomeric ratio values (d.r.) were based on the crude NMR. The numbering system drawn on the structures and used to assign the NMR peaks is not the same system that was used to generate the chemical name. Infrared spectra were recorded as thin films of neat samples on a Bruker Tensor 27 FT-IR spectrometer equipped with Attenuated Total Reflectance sampling accessories. High resolution mass spectra were given to four decimal places and were recorded on a Bruker MicroTof (resolution $=10000$ FWHM) under conditions of electrospray ionization (ESI), electronic ionization (EI) or chemical ionization (CI). Melting points (m.p.) were obtained from recrystallized samples using a Lecia VMTG heated-stage microscope and were uncorrected. The solvent systems used for recrystallization were quoted in parentheses. Flash column chromatography (FCC) was performed using silica gel ($60 \AA, 0.033-0.070 \mathrm{~mm}, \mathrm{BDH}$) or using basic alumina ($\mathrm{pH} 9.5,58 \AA, 150$ mesh, Sigma-Aldrich). TLC analyses were performed on Merck Kiesegel $60 \mathrm{~F}_{254} 0.25 \mathrm{~mm}$ precoated silica plates or Macherey-Nagel Alugram Alox N/UV 254 0.20 mm precoated alumina plates. Reagents obtained from Sigma-Aldrich, Alfa, Fluorochem and TCI suppliers were used directly as supplied All anhydrous reactions were carried out in flame dried glassware and under an inert atmosphere of argon provided by a balloon. All reactions were stirred with magnetic followers. THF, toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by purification through two activated alumina purification columns. Brine refers to a saturated aqueous solution of NaCl .

2. Synthesis of allyl alcohols.

2.1. (2E)-3-(4-Methoxyphenyl)prop-2-en-1-ol (E-2b)

E-2b
To a stirring solution of 4-methoxycinnamaldehyde (4.800 g , 29.62 mmol) in MeOH (56 mL) under $\mathrm{Ar}, \mathrm{NaBH}_{4}(0.840 \mathrm{~g}, 17.8 \mathrm{mmol})$ is slowly added at $0{ }^{\circ} \mathrm{C}$. After 30 min . the ice bath is removed. The reaction was allowed to stir for 12 hours at r.t. The reaction is quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4} and the solvent was removed
in vacuo. Recrystalization afforded alcohol $\boldsymbol{E}-\mathbf{2 b}$ as a white solid ($4.850 \mathrm{~g}, 98 \%$). Spectroscopic properties matched those previously reported. ${ }^{1}$

Data for $\boldsymbol{E}-\mathbf{2 b}$: $\mathbf{R f}_{\mathbf{f}} 0.5\left(80 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.32(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.56(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 3-\mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{dt}, J=15.8,6.0$ $\mathrm{Hz}, 2-\mathrm{H}), 4.29\left(2 \mathrm{H}, \mathrm{dd}, J=5.9,1.2 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.5$ (C Ar), 131.1 (C-3), 129.6 (C Ar), 127.8 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.4 (C-2), 114.2 ($2 \times \mathrm{CH}$ Ar), $64.07(\mathrm{C}-1), 55.43$ (OMe). HRMS (Cl): calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ requires $m / z 165.0916$, found $m / z 165.0919$.

2.2. (\pm)-(Z)-Cyclopent-2-en-1-ol (Z-2k)

Cerium trichloride ($2.000 \mathrm{~g}, 8.197 \mathrm{mmol}$) was dissolved in 20 mL of methanol. Then cyclopent-2-enone ($1.00 \mathrm{~g}, 12.3 \mathrm{mmol}$) was added. After 5 min . of vigorous stirring, sodium borohydride ($934 \mathrm{mg}, 24.6 \mathrm{mmol}$) was carefully added portionwise and the resulting heterogeneous mixture was stirred for 15 min . at r. t. Water was added dropwise until a clear solution is seen and then the mixture was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were collected, dried over MgSO_{4} and the solvents were removed under vacuum. $\mathrm{FCC}\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right)$ afforded $\mathbf{Z - 2 k}$ as a colorless oil ($0.580 \mathrm{~g}, 85 \%$ yield). Spectroscopic properties matched those previously reported. ${ }^{2}$

Data for $\boldsymbol{Z}-\mathbf{2 k}: \mathbf{R f}_{\mathbf{f}} 0.45$ ($50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 5.93-5.99 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $5.78-5.84(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.82-4.88(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.49(1 \mathrm{H}, \mathrm{ddt}, J=16.6,10.9,5.4 \mathrm{~Hz}$, $\left.4-\mathrm{H}_{\mathrm{A}}\right), 2.17-2.31\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.95(1 \mathrm{H}$, br s, OH$), 1.61-1.76\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 135.2$ (C-3), 133.4 (C-2), 77.6 (C-1), 33.3 (C-5), 31.1 (C-4). HRMS (El): calculated for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+}$requires m / z 83.0491, found $m / z 83.049$.

2.3. (\pm)-(Z)-1-Phenylcyclopent-2-en-1-ol (Z-2m)

To a solution of Cyclopent-2-enone ($0.51 \mathrm{~mL}, 6.1 \mathrm{mmol}$) in THF $(40 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $1.88 \mathrm{M} \mathrm{PhLi}(4.9 \mathrm{~mL}, 9.1 \mathrm{mmol})$. After the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour, $\mathrm{H}_{2} \mathrm{O}$ was added and allowed to warm to r.t. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic extract was washed with brine, dried over MgSO_{4} and the solvents were removed under vacuum. The residue
was purified (FCC: gradient elution: $5 \% \rightarrow 7 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{Z - 2 m}$ as a white solid ($0.584 \mathrm{~g}, 60 \%$). Spectroscopic properties matched those previously reported. ${ }^{3}$

Data for $\boldsymbol{Z}-\mathbf{2 m}: \mathbf{R}_{\mathbf{f}} 0.5$ ($60 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.43-7.47(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.32-7.38(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.23-7.28(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.12(1 \mathrm{H}, \mathrm{dt}, J=5.6,2.4 \mathrm{~Hz}, 3-\mathrm{H}), 5.88(1 \mathrm{H}$, $\mathrm{dt}, J=5.5,2.2 \mathrm{~Hz}, 2-\mathrm{H}), 2.60-2.70\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.43-2.52\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 2.24-2.29(1 \mathrm{H}, \mathrm{m}, 5-$ $\left.\mathrm{H}_{2}\right), 1.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 147.0(\mathrm{C} \mathrm{Ar}), 136.6(\mathrm{C}-2), 134.9(\mathrm{C}-3)$, 128.2 (2 x CH Ar), 126.8 (CH Ar), 124.9 ($2 \times \mathrm{CH}$ Ar), 87.0 (C-1), 42.0 (C-5), 31.5 (C-4).

3. Synthesis of homoallyl alcohols.

3.1. (\pm)-2-Methyl-3-phenyloxirane (S1)

Trans- β-Methylstyrene ($2.000 \mathrm{~g}, 16.95 \mathrm{mmol}$) was placed in a round-bottom flask followed by 2,2,2-trifluoro-1-phenylethanone ($147 \mathrm{mg}, 0.846 \mathrm{mmol}$). tert-Butyl alcohol (25 mL), aqueous buffer solution ($25 \mathrm{~mL}, 0.6 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}, 4 \times 10^{-5} \mathrm{M}$ EDTA tetrasodium salt), acetonitrile (1.9 mL), and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(3.9 \mathrm{~mL}, 34 \mathrm{mmol})$ were added consecutively. The reaction mixture was allowed to stir for 1 h at room temperature. Then the reaction was quenched by addition of sodium thiosulfate solution, and the mixture was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were collected, dried over MgSO_{4} and the solvents were removed under vacuum. FCC ($2 \% \mathrm{Et}_{2} \mathrm{O}$) afforded S1 as a colorless oil ($2.090 \mathrm{~g}, 92 \%$ yield). Spectroscopic properties matched those previously reported. ${ }^{4}$

Data for S1: Rf 0.45 ($50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.22-7.39(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 3.58(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, 1-\mathrm{H}), 3.05(1 \mathrm{H}, \mathrm{qd}, J=5.1,2.1 \mathrm{~Hz}, 2-\mathrm{H}), 1.46(3 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}$, $\mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 137.9$ (C Ar), 128.6 ($2 \mathrm{x} \mathrm{C-H} \mathrm{Ar)}$,128.2 (C-H Ar), 125.7 (2 x C-H Ar), 59.2 (C-1), $59.2(\mathrm{C}-2), 18.1(\mathrm{Me})$. HRMS (Cl): calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{+}$requires m / z 134.0726, found m / z 134.072.

3.2. 4-Allyltetrahydro-2H-pyran-4-ol (S2)

Zinc dust ($3.900 \mathrm{~g}, 61.03 \mathrm{mmol}$) was slowly added under vigorous stirring to a mixture of tetrahydro-4H-pyran-4-one ($3.000 \mathrm{~g}, 30.00 \mathrm{mmol}$) and allyl bromide $(9.000 \mathrm{~g}, 75.00 \mathrm{mmol}$) in 10 mL THF, and 30 mL of a saturated aqueous solution of ammonium chloride in such a way that the temperature did not exceed $40^{\circ} \mathrm{C}$. The mixture was then stirred for 10 hours at room temperature, 100 ml of 10% aqueous sulfuric acid was added and the mixture was filtered. The organic phase was separated, and the aqueous phase was saturated with sodium chloride and extracted with diethyl ether. The extracts were combined with the organic phase and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified (FCC: gradient elution: $15 \% \rightarrow 25 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S} 2$ as a colorless oil ($3.830 \mathrm{~g}, 90 \%$). Spectroscopic properties matched those previously reported. ${ }^{5}$

Data for S2: Rf 0.30 ($60 \% \mathrm{EtOAc}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 5.86(1 \mathrm{H}$, ddt, $J=17.6,10.2,7.5 \mathrm{~Hz}, 2-\mathrm{H}), 5.10-5.22\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 3.68-3.78\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{CH}_{2}\right.$ tetrahydropyranyl), $2.23\left(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 1.69\left(2 \mathrm{H}\right.$, ddd, $J=13.8,10.4,5.8 \mathrm{~Hz}, \mathrm{CH}_{2}$ tetrahydropyranyl), $1.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.42-1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ tetrahydropyranyl). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 132.6$ (C-2), 119.8 (C-1), 68.4 (C-4), 63.9 ($2 \mathrm{x} \mathrm{CH}_{2}$ tetrahydropyranyl), 47.6 (C-3), 37.7 ($2 \mathrm{x} \mathrm{CH}_{2}$ tetrahydropyranyl).

3.3. (+)-(S)-2-Phenylbut-3-en-1-ol [(+)-S3]

$5 \mathrm{~mol} \%[\mathrm{Cu}(\mathrm{COD}) \mathrm{Cl}]_{2}$

To a solution of (R)-phenyloxirane $(1.000 \mathrm{~g}, 8.326 \mathrm{mmol}, 1.0$ equiv. $)$ and $[\mathrm{Cu}(\mathrm{COD}) \mathrm{Cl}]_{2}$ $(0.172 \mathrm{~g}, 0.415 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added vinylmagnesium bromide (10.0 mL , $10.0 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF). The reaction was allowed to warm to r.t. over 8 h , then it was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organics were dried over MgSO_{4} and concentrated. The crude residue was purified (FCC: gradient elution: $15 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield (+)-S3 as a colorless oil ($0.650 \mathrm{~g}, 53 \%$). Spectroscopic properties matched those previously reported. ${ }^{6}$ Racemic $\mathbf{S 3}$ (55% yield) was made via the same procedure without using $[\mathrm{Cu}(\mathrm{COD}) \mathrm{Cl}]_{2}$.

Data for (+)-S3: $\mathbf{R}_{\mathbf{f}} 0.40\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane) $\cdot[\alpha]_{\mathrm{D}}^{25}=+62.1\left(0.01 \mathrm{~g} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 7.20-7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.20-7.27(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.00(1 \mathrm{H}, \mathrm{ddd}, J=17.6,10.4$, $7.7 \mathrm{~Hz}, 3-\mathrm{H}), 5.15-5.23\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.81\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.52(1 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, 2-\mathrm{H})$, $1.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 140.7$ (C Ar), 138.3 (C-3), 128.9 ($2 \mathrm{x} \mathrm{C-H} \mathrm{Ar)}$, 128.1 (2 x C-H Ar), 127.1 (C-H Ar), 117.2 (C-4), 66.2 (C-1), 52.6 (C-2). HRMS (Cl): calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{+}$requires m / z 148.0883, found m / z 148.0882.

3.4. (\pm)- ($2 R, 3 S$)-3-Phenylpent-4-en-2-ol (S4)

A 50 mL round bottom flask was flame dried and charged with a solution of copper (I) iodide ($85.0 \mathrm{mg}, 0.448 \mathrm{mmol}$) in diethyl ether (3.2 mL) and cooled to $-78^{\circ} \mathrm{C}$. The vinyl magnisium bromide solution ($1 \mathrm{M}, 5.8 \mathrm{~mL}, 5.8 \mathrm{mmol}$) was added slowly. The resulting solution was stirred for 30 min . and then epoxide $\mathbf{S 1}(0.600 \mathrm{~g}, 4.48 \mathrm{mmol})$ was added slowly. The solution was stirred overnight and allowed to warm to room temperature. The solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq.) was added. The aqueous layer was extracted three times with diethyl ether, dried over anhydrous MgSO_{4}, filtered, and concentrated. The crude residue was purified (FCC: gradient elution: $10 \% \rightarrow 15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S} \mathbf{4}$ as a yellow oil ($0.325 \mathrm{~g}, 45 \%$). Spectroscopic properties matched those previously reported. ${ }^{7}$

Data for S4: $\mathbf{R f}_{\mathbf{f}} 0.40$ ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $\boldsymbol{\delta} 7.32-7.37$ (2 H , $\mathrm{m}, \mathrm{Ar}), 7.24-7.28$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.04 ($1 \mathrm{H}, \mathrm{ddd}, J=17.5,9.8,8.7 \mathrm{~Hz}, 3-\mathrm{H}$), $5.09-5.18\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$, $4.00-4.10(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.25(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}, 2-\mathrm{H}), 1.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.25(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$, $\mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 141.0(\mathrm{C} \mathrm{Ar}), 138.5$ (C-3), $129.0(2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}), 128.5$ ($2 \times \mathrm{C}-$ H Ar), 127.1 (C-H Ar), 117.0 (C-4), 70.6 (C-1), 59.1 (C-2), 20.8 (Me).

3.5. (3Z)-4-Phenylbut-3-en-1-ol (Z-1e)

To $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NiCl}_{2}$ dry powder ($0.094 \mathrm{~g}, 0.14 \mathrm{mmol}$), 2,3-dihydrofuran $(0.54 \mathrm{~mL}, 7.1 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(8.0 \mathrm{~mL})$ was transferred dropwise via a cannula. The resulting suspension was cooled to 0 ${ }^{\circ} \mathrm{C}$ and $\mathrm{PhMgBr}(2.8 \mathrm{M}, 2.56 \mathrm{~mL}, 7.14 \mathrm{mmol})$ was slowly added dropwise. After stirring for 1 h at 0 ${ }^{\circ} \mathrm{C}$, the mixture was stirred at room temperature for 6 h , and then poured into sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(40 \mathrm{~mL})$. The crude product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness giving a crude residue. Purification using silica gel flash chromatography (cyclohexane/EtOAc, 80:20) afforded the alcohol $\mathbf{Z - 1 e}$ as a colorless oil ($0.750 \mathrm{~g}, 71 \%$). Spectroscopic properties matched those previously reported. ${ }^{8}$

Data for Z-1e: Rf: 0.5 ($100 \% \mathrm{EtOAc}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.28-7.38(4 \mathrm{H}, \mathrm{m}$,

Ar), $7.21-7.27(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.59(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, 4-\mathrm{H}), 5.70(1 \mathrm{H}, \mathrm{dt}, J=11.7,7.4 \mathrm{~Hz}, 3-\mathrm{H})$, $3.75\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.62\left(2 \mathrm{H}, \mathrm{qd}, J=6.6,1.8 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 1.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 137.3$ (C Ar), 131.7 (C-4), 128.8 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.4 (C-3), 128.3 ($2 \times \mathrm{CH}$ $\mathrm{Ar}), 126.9(\mathrm{CH} \mathrm{Ar}), 62.6(\mathrm{C}-1), 32.1(\mathrm{C}-2)$. HRMS (EI): calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{+}$requires m / z 148.0883, found $m / z 148.0888$.

4. General procedure for the synthesis of styrenes

A solution of triphenylphosphonium halide (1.2 eq. or 2.0 eq. or 2.3 eq.) in dry solvent (THF or $\mathrm{Et}_{2} \mathrm{O}$) was placed in a flame-dried round-bottomed flask. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, and the base (1.2 eq. of ${ }^{t} \mathrm{BuOK}$ or 2.0 eq. of ${ }^{t} \mathrm{BuOK}$ or 2.3 eq. of ${ }^{t} \mathrm{BuOK}$ or 4.5 eq. of NaH) was added in one portion. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , the aldehyde (1.0 equiv.) was added. The reaction mixture was gradually warmed to room temperature. After 12 h , the reaction was quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The phases were separated, and the aqueous phase was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to give the corresponding styrene, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

4.1. 2-Bromo-4-methoxy-1-vinylbenzene (S5)

Methyltriphenylphosphonium bromide $(3.800 \mathrm{~g}, 10.64 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(1.200 \mathrm{~g}, 10.71$ mmol), solution of 2-bromo-4-methoxybenzaldehyde ($1.150 \mathrm{~g}, 5.333 \mathrm{mmol}$ in 2.3 mL THF) and THF (4.6 mL) were subjected to the general procedure except the reaction was heated to $50^{\circ} \mathrm{C}$ after the $\mathrm{KO}^{t} \mathrm{Bu}$ was added and before adding the aldehyde (FCC: pentane) to yield $\mathbf{S 5}$ as a colorless oil $(0.720 \mathrm{~g}, 63 \%)$. Spectroscopic properties matched those previously reported. ${ }^{9}$

Data for S5: Rf $0.50\left(5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.48(1 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.09(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{Ar}), 6.99(1 \mathrm{H}, \mathrm{dd}, J=17.4,10.9 \mathrm{~Hz}, 2-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{dd}, J=$ 8.7, $2.5 \mathrm{~Hz}, \mathrm{Ar}), 5.59\left(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{A}}\right), 5.25\left(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, OMe). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.7$ (C Ar), 135.2 (C-2), 130.2 (C Ar), 127.3 (CH Ar), 124.1 (C Ar), 117.6 (CH Ar), 114.7 (C-1), 114.2 (CH Ar), 55.7 (OMe). HRMS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 212.9910$, found $m / z 212.9909$.

4.2. 2,4-Dimethyl-1-vinylbenzene (S6)

Methyltriphenylphosphonium bromide ($6.400 \mathrm{~g}, 17.92 \mathrm{mmol}$), $\mathrm{NaH}(1.613 \mathrm{~g}, 67.20 \mathrm{mmol})$, 3,4-dimethoxybenzaldehyde $(2.000 \mathrm{~g}, 14.91 \mathrm{mmol})$ and THF $(74.5 \mathrm{~mL})$ were subjected to the general procedure (FCC: pentane) to yield $\mathbf{S 6}$ as a colorless oil (2.000 g , 99%). Spectroscopic properties matched those previously reported. ${ }^{10}$

Data for S6: Rf 0.50 (pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}$) $\boldsymbol{\delta} 7.23$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 7.19 ($1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 7.12(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=17.6,10.9 \mathrm{~Hz}, 2-\mathrm{H}), 5.73(1 \mathrm{H}, \mathrm{d}, J=$ $\left.17.6 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{A}}\right), 5.20\left(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{B}}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 136.9$ ($\mathrm{C}-2$), 136.7 (C Ar), 136.4 (C Ar), 135.4 (C Ar), 129.9 (CH Ar), 127.6 (CH Ar), 123.8 (CH Ar), 112.7 (C-1), 19.9 (Me), 19.7 (Me). HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{13}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 133.10118, found m / z 133.10120.

4.3. Methylenecyclohexane (S7)

Methyltriphenylphosphonium bromide ($17.000 \mathrm{~g}, 47.592 \mathrm{mmol}$), ${ }^{\dagger} \mathrm{BuOK}(5.370 \mathrm{~g}, 48.00$ $\mathrm{mmol})$, 4-oxotetrahydropyran $(4.000 \mathrm{~g}, 40.00 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(130 \mathrm{~mL})$ were subjected to the general procedure (FCC: gradient elution: $3 \% \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S} 7$ as a colorless oil $(2.270 \mathrm{~g}, 58 \%)$. Spectroscopic properties matched those previously reported. ${ }^{11}$

Data for S7: Rf 0.40 ($15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 4.71$ ($2 \mathrm{H}, \mathrm{s}, 1-$ $\left.\mathrm{H}_{2}\right), 3.68\left(4 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 2.25\left(4 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right.$ and $\left.6-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 144.7$ (C-2), 108.4 (C-1), 69.5 (C-4 and C-5), 35.7 (C-3 and C-6). HRMS (EI): calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{+}$requires $m / z 98.0726$, found $m / z 98.0729$.

4.4. 2-Vinylphenol (S8)

Methyltriphenylphosphonium bromide $(8.220 \mathrm{~g}, 23.01 \mathrm{mmol})$, ${ }^{\mathrm{t}} \mathrm{BuOK}(2.580 \mathrm{~g}, 23.04$ $\mathrm{mmol})$, salicylaldehyde $(1.220 \mathrm{~g}, 10.00 \mathrm{mmol})$ and THF (53 mL) were subjected to the general procedure except adding the salicylaldehyde at $-78^{\circ} \mathrm{C}$ (FCC : gradient elution: $20 \% \rightarrow 30 \% \mathrm{Et}_{2} \mathrm{O}-$ pentane) to yield $\mathbf{S 8}$ as a colorless liquid ($1.120 \mathrm{~g}, 93 \%$). Spectroscopic properties matched those previously reported. ${ }^{12}$

Data for S8: $\mathbf{R}_{\mathbf{f}} 0.5\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.40(1 \mathrm{H}, \mathrm{dd}, J=$ $7.6,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.15(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7.3,1.6 \mathrm{~Hz}, \mathrm{Ar}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=17.7,11.2 \mathrm{~Hz}, 2-\mathrm{H})$, 6.90-6.95 (1H, m, Ar), $6.80(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, \mathrm{Ar}), 5.75\left(1 \mathrm{H}, \mathrm{dd}, J=17.7,1.4 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{A}}\right)$, $5.37\left(1 \mathrm{H}, \mathrm{dd}, J=11.2,1.4 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{B}}\right), 5.16(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 152.9(\mathrm{C}$ $\mathrm{Ar}), 131.6$ (C-2), 129.0 (C-H Ar), 127.5 (C-H Ar), 124.9 (C Ar), 121.0 (C-H Ar), 116.0 (C-H Ar and C-1). HRMS (Cl) : calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 121.06479, found m / z 121.06465.

4.5. 2-Vinylphenyl acetate (S9)

2-Vinylphenol $\mathbf{S 8}(0.480 \mathrm{~g}, 4.000 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. Triethylamine ($0.808 \mathrm{~g}, 8.000 \mathrm{mmol}$) and 4-dimethylaminopyridine (50.0 mg , 0.409 mmol) were added, followed by addition of acetyl chloride ($0.468 \mathrm{~g}, 6.000 \mathrm{mmol}$). After 30 min , the reaction mixture was warmed up to r.t. and stirred for 2 h . The mixture was quenched with satd aq NaHCO_{3} and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. $\mathrm{FCC}\left(5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane) afforded the acetate $\mathbf{S 9}$ as a colorless oil ($0.357 \mathrm{~g}, 55 \%$). Spectroscopic properties matched those previously reported. ${ }^{13}$

Data for S9: $\mathbf{R}_{\mathbf{f}} 0.4\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.59(1 \mathrm{H}, \mathrm{d}, J=$ $7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.30(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}), 7.24(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.06(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar})$, $6.77(1 \mathrm{H}, \mathrm{dd}, J=17.6,11.1 \mathrm{~Hz}, 2-\mathrm{H}), 5.78\left(1 \mathrm{H}, \mathrm{dd}, J=17.7,1.8 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{A}}\right), 5.36(1 \mathrm{H}, \mathrm{dd}, J=11.0$, $1.8 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{B}}$), $2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta} 169.4$ (C=O), 148.1 (C Ar),
130.4 (C-2), 130.3 (C Ar), 128.8 (CH Ar), 126.6 (CH Ar), 126.3 (CH Ar), 122.7 (CH Ar), 116.5 (C1), 21.0 (Ac Me). HRMS (El): calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires $\mathrm{m} / \mathrm{z} 162.0675$, found m / z 162.0678.

5. General procedure for the Ru-catalyzed alkene metathesis reaction

To a flame-dried flask, charged with $1.5 \mathrm{~mol} \%$ of Ru-catalyst, under Ar, at room temperature, was added $4.0 \mathrm{~mL} / \mathrm{mmol}$ of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (previously degassed, bubbling Ar during 30 min .). A solution of the mixture of alkenes in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL} / \mathrm{mmol})$ was added and the mixture was stirred under reflux. The reaction was monitored by TLC until completion, and the solvent was evaporated under reduced pressure to give the corresponding alkene, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

5.1. (3E)-4-(4-Methoxyphenyl)but-3-en-1-yl acetate (S10)

1-Methoxy-4-vinylbenzene ($5.000 \mathrm{~g}, 37.28 \mathrm{mmol}$), but-3-en-1-yl acetate ($8.510 \mathrm{~g}, 74.58$ $\mathrm{mmol})$ and Grubbs II ($0.470 \mathrm{~g}, 0.554 \mathrm{mmol}$) were subjected to the general procedure (FCC: 5\% $\mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S 1 0}$ as a yellow oil ($4.250 \mathrm{~g}, 52 \%$). Spectroscopic properties matched those previously reported. ${ }^{14}$

Data for S10: $\mathbf{R f}_{\mathbf{f}} 0.30\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.28(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{m}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.41(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{dt}, J=15.8$ and $7.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.17\left(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.52(1 \mathrm{H}, \mathrm{qd}, J=6.9$ and $1.5 \mathrm{~Hz}, 2-$ $\left.\mathrm{H}_{2}\right), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 171.1$ (C=O), 159.0 (C Ar), 131.8 (C-4), 130.1 (C Ar), 127.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 123.3 (C-3), 114.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 63.9 (C-1), 55.3 (OMe), 32.4 (C2), 21.0 (Ac Me). HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 243.0991$, found $\mathrm{m} / z 243.0994$.

5.2. (3E)-4-(2-Bromo-4-methoxyphenyl)but-3-en-1-yl acetate (S11)

Styrene $\mathbf{S 5}$ ($0.648 \mathrm{~g}, 3.04 \mathrm{mmol}$), but-3-en-1-yl acetate ($0.693 \mathrm{~g}, 6.08 \mathrm{mmol}$) and Grubbs II ($39.0 \mathrm{mg}, 0.0460 \mathrm{mmol}$) were subjected to the general procedure except conducting the reaction in toluene at $100^{\circ} \mathrm{C}$ ($\mathrm{FCC}: 5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S 1 1}$ as a colorless oil ($0.471 \mathrm{~g}, 52 \%$).

Data for S11: $\mathbf{R}_{\mathbf{f}} 0.3\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.40(1 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.07(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{Ar}), 6.82(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, \mathrm{Ar}), 6.72(1 \mathrm{H}, \mathrm{d}, J=15.8$ $\mathrm{Hz}, 4-\mathrm{H}), 5.99(1 \mathrm{H}, \mathrm{dt}, J=15.7,7.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.19\left(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $2.56\left(2 \mathrm{H}, \mathrm{qd}, J=6.8,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 171.2$ (C=O), 159.2 (C Ar), 130.7 (C-4), 129.7 (C Ar), 127.4 (C-H Ar), 126.7 (C-3), 123.5 (C Ar), 117.5 (C-H Ar), 114.2 (C-H Ar), 63.6 (C-1), 55.6 (OMe), 32.4 (C-2), 21.0 (Ac Me). HRMS (Cl): calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 321.00968$, found $\mathrm{m} / \mathrm{z} 321.00946$. IR (film) $v_{\text {max }}: 2980,2360,1734,1600,1232,1026 \mathrm{~cm}^{-1}$.

5.3. (3E)-4-(3,4-Dimethylphenyl)but-3-en-1-yl acetate (S12)

Styrene S6 ($0.513 \mathrm{~g}, 3.89 \mathrm{mmol}$), but-3-en-1-yl acetate ($0.885 \mathrm{~g}, 7.77 \mathrm{mmol}$) and Grubbs II $(49.0 \mathrm{mg}, 0.0578 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction in toluene at $100^{\circ} \mathrm{C}$ ($\mathrm{FCC}: 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S 1 2}$ as a colorless oil ($0.351 \mathrm{~g}, 38 \%$).

Data for S12: $\mathbf{R f}_{\mathbf{f}} 0.3$ ($20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.15(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar})$, 7.12-7.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.43(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{dt}, J=16.0,7.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.19$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.54\left(2 \mathrm{H}, \mathrm{qd}, J=6.9,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \mathrm{Me}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta} 171.2$ ($\mathrm{C}=\mathrm{O}$), 136.7 (C Ar), 135.8 (C Ar), 135.0 (C Ar), 132.4 (C-4), 129.9 (C-H Ar), 127.4 (C-H Ar), 124.4 (C-3), 123.6 (C-H Ar), 63.9 (C1), 32.5 (C-2), 21.1 (Ac Me), 19.9 (Me), 19.6 (Me). HRMS: stable ion was not found in ESI, EI and CI. IR (film) $v_{\text {max }}: 3656,2980,1736,1232,1033,965 \mathrm{~cm}^{-1}$.

5.4. (3E)-4-(2-Bromophenyl)but-3-en-1-yl acetate (S13)

77\%

S13

2-Bromostyrene ($1.370 \mathrm{~g}, 7.527 \mathrm{mmol}$), but-3-en-1-yl acetate ($0.855 \mathrm{~g}, 7.49 \mathrm{mmol}$) and Grubbs II ($48.0 \mathrm{mg}, 0.0566 \mathrm{mmol}$) were subjected to the general procedure (FCC: gradient elution: $4 \% \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S 1 3}$ as a colorless oil ($1.550 \mathrm{~g}, 77 \%$).

Data for S13: $\mathbf{R f}_{\mathbf{f}} 0.40\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.53(1 \mathrm{H}, \mathrm{dd}, J$ $=8.0,1.3 \mathrm{~Hz}, \mathrm{Ar}), 7.48(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.22-7.28(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.05-7.12(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $6.80(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.22\left(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right)$, $2.59\left(2 \mathrm{H}, \mathrm{qd}, J=6.7,1.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 171.2$ ($\mathrm{C}=\mathrm{O}$), 137.3 (C Ar), 133.0 (CH Ar), 131.5 (C-4), 128.9 (C-3), 128.7 (CH Ar), 127.6 (CH Ar), 127.1 (CH Ar), 123.4 (C Ar), 63.6 (C-1), 32.6 (C-2), 21.1 (Ac Me). HRMS: stable ion was not found in ESI, EI and CI. IR (film) $v_{\text {max }}: 2963,1735,1472,1233,1041,753 \mathrm{~cm}^{-1}$.

5.5. (3E)-4-Phenylbut-3-en-1-yl acetate (S14)

Styrene ($0.456 \mathrm{~g}, 4.38 \mathrm{mmol}$), but-3-en-1-yl acetate $(1.000 \mathrm{~g}, 8.764 \mathrm{mmol})$ and Grubbs II $(56.0 \mathrm{mg}, 0.0660 \mathrm{mmol}$) were subjected to the general procedure (FCC: gradient elution: $5 \% \rightarrow 8 \%$ $\mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S 1 4}$ as a white solid ($0.494 \mathrm{~g}, 59 \%$). Spectroscopic properties matched those previously reported. ${ }^{15}$

Data for S14: Rf 0.50 ($20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta} 7.28-7.38(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.19-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.48(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{dt}, J=15.9,7.0 \mathrm{~Hz}, 3-\mathrm{H})$, $4.20\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{qd}, J=6.8,1.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 171.1(\mathrm{C}=\mathrm{O})$, 137.3 (C Ar), 132.4 ($\mathrm{C}-4$), 128.6 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.3 (CH Ar), 126.1 ($2 \times \mathrm{CH}$ Ar), 125.6 (C-3), 63.8 (C-1), 32.4 (C-2), 21.0 (Ac Me). HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 213.0886$, found $m / z 213.0888$

5.6. (1E)-2-(4-Methoxystyryl)phenyl acetate (S15)

1-Methoxy-4-vinylbenzene ($0.590 \mathrm{~g}, 4.40 \mathrm{mmol}$), acetate $\mathbf{S} 9(0.357 \mathrm{~g}, 2.20 \mathrm{mmol})$ and Grubbs II $(28.0 \mathrm{mg}, 0.0330 \mathrm{mmol})$ were subjected to the general procedure except conducting the
reaction in toluene at $100^{\circ} \mathrm{C}$ (FCC : gradient elution: $10 \% \rightarrow 12 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S 1 5}$ as a white solid ($0.365 \mathrm{~g}, 62 \%$). Spectroscopic properties matched those previously reported. ${ }^{16}$

Data for S15: R 0.40 ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}_{3}$) $\boldsymbol{\delta} 7.64-7.69(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.43(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.21-7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.03-7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ and $2-\mathrm{H}), 6.98$ $(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}, 1-\mathrm{H}), 6.90(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 169.5$ ($\mathrm{C}=\mathrm{O}$), 159.7 (C Ar), 148.1 (C Ar), 130.7 (C-2), 130.4 (C Ar), 130.1 (C Ar), 128.1 (CH Ar), 128.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.5 (CH Ar), 126.4 (CH Ar), 122.8 (CH Ar), 119.8 (C-1), 114.3 ($2 \times \mathrm{CH}$ Ar), 55.5 (OMe), 21.1 (Ac Me). HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 291.09917, found m / z 291.09909.

5.7. (4E)-5-(4-Methoxyphenyl)pent-4-en-1-yl acetate (S16)

1-Methoxy-4-vinylbenzene ($0.499 \mathrm{~g}, 3.72 \mathrm{mmol}$), pent-4-en-1-yl acetate $(0.952 \mathrm{mg}, 7.44$ $\mathrm{mmol})$ and Grubbs II $(47.0 \mathrm{mg}, 0.0554 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction in toluene at $100^{\circ} \mathrm{C}$ (FCC : gradient elution: $8 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{S 1 6}$ as a colorless oil ($0.302 \mathrm{~g}, 35 \%$). Spectroscopic properties matched those previously reported. ${ }^{17}$

Data for S16: $\mathbf{R f}_{\mathbf{f}} 0.40\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.27(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.35(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 5-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{dt}, J=15.8,6.9$ $\mathrm{Hz}, 4-\mathrm{H}), 4.11\left(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.26\left(2 \mathrm{H}, \mathrm{qd}, J=7.0,1.5 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right)$, $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \mathrm{Me}), 1.80\left(2 \mathrm{H}, \mathrm{tt}, J=7.6,6.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 171.6$ (C=O), 159.2 (C Ar), 130.8 (C Ar), 130.4 (C-5), 127.54 (C-4), 127.48 ($2 \times \mathrm{CH}$ Ar), 114.3 ($2 \times \mathrm{CH}$ Ar), 64.4 (C-1), 55.7 (OMe), 29.8 (C-3), 29.7 (C-2), 21.5 (Ac Me). HRMS (Cl): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 235.13287, found m / z 235.13284.

5.8. (3E)-1-[3-(4-Methoxyphenyl)allyl]cyclohexan-1-ol (E-1h)

1-Methoxy-4-vinylbenzene $(1.900 \mathrm{~g}, 14.17 \mathrm{mmol})$, 1-allylcyclohexanol $(1.000 \mathrm{~g}, 7.138$ $\mathrm{mmol})$ and Grubbs II ($90.0 \mathrm{mg}, 0.106 \mathrm{mmol}$) were subjected to the general procedure except
conducting the reaction in toluene at $100^{\circ} \mathrm{C}$ (FCC : gradient elution: $12 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield \boldsymbol{E}-1h as a yellow oil $(0.964 \mathrm{~g}, 55 \%)$.

Data for $\boldsymbol{E}-\mathbf{1 h}: \mathbf{R}_{\mathbf{f}} 0.3\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.30(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.40(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.15(1 \mathrm{H}, \mathrm{dt}, J=15.5,7.6$ $\mathrm{Hz}, 3-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.34\left(2 \mathrm{H}, \mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 1.42-1.67\left(9 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}, 6-\mathrm{H}_{2}, 8-\right.$ $\mathrm{H}_{2}, 9-\mathrm{H}_{2}$ and $\left.7-\mathrm{H}_{\mathrm{A}}\right), 1.22-1.36\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 158.5(\mathrm{C} \mathrm{Ar}), 133.2$ (C-4), 130.3 (C Ar), 127.4 ($2 \times \mathrm{CH} \mathrm{Ar}$), 123.1 ($\mathrm{C}-3$), 114.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 71.7 (C-1), 55.4 (OMe), 46.0 (C-2), 37.6 ($2 \mathrm{x} \mathrm{CH}_{2}$ cyclohexenyl), $25.9\left(\mathrm{CH}_{2}\right.$ cyclohexenyl), 22.3 ($2 \mathrm{x} \mathrm{CH}_{2}$ cyclohexenyl). HRMS (Cl): calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 269.15120$, found m / z 269.15106. IR (film) $v_{\text {max }}: 3426,2928,1608,1509,1244,967 \mathrm{~cm}^{-1}$

5.9. (3E)-1-[3-(4-Methoxyphenyl)allyl]tetrahydro-2H-pyran-1-ol (E-1i)

1-Methoxy-4-vinylbenzene ($0.734 \mathrm{~g}, 5.48 \mathrm{mmol}$), alcohol $\mathbf{S} 2(0.389 \mathrm{~g}, 2.73 \mathrm{mmol})$ and Grubbs II ($35.0 \mathrm{mg}, 0.0413 \mathrm{mmol}$) were subjected to the general procedure (FCC: gradient elution: $15 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield \boldsymbol{E}-1i as a yellow oil ($0.365 \mathrm{~g}, 53 \%$).

Data for $\boldsymbol{E}-\mathbf{1 i}: \mathbf{R f}_{\mathbf{f}} 0.30$ ($80 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.44(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{dt}, J=15.5$, $7.6 \mathrm{~Hz}, 3-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74-3.80\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 2.37(2 \mathrm{H}, \mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}$, $\left.2-\mathrm{H}_{2}\right), 1.70-1.81$ and $1.50-1.56\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right.$ and $\left.\left.9-\mathrm{H}_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.3(\mathrm{C}$ Ar), 134.3 (C-4), $130.0(\mathrm{C} \mathrm{Ar}), 127.5$ ($2 \times \mathrm{CH}$ Ar), 131.6 (C-3), 114.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), $69.0(\mathrm{C}-1), 64.0$ (C-6 and C-8), 55.5 (OMe), 46.8 (C-2), 37.8 (C-5 and C-9). HRMS (El): calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$ $[\mathrm{M}]^{+}$requires m / z 248.1407, found m / z 248.1408. IR (film) $v_{\max }: 3408,2950,1606,1509,1244$, $1096 \mathrm{~cm}^{-1}$.
5.10. (3E)-4-(4-Methoxyphenyl)-1,1-dimethylbut-3-en-1-ol (E-1j)

1-Methoxy-4-vinylbenzene ($0.937 \mathrm{~g}, 6.99 \mathrm{mmol}$), 2-methylpent-4-en-2-ol ($0.350 \mathrm{~g}, 3.50$ $\mathrm{mmol})$ and Grubbs II $(45.0 \mathrm{mg}, 0.0531 \mathrm{mmol})$ were subjected to the general procedure except
conducting the reaction in toluene at $100^{\circ} \mathrm{C}$ (FCC : gradient elution: $20 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\boldsymbol{E}-\mathbf{1 j}$ as a yellow oil ($0.376 \mathrm{~g}, 52 \%$).

Data for $\boldsymbol{E}-\mathbf{1 j}$: $\mathbf{R f}_{\mathbf{f}} 0.40$ ($80 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.3 \mathrm{~Hz}, \mathrm{Ar}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}), 6.41(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.41(1 \mathrm{H}, \mathrm{dt}, J=15.8$, $7.6 \mathrm{~Hz}, 3-\mathrm{H}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.36\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 1.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.27(6 \mathrm{H}, \mathrm{s}, 2$ x Me). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.1$ (C Ar), 133.3 (C-4), 130.3 (C Ar), 127.4 ($2 \mathrm{x} \mathrm{CH} \mathrm{Ar)}$, 123.5 (C-3), 114.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), $71.0(\mathrm{C}-1), 55.5$ (OMe), 47.5 (C-2), 29.4 ($2 \times \mathrm{Me}$) . HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires m / z 206.1301, found m / z 206.1306. IR (film) $v_{\max }: 3385$, 2970, 1576, 1244, 1174, $1033 \mathrm{~cm}^{-1}$.

5.11. (\pm)-(2S,3S,3E)-5-(4-Methoxyphenyl)-3-phenylpent-4-en-2-ol (E-11)

S4

1. 1.2 eq. $\mathrm{Ph}_{3} \mathrm{P}, 1.2$ eq. DIAD
1.2 eq. 4-nitrobenzoic acid
2. $10 \mathrm{~mol} \%$ Grubbs II 2 eq. 4-vinylanisole
3. 5.0 eq. $\mathrm{K}_{2} \mathrm{CO}_{3}$
$\mathrm{MeOH}, 0^{\circ} \mathrm{C}$
13\%
13\%

$E-1 I$

To a mixture of alcohol $\mathbf{S 4}(0.060 \mathrm{~g}, 0.37 \mathrm{mmol}), \mathrm{PPh}_{3}(0.116 \mathrm{~g}, 0.443 \mathrm{mmol})$ and paranitrobenzoic acid $(0.072 \mathrm{~g}, 0.44 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added dropwise DIAD (0.09 $\mathrm{mL}, 0.44 \mathrm{mmol}$) over a period of 30 min . The mixture was then stirred for 1 h while allowing to warm to $0{ }^{\circ} \mathrm{C}$ and then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with an aqueous solution of NaHCO_{3}. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated. The crude was flushed through a layer of slica gel with $10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane, then the filtrate was concentrated and added to flame-dried flask, charged with 4-vinylanisole ($0.013 \mathrm{~g}, 0.097 \mathrm{mmol}$), Grubbs II ($4.1 \mathrm{mg}, 0.0048 \mathrm{mmol}$) and degassed toluene $(0.24 \mathrm{~mL})$. The solution was heat at $100{ }^{\circ} \mathrm{C}$ for 24 hours. Then the solvent was evaporated and the crude was added to a flask charged with $\mathrm{K}_{2} \mathrm{CO}_{3}(23.0 \mathrm{mg}, 0.162 \mathrm{mmol})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was sitrred for 2 hours, then concentrated in reduced pressure to give the crude residue which was purified (FCC: gradient elution: $13 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\boldsymbol{E}-\mathbf{- 1 I}$ as a yellow oil ($12.9 \mathrm{mg}, 13 \%$).

Data for $\boldsymbol{E}-\mathbf{1 1}: \mathbf{R}_{\mathbf{f}} 0.50\left(70 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.28-7.35(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.20-7.27(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.50(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.32$ $(1 \mathrm{H}, \mathrm{dd}, J=15.8,9.2 \mathrm{~Hz}, 3-\mathrm{H}), 4.04(1 \mathrm{H}$, quint, $J=6.7 \mathrm{~Hz}, 1-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.29(1 \mathrm{H}, \mathrm{t}, J$ $=8.4 \mathrm{~Hz}, 2-\mathrm{H}), 1.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.10(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{Me}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 159.3 (C Ar), 132.1 (C Ar), 132.7 (C-4), 129.8 (C Ar), 128.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.63 (2 x C-H Ar), 127.57 (C-3), 126.9 (C-H Ar), 114.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 70.8 (C-1), 58.5 (C-2),
55.5 (OMe), 20.9 (Me). HRMS (EI): calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires m / z 268.1458, found m / z 268.1466. IR (film) $v_{\max }: 3657,2980,1387,1249,1151,1026 \mathrm{~cm}^{-1}$.

5.12. (\pm)-(2R,3S,3E)-5-(4-Methoxyphenyl)-3-phenylpent-4-en-2-ol (E-1m)

1-Methoxy-4-vinylbenzene ($0.358 \mathrm{~g}, 2.67 \mathrm{mmol})$, alcohol $\mathbf{S 4}(0.217 \mathrm{~g}, 1.34 \mathrm{mmol})$ and Grubbs II ($17.0 \mathrm{mg}, 0.0200 \mathrm{mmol}$) were subjected to the general procedure except conducting the reaction in toluene at $100^{\circ} \mathrm{C}$ (FCC : gradient elution: $13 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\boldsymbol{E} \mathbf{- 1 m}$ as a yellow oil ($0.149 \mathrm{~g}, 40 \%$).

Data for $\boldsymbol{E}-1 \mathbf{m}$: Rf 0.40 ($60 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 7.23-7.40 (7H, m, Ar), $6.83(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.43(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{dd}, J=15.8,8.8$ $\mathrm{Hz}, 3-\mathrm{H}), 4.08-4.18(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}, 2-\mathrm{H}), 1.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 1.29(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{Me}){ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.2(\mathrm{C} \mathrm{Ar}), 141.4$ (C Ar), 131.5 (C-4), 130.1 (C Ar), 129.0 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.9 (C-3), 127.5 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 127.1 (C-H Ar), 114.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 71.0 (C-1), 58.4 (C-2), 55.4 (OMe), 21.0 (Me). HRMS (EI): calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ [M]+ requires $m / z 268.1458$, found m / z 268.1466. IR (film) $v_{\text {max }}$: $3657,2980,1387,1249,1151,1026 \mathrm{~cm}^{-1}$.

5.13. (+)-(2S,3E)-4-(4-Methoxyphenyl)-2-phenylbut-3-en-1-ol [(+)-(E)-1q]

1-Methoxy-4-vinylbenzene ($0.708 \mathrm{~g}, 5.28 \mathrm{mmol}$), alcohol (+)-S3 ($0.391 \mathrm{~g}, 2.64 \mathrm{mmol}$) and Grubbs II ($33.6 \mathrm{mg}, 0.0396 \mathrm{mmol}$) were subjected to the general procedure except conducting the reaction in toluene at $100^{\circ} \mathrm{C}$ (FCC: gradient elution: $15 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $(+)-(\boldsymbol{E})-$ $1 \mathbf{q}$ as a yellow solid $(0.256 \mathrm{~g}, 38 \%)$. Spectroscopic properties matched those previously reported. ${ }^{18}$

Data for $(+)-(\boldsymbol{E}) \mathbf{- 1 q}: \mathbf{R}_{\mathbf{f}} 0.40\left(60 \% \mathrm{Et}_{2} \mathrm{O}-\right.$ pentane $) .[\alpha]_{\mathrm{D}}^{25}=+61.2\left(0.01 \mathrm{~g} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta} 7.23-7.40(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.48(1 \mathrm{H}, \mathrm{d}, J=$ $15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.23(1 \mathrm{H}, \mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 3-\mathrm{H}), 3.87-3.93\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.68(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 2-\mathrm{H}), 1.53(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.3(\mathrm{C} \mathrm{Ar})$, 141.2 (C Ar), 131.8 (C-4), 129.9 (C Ar), 129.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.6 ($2 \times \mathrm{CH} \mathrm{Ar}$),
127.5 (C-3), 127.1 (CH Ar), 114.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 66.6 ($\mathrm{C}-1$), 55.4 (OMe), 52.0 (C-2). HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires $m / z 254.1301$, found $m / z 254.1295$.

Racemic (\boldsymbol{E})-1q (38\% yield) was made via the same procedure using racemic alcohol $\mathbf{S 3}$.

5.14. (\pm)- ($3 E$)-4-Phenylbut-3-en-2-ol ($E-2 \mathrm{i}$)

Styrene ($1.000 \mathrm{~g}, 9.606 \mathrm{mmol}$), but-3-en-2-ol ($1.380 \mathrm{~g}, 19.14 \mathrm{mmol}$) and Grubbs II (122.0 $\mathrm{mg}, 0.1438 \mathrm{mmol}$) were subjected to the general procedure ($\mathrm{FCC}: 30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield \boldsymbol{E} $\mathbf{2 i}$ as a yellow oil $(0.712 \mathrm{~g}, 50 \%)$. Spectroscopic properties matched those previously reported. ${ }^{19}$

Data for $\boldsymbol{E}-\mathbf{2 i}: \mathbf{R f}_{\mathbf{f}} 0.30$ ($80 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.36-7.41(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.29-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.21-7.27(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.57(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{dd}$, $J=15.9,6.4 \mathrm{~Hz}, 3-\mathrm{H}), 4.44-4.55(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.38(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{Me})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 136.8$ (C Ar), 133.7 (C-3), 129.5 (C-4), 128.7 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.8 (C-H Ar), 126.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 69.1 (C-2), 23.5 (Me).

5.15. (\pm)-1-Methylcyclopent-2-en-1-ol (Z-2l)

Linalool ($0.500 \mathrm{~g}, 3.23 \mathrm{mmol}$) and Grubbs I $(0.133 \mathrm{~g}, 0.161 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction at r.t. in CHCl_{3} (FCC: gradient elution: $20 \% \rightarrow$ $50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{Z}-\mathbf{2 l}$ as a yellow oil ($0.250 \mathrm{~g}, 79 \%$). Spectroscopic properties matched those previously reported. ${ }^{20}$

Data for Z-2I: $\mathbf{R}_{\mathbf{f}} 0.40$ ($80 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 5.81$ ($1 \mathrm{H}, \mathrm{dt}, \boldsymbol{J}$ $=5.4,2.3 \mathrm{~Hz}, 3-\mathrm{H}), 5.69(1 \mathrm{H}, \mathrm{dt}, J=5.4,2.3 \mathrm{~Hz}, 2-\mathrm{H}), 2.48\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.30\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right)$, $1.96\left(1 \mathrm{H}, \mathrm{ddd}, J=13.4,8.1,4.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.89\left(1 \mathrm{H}, \mathrm{ddd}, J=13.4,8.1,4.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.37(3 \mathrm{H}, \mathrm{s}$, Me). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 138.0$ (C-2), 132.8 (C-3), 83.6 (C-1), 39.8 (C-5), 31.2 (C-4), 27.6 (Me).

6. General procedure for acetate deprotection

To a solution of acetate in $\mathrm{MeOH}(10.0 \mathrm{~mL} / \mathrm{mmol})$, 5.0 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added in one portion at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC until completion. The mixture was filtered and the solvent was evaporated under reduced pressure to give the corresponding alcohol, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

6.1. (3E)-4-(4-Methoxyphenyl)but-3-en-1-ol (E-1a)

Acetate $\mathbf{S 1 0}(3.510 \mathrm{~g}, 15.95 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.580 \mathrm{~g}, 47.68 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $50 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield \boldsymbol{E}-1a as a white solid ($2.230 \mathrm{~g}, 79 \%$). Spectroscopic properties matched those previously reported. ${ }^{21}$

Data for \boldsymbol{E}-1a: $\mathbf{R f}_{\mathbf{f}} 0.33$ ($75 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.30(2 \mathrm{H}, \mathrm{d}, J$ $=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.45(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{dt}, J=15.8$, $7.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.43-2.50\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.47(1 \mathrm{H}$, br s, OH). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.0$ (C Ar), 132.3 (C-4), 130.1 (C Ar), 127.2 (2 x CH $\mathrm{Ar})$, 124.0 (C-3), 114.0 ($2 \times \mathrm{CH}$ Ar), 62.1 (C-1), 55.3 (OMe), 36.4 (C-2). HRMS (Cl): calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 179.1072, found m / z 179.1067.

6.2. (3E)-4-(2-Bromo-4-methoxyphenyl)but-3-en-1-ol (E-1b)

Acetate $\mathbf{S 1 1}(0.396 \mathrm{~g}, 1.32 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.913 \mathrm{~g}, 6.62 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $30 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\boldsymbol{E} \mathbf{- 1 b}$ as a yellow oil ($0.296 \mathrm{~g}, 87 \%$).

Data for $\boldsymbol{E}-\mathbf{1 b}: \mathbf{R}_{\mathbf{f}} 0.30\left(80 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.07(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{Ar}), 6.82(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, \mathrm{Ar}), 6.75(1 \mathrm{H}, \mathrm{d}, J=15.8$ $\mathrm{Hz}, 4-\mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{dt}, J=16.0,7.1 \mathrm{~Hz}, 3-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right)$, $2.51\left(2 \mathrm{H}, \mathrm{dq}, J=6.3,1.3 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 1.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.3(\mathrm{C}$ Ar), 131.1 (C-4), 129.8 (C Ar), 127.6 (C-3), 127.5 (CH Ar), 123.6 (C Ar), 117.6 (CH Ar), 114.3 (CH Ar), $62.1(\mathrm{C}-1), 55.7(\mathrm{OMe}), 36.5(\mathrm{C}-2)$. HRMS (Cl): calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ requires $m / z 257.01717$, found $m / z 257.01703$. IR (film) $v_{\text {max }}: 3341,2980,1599,1487,1281,1025$ cm^{-1}.

6.3. (3E)-4-(3,4-Dimethylphenyl)but-3-en-1-ol (E-1c)

Acetate $\mathbf{S 1 2}(0.351 \mathrm{~g}, 1.50 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.039 \mathrm{~g}, 7.529 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $40 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield \boldsymbol{E}-1c as a yellow oil ($0.251 \mathrm{~g}, 83 \%$).

Data for $\boldsymbol{E}-\mathbf{1 c}$: $\mathbf{R f}^{0.45\left(80 \% \mathrm{Et}_{2} \mathrm{O} \text { - pentane). }{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}, ~\right.}$ $=1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.03-7.12(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.45(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.14(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.2 \mathrm{~Hz}$, $3-\mathrm{H}), 3.74\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.47\left(2 \mathrm{H}, \mathrm{qd}, J=6.3,1.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.24$ (3H, s, Me). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta} 136.7$ (C Ar), 135.9 (C Ar), 135.0 (C Ar), 132.9 (C-4), 129.9 (CH Ar), 127.5 (CH Ar), 126.1 (C-3), 123.7 (CH Ar), 62.2 (C-1), 36.6 (C-2), 19.9 (Me), 19.6 (Me). HRMS (EI): calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}$requires m / z 176.1196, found m / z 176.1194. IR (film) $v_{\max }: 3335,2980,1382,1154,1045,965 \mathrm{~cm}^{-1}$.

6.4. ($3 E$)-4-(2-Bromophenyl)but-3-en-1-ol (E-1d)

S13
87\%

Acetate $\mathbf{S 1 3}(1.550 \mathrm{~g}, 5.784 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.000 \mathrm{~g}, 28.99 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $20 \% \rightarrow 30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield \boldsymbol{E}-1d as a colorless oil ($1.138 \mathrm{~g}, 87 \%$). Spectroscopic properties matched those previously reported. ${ }^{22}$

Data for $\boldsymbol{E}-\mathbf{1 d}: \mathbf{R}_{\mathbf{f}} 0.4$ ($80 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.53(1 \mathrm{H}, \mathrm{dd}, \boldsymbol{J}$ $=8.0,1.3 \mathrm{~Hz}, \mathrm{Ar}), 7.50(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.22-7.28(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.05-7.10(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $6.83(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.1 \mathrm{~Hz}, 3-\mathrm{H}), 3.79\left(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right)$, $2.53\left(1 \mathrm{H}, \mathrm{dtd}, J=7.7,6.3,1.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 1.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 137.3 (C Ar), $133.0(\mathrm{CH} \mathrm{Ar}), 131.7$ (C-4), 129.8 (C-3), 128.7 (CH Ar), $127.6(\mathrm{CH} \mathrm{Ar}), 127.1(\mathrm{CH}$ Ar), 123.4 (C Ar), 62.1 (C-1), 36.6 (C-2). HRMS (CI): calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{OBr}[\mathrm{M}-\mathrm{H}]^{+}$requires $m / z 224.99113$, found $m / z 224.99095$.

6.5. (3E)-4-Phenylbut-3-en-1-ol (E-1e)

Acetate $\mathbf{S 1 4}(0.541 \mathrm{~g}, 2.85 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.970 \mathrm{~g}, 14.28 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $40 \% \rightarrow 60 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield \boldsymbol{E}-1e as a colorless oil ($0.369 \mathrm{~g}, 87 \%$). Spectroscopic properties matched those previously reported. ${ }^{23}$

Data for $\boldsymbol{E}-\mathbf{1 e}$: $\mathbf{R}_{\mathbf{f}} 0.4\left(75 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{~ 7 . 2 8 - 7 . 3 9 (4 H ,}$ $\mathrm{m}, \mathrm{Ar}), 7.19-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.51(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.21(1 \mathrm{H}, \mathrm{dt}, J=15.9,7.1 \mathrm{~Hz}, 3-\mathrm{H})$, 3.73-3.81 $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 2.47-2.53\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 137.2$ (C Ar), 132.9 (C-4), 128.6 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.3 (CH Ar), 126.3 (C-3), 126.1 ($2 \times \mathrm{CH}$ Ar), 62.0 ($\mathrm{C}-1$), 36.4 (C-2). HRMS (CI): calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ON}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires m / z 166.1232, found $m / z 166.1227$.
6.6. 3-Cyclopentylidenepropan-1-ol (1f)

To a solution of but-3-en-1-yl acetate ($0.246 \mathrm{~g}, 2.19 \mathrm{mmol}$) in methylenecyclopentane $(0.898 \mathrm{~g}, 11.0 \mathrm{mmol})$ at r.t. was added Grubbs II $(26.0 \mathrm{mg}, 0.0307 \mathrm{mmol})$. The mixture was stirred for 72 hours and concentrated in vacuo. To the crude was then added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.600 \mathrm{~g}, 11.59 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC until completion. The mixture was filtered and the solvent was evaporated under reduced pressure, that was purified (FCC: gradient elution: $20 \% \rightarrow 30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to afford $\mathbf{1 f}$ as a colorless oil ($0.120 \mathrm{~g}, 43 \%$).

Data for 1f: $\mathbf{R}_{\mathbf{f}} 0.4\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 5.20-5.27(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 3.63\left(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.17-2.31\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 5-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 1.56-1.72(4 \mathrm{H}, \mathrm{m}, 6-$ H_{2} and $\left.7-\mathrm{H}_{2}\right), 1.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 147.3(\mathrm{C}-4), 115.5(\mathrm{C}-3), 62.6$ (C-1), 33.9 and 33.3 (C-5 and C-8), 29.0 (C-2), 26.52 and 26.45 (C-6 and C-7). HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 127.11174, found m / z 127.11185. IR (film) $v_{\text {max }}: 3332$, 2980, 2887, 1432, 1251, $1047 \mathrm{~cm}^{-1}$.

6.7. 3-(Tetrahydro-4H-pyran-4-ylidene)propan-1-ol (1g)

To a solution of but-3-en-1-yl acetate ($0.182 \mathrm{~g}, 1.53 \mathrm{mmol}$), alkene $\mathbf{S 7}(0.300 \mathrm{~g}, 3.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at r.t. was added Grubbs II ($\left.20.0 \mathrm{mg}, 0.0236 \mathrm{mmol}\right)$. The mixture was stirred for

72 hours and concentrated in vacuo. To the crude was then added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.060 \mathrm{~g}, 7.681 \mathrm{mmol})$ in $\mathrm{MeOH}(7.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC until completion. The mixture was filtered and the solvent was evaporated under reduced pressure, that was purified by chromatography on silica gel (FCC: gradient elution: $50 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to afford $\mathbf{1 g}$ as a colorless oil ($0.033 \mathrm{~g}, 15 \%$). Spectroscopic properties matched those previously reported. ${ }^{24}$

Data for $\mathbf{1 g}: \mathbf{R f}_{\mathrm{f}} 0.30\left(\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 5.20(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 3-\mathrm{H})$, 3.59-3.73 $\left(6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}, 6-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 2.19-2.35\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 5-\mathrm{H}_{2}\right.$ and $\left.9-\mathrm{H}_{2}\right), 1.62(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{OH}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 137.7$ (C-4), 119.9 (C-3), 69.8 and 69.0 (C-6 and C-8), 62.6 (C-1), 37.1 and 30.6 (C-5 and C-9), 30.0 (C-2). HRMS: stable ion was not found in ESI, EI and CI.
6.8. (1E)-2-(4-Methoxystyryl)phenol (E-1k)

Acetate $\mathbf{S 1 5}(0.345 \mathrm{~g}, 1.29 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.888 \mathrm{~g}, 6.44 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $20 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\boldsymbol{E} \mathbf{- 1 k}$ as a white solid $(0.230 \mathrm{~g}, 80 \%)$. Spectroscopic properties matched those previously reported. ${ }^{25}$

Data for $\boldsymbol{E}-\mathbf{- 1 k}$: $\mathbf{R f}_{\mathbf{f}} 0.4$ ($50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.42-7.52(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.21(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, 2-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.05(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, 1-\mathrm{H})$, $6.93(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 5.12(1 \mathrm{H}, \mathrm{s}$, OH), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.4$ (C Ar), $153.0(\mathrm{C} \mathrm{Ar}), 130.5(\mathrm{C} \mathrm{Ar})$, 129.9 (C-1), 128.4 (CH Ar), 127.9 ($2 \times \mathrm{CH}$ Ar), 127.1 (CH Ar), 125.1 (C Ar), 121.2 (CH Ar), 121.0 (C-2), 116.0 (CH Ar), 114.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 55.5 (OMe). HRMS (CI): calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 227.10666, found m / z 227.10658.

6.9. (4E)-5-(4-Methoxyphenyl)pent-4-en-1-ol (E-1n)

Acetate $\mathbf{S 1 6}(0.304 \mathrm{~g}, 1.30 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.896 \mathrm{~g}, 6.50 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $40 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield \boldsymbol{E} - $\mathbf{1 n}$ as a white solid ($0.249 \mathrm{~g}, 99 \%$). Spectroscopic properties matched those previously reported. ${ }^{26}$

Data for $\boldsymbol{E}-\mathbf{1 n}$: $\mathbf{R f}_{\mathbf{f}} 0.30\left(60 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.36(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 5-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{dt}, J=15.7$,
$6.9 \mathrm{~Hz}, 4-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.70\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 2.29\left(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=7.3,1.5 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right)$, $\left.1.74\left(2 \mathrm{H}, \mathrm{tt}, J=7.7,6.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 1.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 158.8(\mathrm{C}$ Ar), 130.6 (C Ar), 129.8 (C-5), 128.0 (C-4), 127.2 ($2 \times \mathrm{CH}$ Ar), 114.0 ($2 \times \mathrm{CH}$ Ar), 62.6 (C-1), 55.4 (OMe), 32.5 (C-2), 29.4 (C-3). HRMS (Cl): calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 193.12231, found $m / z 193.12245$.

7. General procedure for the synthesis of \boldsymbol{E}-styrenes with a carboxylic acid moiety.

To a solution of triphenylphosphonium salt (1.2 eq .) in THF (2 mL) was added dropwise a 1 M solution of NaHMDS (3.5 eq .) at $0{ }^{\circ} \mathrm{C}$. The solution was then stirred for 30 min . After cooling to $-78{ }^{\circ} \mathrm{C}$, aldehyde (1.0 eq.) was added dropwise. The reaction was allowed to warm up to r.t. overnight. Add water and $\mathrm{Et}_{2} \mathrm{O}$ and pour the mixture into a separatory funnel. Separate the aqueous layer and acidify with 1 M HCl until $\mathrm{pH}=1$. Extract the aqueous layer with $\mathrm{Et}_{2} \mathrm{O}$ twice. The organic layer was dried with MgSO_{4}. Then the solvent was evaporated under reduced pressure to give the acid. FCC afforded the corresponding carboxylic acid.

7.1. (3E)-4-(4-Methoxyphenyl)but-3-enoic acid (\boldsymbol{E}-10)

(2-Carboxyethyl)(triphenyl)phosphonium chloride ($1.500 \mathrm{~g}, 4.054 \mathrm{mmol}$), NaHMDS (1M, $11.5 \mathrm{~mL}, 11.5 \mathrm{mmol})$ and 4-methoxybenzaldehyde ($0.460 \mathrm{~g}, 3.37 \mathrm{mmol}$) were subjected to the general procedure (FCC: 100\% EtOAc) to yield \boldsymbol{E}-1o as a yellow solid ($0.161 \mathrm{~g}, 25 \%$). Spectroscopic properties matched those previously reported. ${ }^{27}$

Data for $\boldsymbol{E}-\mathbf{1 0}: \mathbf{R f}_{\mathrm{f}}: 0.5$ ($100 \% \mathrm{EtOAc}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 10.07(1 \mathrm{H}$, br s, $\left.\mathrm{CO}_{2} \mathrm{H}\right), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.46(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 4-\mathrm{H})$, $6.14(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.1 \mathrm{~Hz}, 3-\mathrm{H}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.28\left(2 \mathrm{H}, \mathrm{dd}, J=7.1,1.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl 3) $\boldsymbol{\delta} 178.3$ ($\mathrm{C}=\mathrm{O}$), 159.35 (C Ar), 133.5 (C-4), 129.6 (C Ar), 127.6 ($2 \times \mathrm{CH}$ $\mathrm{Ar}), 118.7(\mathrm{C}-3), 114.1\left(2 \times \mathrm{CH}\right.$ Ar), 55.4 (OMe), $38.2(\mathrm{C}-2)$. HRMS (Cl): calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$ [M] ${ }^{+}$requires m / z 192.0786, found m / z 192.0788.

7.2. (4E)-5-(4-Methoxyphenyl)pent-4-enoic acid (E-1p)

(2-Carboxypropyl)(triphenyl)phosphonium chloride ($1.560 \mathrm{~g}, 4.063 \mathrm{mmol}$), NaHMDS (1M, $11.5 \mathrm{~mL}, 11.5 \mathrm{mmol}$) and 4-methoxybenzaldehyde ($0.460 \mathrm{~g}, 3.37 \mathrm{mmol}$) were subjected to the general procedure (FCC: $100 \% \mathrm{EtOAc}$) to yield $\boldsymbol{E}-\mathbf{1 p}$ as a white solid ($0.187 \mathrm{~g}, 29 \%$). Spectroscopic properties matched those previously reported. ${ }^{13}$

Data for $\boldsymbol{E}-\mathbf{1 p}$: Rf: 0.5 ($100 \% \mathrm{EtOAc}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta} 7.28(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.39(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 5-\mathrm{H}), 5.99-6.12(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.80$ (3H, s, OMe), 2.50-2.55 ($4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}$ and $3-\mathrm{H}_{2}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 179.0(\mathrm{C}=\mathrm{O})$, 159.0 (C Ar), 130.7 (C-5), 130.2 (C Ar), 127.3 ($2 \times \mathrm{CH} \mathrm{Ar}$), 125.9 (C-4), 114.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 55.4 (OMe), 34.0 (C-3), 28.1 (C-2). HRMS (Cl): calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}]^{+}$requires m / z 206.0943, found $m / z 206.0947$.

8. Screening of reaction conditions for the cyclisation of 1a to 3a.

a) Solvent Screening: A range of different solvent and solvent ratios were examined for the model reaction.

b) Initiator Screening A range of different initiators were examined for the model reaction.

Entry	Temperature	Yield 3a
1	r.t.	0%
2	$70^{\circ} \mathrm{C}$	0%
	See ref. 28	

 1a (1.0 equiv.)		 2a (1.0 equiv.)	$\xrightarrow[\substack{\mathrm{HFIP} \\(10 \mathrm{~mL} / \mathrm{mmol} \text { of } \mathbf{1 a})}]{10 \mathrm{eq} . \mathrm{Ph}_{4} \mathrm{PBF}_{4}}$	
Entry	Loading	Temperature	Time	
$1^{\text {a }}$	10.0 eq.	$0^{\circ} \mathrm{C}$	5 min .	0\%
$2^{\text {b }}$	10.0 eq	$0^{\circ} \mathrm{C}$	12 h	35\%
$3^{\text {a }}$	10.0 eq	r.t.	5 min .	17\%
$4^{\text {b }}$	10.0 eq	r.t.	12 h	41\%
$5^{\text {a }}$	10.0 eq	$40^{\circ} \mathrm{C}$	5 min .	22\%
$6^{\text {b* }}$	10.0 eq	$40^{\circ} \mathrm{C}$	12 h	45\%
$7{ }^{\text {c* }}$	0.3 eq .	$70^{\circ} \mathrm{C}$	12 h	47\%
$8{ }^{\text {c* }}$	$\begin{aligned} & 1.0 \mathrm{eq} . \\ & \text { * Comp } \end{aligned}$	$70^{\circ} \mathrm{C}$ te consump	12 h tion of both 1a	$\mathbf{2}^{\text {a }}$ 48\%

${ }^{\text {a }}$ addition of alcohols into the solution of $\mathrm{Ph}_{4} \mathrm{BF}_{4}$ via syringe pump over 5 min .
${ }^{\mathrm{b}}$ addition of alcohols into the solution of $\mathrm{Ph}_{4} \mathrm{BF}_{4}$ via syringe pump over 5 min . and then the reaction was stirred for 12 hours
${ }^{c}$ alcohols and $\mathrm{Ph}_{4} \mathrm{BF}_{4}$ were added simultaneously in one portion, and then the reaction was stirred for 12 hours See ref. 29

8.1. General procedure for the cyclization using alcohols as alkylating agents

To a microwave vial charged with a stirring bar, 1.0 eq. of alcohol $\mathbf{A}, 1.0$ eq. of alcohol \mathbf{B} and HFIP ($10 \mathrm{~mL} / \mathrm{mmol}$ of \mathbf{A}) was added under argon. After fully dissolving the substrate, $30 \mathrm{~mol} \%$ $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ was added. The reaction was stirred for 12 hours at $70^{\circ} \mathrm{C}$. Then the solvent was removed under vacuum. The residue was purified by silica gel column chromatography to give the corresponding heterocycle.

8.2. (\pm)-(2S,3S)-3-Cinnamyl-2-(4-methoxyphenyl)tetrahydrofuran (3a)

Alcohol \boldsymbol{E}-1a ($45.6 \mathrm{mg}, 0.256 \mathrm{mmol}$), cinnamyl alcohol \boldsymbol{E}-2a ($31.8 \mathrm{mg}, 0.256 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(21.8 \mathrm{mg}, 0.0767 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $12 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 a}$ as a colorless oil ($39.0 \mathrm{mg}, 52 \%$).

Data for 3a: $\mathbf{R}_{\mathbf{f}} 0.50\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.26-7.31(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.18-7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.41(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 8-\mathrm{H}), 6.14$ $(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.43(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2-\mathrm{H}), 4.12\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.02$ $\left(1 \mathrm{H}, \mathrm{td}, J=8.3,4.6 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.40-2.48\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.22-2.29\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 2.22-2.15(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.82\left(1 \mathrm{H}, \mathrm{dq}, J=11.3,7.7 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z ,}$ $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.2$ (C Ar), 137.6 (C Ar), 134.3 (C Ar), 131.5 (C-8), 128.6 (2 x C-H Ar), 128.6 (C-7), 127.8 (2 x C-H Ar), 127.2 (C-H Ar), 126.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 113.9 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 86.0 (C-2), 68.0 (C5), $55.4(\mathrm{OMe}), 48.0(\mathrm{C}-3), 35.6(\mathrm{C}-6), 32.5(\mathrm{C}-4)$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ requires m / z 295.16926, found $m / z 295.16925$. IR (film) $v_{\text {max }}$ 2930, 1512, 1244, 1031, 827, 692 cm^{-1}

8.3. (\pm)-(2S,3S)-2-(4-Methoxyphenyl)-3-[(2'E)-3'-(4methoxyphenyl)allyl]tetrahydrofuran (3b)

Alcohols \boldsymbol{E}-1a ($20.0 \mathrm{mg}, 0.112 \mathrm{mmol}$) and $\boldsymbol{E}-\mathbf{2 b}(16.6 \mathrm{mg}, 0.112 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(9.5$ $\mathrm{mg}, 0.034 \mathrm{mmol}$) were subjected to the general procedure (FCC: gradient elution: $10 \% \rightarrow 20 \%$ $\mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 b}$ as a colorless oil ($18.1 \mathrm{mg}, 50 \%$).

Data for 3b: $\mathbf{R}_{\mathbf{f}} 0.50\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.27(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 7.22(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar})$, $6.34(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 8-\mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2-\mathrm{H})$, $4.10\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.00\left(1 \mathrm{H}, \mathrm{td}, J=8.3,4.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.90(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 2.37-$ $2.44\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.13-2.26\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 1.75-1.84\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C}$ NMR
($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.1$ (C Ar), 158.8 (C Ar), 134.3 (C Ar), 130.7 (C-8), 130.3 (C Ar), 127.6 (2 x CH Ar), 127.1 ($2 \times \mathrm{CH}$ Ar), 126.2 (C-7), 113.9 ($2 \times \mathrm{CH}$ Ar), 113.8 ($2 \times \mathrm{CH}$ Ar), 85.8 (C-2), 67.8 (C-5), 55.3 (2 x OMe), 48.0 (C-3), 35.5 (C-6), 32.4 (C-4). NOESY- 2D ($500 \mathbf{~ M H z , ~ C D C l ~})_{3}$: between $2-\mathrm{H}$ and $6-\mathrm{H}_{A}$, between $2-\mathrm{H}$ and $7-\mathrm{H}$. HRMS (EI): calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}]^{+}$requires $m / z 324.1725$, found $m / z 324.1720$. IR (film) $v_{\max }$: 2980, 1608, 1511, 1247, 1173, $1033 \mathrm{~cm}^{-1}$.

8.4. (\pm)-(2S,3S)-3-(4-Methoxybenzyl)-2-(4-methoxyphenyl)tetrahydrofuran (3c)

Alcohol \boldsymbol{E}-1a ($42.5 \mathrm{mg}, 0.239 \mathrm{mmol}$), 4-methoxybenzyl alcohol 2c ($33.0 \mathrm{mg}, 0.239 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(20.3 \mathrm{mg}, 0.0715 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $10 \% \rightarrow 14 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 c}$ as a yellow oil ($53.4 \mathrm{mg}, 75 \%$).

Data for 3c: Rf $0.50\left(60 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.24(2 \mathrm{H}, \mathrm{d}, J=$ $8.9 \mathrm{~Hz}, \mathrm{Ar}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar})$, $4.45(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 2-\mathrm{H}), 4.06\left(1 \mathrm{H}, \mathrm{q}, J=8.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.01\left(1 \mathrm{H}, \mathrm{td}, J=8.6,4.9 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right)$, $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.80\left(1 \mathrm{H}, \mathrm{dd}, J=13.6,5.1 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.51(1 \mathrm{H}, \mathrm{dd}, J=13.6$, $9.7 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{B}}$), 2.25-2.36 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 2.00-2.10 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}$), 1.71-1.82 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) $\boldsymbol{\delta} 159.1$ (C Ar), 158.0 (C Ar), 134.4 (C Ar), 132.6 (C Ar), 129.8 ($2 \times \mathrm{CH}$ $\mathrm{Ar})$, 127.6 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.8 ($2 \times \mathrm{CH}$ Ar), 85.8 (C-2), 67.9 (C-5), 55.4 (OMe), 55.3 (OMe), 50.0 (C-3), 37.3 (C-6), 32.4 (C-4). NOESY-2D ($500 \mathbf{~ M H z , ~ C D C l} 3$): between 2-H and $6-\mathrm{H}_{\mathrm{A}}$, between $2-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{B}}$. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 321.14612, found $m / z 321.14609$. IR (film) $v_{\max }$: 2916, 1611, 1510, 1241, 1030, $828 \mathrm{~cm}^{-1}$.

8.5. (\pm)-(2S,3R)-3-Benzhydryl-2-(4-methoxyphenyl)tetrahydrofuran (3d)

Alcohol \boldsymbol{E}-1a ($19.8 \mathrm{mg}, 0.111 \mathrm{mmol}$), diphenylmethanol $\mathbf{2 d}(20.5 \mathrm{mg}, 0.111 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(9.5 \mathrm{mg}, 0.033 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 d}$ as a yellow foam ($31.2 \mathrm{mg}, 83 \%$).

Data for 3d: $\mathbf{R f}_{\mathbf{f}} 0.50$ ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{~ 7 . 1 6 - 7 . 2 5}(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.06-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.01-7.06(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.63(2 \mathrm{H}, \mathrm{d}, J=$ $8.3 \mathrm{~Hz}, \mathrm{Ar}), 4.55(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.06\left(1 \mathrm{H}, \mathrm{td}, J=8.3,4.5 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.91(1 \mathrm{H}, \mathrm{q}, J=7.9$ $\mathrm{Hz}, 5-\mathrm{H}_{\mathrm{B}}$), $3.84(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.03(1 \mathrm{H}, \mathrm{ddt}, J=12.1,8.4,4.4 \mathrm{~Hz}$, $3-\mathrm{H}), 2.00-2.12\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.65\left(1 \mathrm{H}, \mathrm{ddt}, J=11.8,7.9,4.5 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl3 $_{3} \boldsymbol{\delta} 144.1$ (C Ar), 143.6 (C Ar), 135.7 (C Ar), 128.7 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.5 (2 x C-H Ar), 128.2 (2 x C-H Ar), 127.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.6 (CH Ar), 126.5 (CH Ar), 125.6 (C Ar), 113.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.7 (C-2), 67.8 (C-5), 55.7 (C-6), 55.4 (OMe), 51.6 (C-3), 31.2 (C-4). HRMS (Cl): calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 367.16685$, found m / z 367.16638. IR (film) $v_{\text {max }}: 3656,2980,1492,1239,954,750 \mathrm{~cm}^{-1}$.
8.6. (\pm)-(2S,3S)-2-(4-Methoxyphenyl)-3-(3-methylbut-2-en-1-yl)tetrahydrofuran (3e)

Alcohol \boldsymbol{E}-1a ($21.1 \mathrm{mg}, 0.119 \mathrm{mmol}$), 3-methyl-2-buten-1-ol 2e ($0.03 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(10.1 \mathrm{mg}, 0.0356 \mathrm{mmol})$ were subjected to the general procedure except using 2.0 eq . of 3-methyl-2-buten-1-ol and conducting the reaction at $40^{\circ} \mathrm{C}$ (FCC: gradient elution: $5 \% \rightarrow 10 \%$ $\mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 e}$ as a colorless oil ($10.3 \mathrm{mg}, 35 \%$).

Data for 3e: $\mathbf{R f}_{\mathbf{f}} 0.40\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.24(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.08(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, 7-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 2-$ H), $4.07\left(1 \mathrm{H}, \mathrm{q}, J=8.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.98\left(1 \mathrm{H}, \mathrm{td}, J=8.3,5.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.11-$ $2.23\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 1.98-2.10\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 1.69-1.76\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.67$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.58 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.1$ (C Ar), 134.7 (C Ar), 132.9 (C-8), 127.6 (2 x C-H Ar), 122.4 (C-7), 113.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 85.8 (C-2), 68.0 (C-5), 55.4 (OMe), 48.4 (C-3), 32.5 (C-4), 30.4 (C-6), 25.9 (Me), 18.0 (Me). HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 247.16926, found m / z 247.16937. IR (film) $v_{\text {max }}$ 2980, 2360, 2341, 1513, 1380, $1246 \mathrm{~cm}^{-1}$.

8.7. (\pm)-(2S,3S)-2-(4-Methoxyphenyl)-3-[(2' $\left.E, \mathbf{4}^{\prime} E\right)$-penta-2,4-dien-1-yl]tetrahydrofuran (3f)

Alcohol \boldsymbol{E}-1a ($40.0 \mathrm{mg}, 0.225 \mathrm{mmol}$), 1,4-pentadien-3-ol $\mathbf{2 f}(0.05 \mathrm{~mL}, 0.6 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(19.1 \mathrm{mg}, 0.0673 \mathrm{mmol})$ were subjected to the general procedure except using 2.0 eq . of 1,4-pentadien-3-ol and conducting the reaction at $40^{\circ} \mathrm{C}$ (FCC : gradient elution: $7 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}-$ pentane) to yield $\mathbf{3 f}$ as a colorless oil ($16.5 \mathrm{mg}, 30 \%$).

Data for 3f: $\mathbf{R}_{\mathbf{f}} 0.40\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.24(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.27(1 \mathrm{H}, \mathrm{dt}, J=16.9,10.2 \mathrm{~Hz}, 9-\mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{dd}, J=$ $15.2,10.4 \mathrm{~Hz}, 8-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{dt}, J=14.3,6.8 \mathrm{~Hz}, 7-\mathrm{H}), 5.10\left(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 4.98$ $\left(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{B}}\right), 4.36(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 4.08\left(1 \mathrm{H}, \mathrm{q}, J=8.6 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.98(1 \mathrm{H}$, td, $\left.J=8.2,4.9 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.26-2.35\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.14-2.24\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right)$, 2.05-2.14 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{B}}$), 1.68-1.79 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.2$ (C Ar), 137.1 (C-9), 134.3 (C Ar), 132.7 (C-7), 132.6 (C-8), 127.7 ($2 \times \mathrm{CH}$ Ar), 115.6 (C-10), 113.9 (2 x CH Ar), 85.9 (C-2), 67.9 (C-5), 55.4 (OMe), 47.8 (C-3), 35.1 (C-6), 32.4 (C-4). HRMS (CI): calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 245.15361, found $\mathrm{m} / \mathrm{z} 245.15364$. IR (film) $v_{\text {max }}$: $2980,2360,1513,1381,1246,1072 \mathrm{~cm}^{-1}$.

8.8. $(\pm)-(2 S, 3 R)-3-\left[\left(1^{\prime} S, 2^{\prime} E\right)-1,3-D i p h e n y l a l l y l\right]-2-(4-m e t h o x y p h e n y l) t e t r a h y d r o f u r a n$ and

(\pm)- (2S, 3S)-3-[(1'R,2'E)-1,3-Diphenylallyl]-2-(4-methoxyphenyl)tetrahydrofuran (3g)

Alcohol \boldsymbol{E}-1a ($42.4 \mathrm{mg}, 0.238 \mathrm{mmol}$), trans-1,3-diphenyl-2-propen-1-ol $\boldsymbol{E}-\mathbf{2 g}$ (20.0 mg , $0.238 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right) 4(20.0 \mathrm{mg}, 0.0704 \mathrm{mmol})$ were subjected to the general procedure (FCC : $15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield an inseparable $6: 1$ mixture of diastereomers $\mathbf{3 g}$ as a colorless oil (87.1 $\mathrm{mg}, 99 \%)$.

Data for major diastereomer A of $\mathbf{3 g}$ (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.40$ ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.31-7.36$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.15-7.29 (10H, m, Ar), 6.84 (2H, d, $J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 6.45(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 8-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{dd}, J=15.7,9.2 \mathrm{~Hz}, 7-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{d}, J=6.0$ $\mathrm{Hz}, 2-\mathrm{H}), 4.11\left(1 \mathrm{H}, \mathrm{td}, J=7.9,5.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.96\left(1 \mathrm{H}, \mathrm{dt}, J=8.4,7.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, OMe), 3.49 ($1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}, 6-\mathrm{H}$), 2.73 ($1 \mathrm{H}, \mathrm{ddt}, J=10.3,8.0,6.1 \mathrm{~Hz}, 3-\mathrm{H}$), 1.96-2.08 ($1 \mathrm{H}, \mathrm{m}, 4-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 1.72\left(1 \mathrm{H}, \mathrm{ddt}, J=12.3,7.6,6.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.0(\mathrm{C} \mathrm{Ar})$, 143.4 (C Ar), 137.2 (C Ar), 135.20 (C Ar), 133.0 (C-7), 130.4 (C-8), 128.8 (2 x C-H Ar), 128.5 (2 x C-H Ar), 128.3 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.0 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.3 (C-H Ar), 126.7 (C-H Ar), 126.4 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 113.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.9 (C-2), 67.92 (C-5), 55.39 (OMe), 53.7 (C-6), 52.5 (C-3), 31.5 (C-4). HRMS (Cl): calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{+}$requires m / z 369.18491, found m / z 369.18475. IR (film) $v_{\text {max }}: 2979,1511,1451,1244,1030,694 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of $\mathbf{3 g}$ (from the mixture): ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl3 $^{2} \boldsymbol{\delta}$ 7.36-7.39 (2H, m, Ar), 7.15-7.29 (8H, m, Ar), 6.95 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}$), 6.77 ($2 \mathrm{H}, \mathrm{d}, J$ $=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.49(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 8-\mathrm{H}), 6.42(1 \mathrm{H}, \mathrm{dd}, J=15.7,8.7 \mathrm{~Hz}, 7-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}, J=$ $5.7 \mathrm{~Hz}, 2-\mathrm{H}), 4.17\left(1 \mathrm{H}, \mathrm{td}, J=8.0,5.5 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.03\left(1 \mathrm{H}, \mathrm{dt}, J=8.6,7.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.79(3 \mathrm{H}, \mathrm{s}$, OMe), $3.49(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}, 6-\mathrm{H}), 2.66-2.69(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.15-2.19\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.06-2.12$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 158.8$ (C Ar), 143.0 (C Ar), 137.3 (C Ar), 135.15 (C $\mathrm{Ar}), 131.6$ (C-7), 131.3 (C-8), 128.7 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.2 (2 x C-H Ar), 127.5 (C-H Ar), 127.3 (C-H Ar), 126.3 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 113.7 (2 x C-H Ar), 84.1 (C-2), 67.87 (C-5), 55.36 (OMe), 53.9 (C-6), 52.0 (C-3), 30.2 (C-4).
8.9. $(\pm)-(2 S, 3 S)-2-(4-M e t h o x y p h e n y l)-3-\left[\left(1^{\prime} S, 2^{\prime} E\right)\right.$-pent-3-en-2-yl]tetrahydrofuran and (\pm)-(2S, 3R)-2-(4-methoxyphenyl)-3-[(1'R,2'E)-pent-3-en-2-yl]tetrahydrofuran (3h)

Alcohols \boldsymbol{E}-1a ($59.3 \mathrm{mg}, 0.334 \mathrm{mmol}$) trans-3-penten-2-ol $\boldsymbol{E}-\mathbf{2 h}(57.4 \mathrm{mg}, 0.668 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(28.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ were subjected to the general procedure except using 2 eq. of \boldsymbol{E} 2 h and conducting the reaction at $0^{\circ} \mathrm{C}$ (FCC : gradient elution: $4 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield an inseparable $3: 1$ mixture of diastereomer $\mathbf{3 h}$ as a colorless oil ($58.3 \mathrm{mg}, 71 \%$).

Data for major diastereomer A of 3h (from the mixture): $\mathbf{R f}_{\mathbf{f}} 0.40$ ($25 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.20(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 5.33-5.43$ ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), $5.12(1 \mathrm{H}, \mathrm{dqd}, J=15.2,8.4,1.6 \mathrm{~Hz}, 8-\mathrm{H}), 4.54(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{q}$, $\left.J=8.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.91\left(1 \mathrm{H}, \mathrm{td}, J=8.0,5.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.14-2.23(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$,
2.07-2.14 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}$), 1.99-2.07 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.75-1.85\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.57(3 \mathrm{H}, \mathrm{dd}, J=4.7$, $1.5 \mathrm{~Hz}, \mathrm{Me}), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 158.9$ (C Ar), 136.2 (C8), 133.8 (C Ar), 128.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 124.2 (C-7), 113.7 ($2 \times \mathrm{CH}$ Ar), 84.3 (C-2), 68.1 (C-5), 55.4 (OMe), 53.0 (C-3), 39.8 (C-6), 30.7 (C-4), 19.0 (Me), 17.9 (Me). HRMS (Cl): calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 247.16926, found m / z 247.16933. IR (film) $v_{\text {max }}$: 3657, 2980, 2888, $1512,1381,1245 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of 3 h (from the mixture): ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.25(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 5.41-5.52(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.31-$ $5.40(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.49(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.03\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.90(1 \mathrm{H}, \mathrm{td}, J=$ $8.2,4.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.14-2.23(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.07-2.14\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.99-2.07$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.75-1.85\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.69(3 \mathrm{H}, \mathrm{dd}, J=6.2,1.5 \mathrm{~Hz}, \mathrm{Me}), 0.95(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, Me). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta} 158.9$ (C Ar), 135.2 (C Ar), 133.8 ($\mathrm{C}-8$), 127.9 ($2 \times \mathrm{CH} \mathrm{Ar}$), 125.7 (C-7), 133.9 (2 x CH Ar), 84.0 (C-2), 68.0 (C-5), 55.4 (OMe),53.2 (C-3), 37.7 (C-6), 29.2 (C4), 20.5 (Me), 18.2 (Me).
8.10. (\pm)-(2S, 3S)-2-(4-Methoxyphenyl)-3-[(1'S, $\left.\mathbf{2}^{\prime} E\right)$-4-phenylbut-3-en-2-
yl]tetrahydrofuran, $(\pm)-(2 S, 3 R)-2-(4-m e t h o x y p h e n y l)-3-\left[\left(1^{\prime} R, 2^{\prime} E\right)\right.$-4-phenylbut-3-en-2-yl]tetrahydrofuran, ($2 S, 3 R$)-2-(4-methoxyphenyl)-3-[(1'S, 2'E)-1-phenylbut-2-en-1$y l] t e t r a h y d r o f u r a n ~ a n d ~(2 S, 3 R)-2-(4-m e t h o x y p h e n y l)-3-[(1 ' R, ~ 2 ' E)-1-p h e n y l b u t-2-e n-1-~$ yl]tetrahydrofuran (3i)

E-2i

C

A B C D
12:3: 4:1
Alcohols \boldsymbol{E}-1a ($33.9 \mathrm{mg}, 0.190 \mathrm{mmol}$), $\boldsymbol{E}-\mathbf{2 i}(28.2 \mathrm{mg}, 0.190 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(16.2 \mathrm{mg}$, 0.0570 mmol) were subjected to the general procedure except conducting the reaction at $0^{\circ} \mathrm{C}$ (FCC : $10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 i}$ as $4: 1 \mathrm{dr}$ mixture of diastereomer $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and $\mathbf{D}(52.8 \mathrm{mg}, 90 \%)$, which was partially separable into 2 clean fractions: first fraction of mixture of 13:1 diasteromer A and $\mathbf{B}(25.0 \mathrm{mg}, 47 \%)$ as a colorless oil, and second fraction of mixture of 2:1 diastereomer \mathbf{C} and

D as a colorless oil ($10.0 \mathrm{mg}, 19 \%$).
Data for diastereomer A of 3i: $\mathbf{R}_{\mathbf{f}} 0.45\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\boldsymbol{\delta} 7.23-7.28(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.15-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.34(1 \mathrm{H}, \mathrm{d}, J=15.8$ $\mathrm{Hz}, 8-\mathrm{H}), 5.84(1 \mathrm{H}, \mathrm{dd}, J=15.8,8.6 \mathrm{~Hz}, 7-\mathrm{H}), 4.57(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 2-\mathrm{H}), 4.05-4.12(1 \mathrm{H}, \mathrm{m}, 5-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 3.95\left(1 \mathrm{H}, \mathrm{td}, J=8.2,5.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.36-2.45(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.17-2.25(2 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.83-1.92\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.13(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.0(\mathrm{C} \mathrm{Ar}), 137.58(\mathrm{C} \mathrm{Ar}), 135.3(\mathrm{C}-8), 135.1$ (C Ar), $129.0(\mathrm{C}-7), 128.5$ ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.4 (CH Ar), 127.1 ($2 \times \mathrm{CH}$ Ar), 126.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.8 ($2 \times \mathrm{CH}$ Ar), 84.6 (C-2), 68.1 (C-5), 55.40 (OMe), 53.3 (C-3), 40.6 (C-6), 31.1 (C-4), 19.2 (Me). NOESY- 2D (400 MHz, CDCl $_{3}$): between $2-\mathrm{H}$ and $6-\mathrm{H}$, between $2-\mathrm{H}$ and Me , between $2-\mathrm{H}$ and $7-\mathrm{H}$, between $2-\mathrm{H}$ and $8-\mathrm{H}$. HRMS (Cl): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 309.18491, found m / z 309.18491. IR (film) $v_{\text {max }}$: 2980, 2885, 2360, 1512, 1243, $964 \mathrm{~cm}^{-1}$.

Partial data diastereomer B of 3i: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \boldsymbol{\delta} 7.14-7.38(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $6.89(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.41(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 8-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{dd}, J=15.8,8.6 \mathrm{~Hz}, 7-\mathrm{H})$, $4.56(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 2-\mathrm{H}), 4.05-4.12\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.95\left(1 \mathrm{H}, \mathrm{td}, J=8.2,5.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.81$ (3H, s, OMe), 2.36-2.45 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 2.17-2.25 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}_{\mathrm{A}}$), 1.83-1.92 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$), $1.08(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.2$ (C Ar), 137.64 (C Ar), 134.9 (C Ar), 133.2 (C-8), 130.4 (C-7), 129.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.7 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.3 (CH Ar), 114.0 ($2 \times \mathrm{CH} \mathrm{Ar}$), 84.1 (C-2), 68.0 (C-5), 55.43 (OMe), 53.2 (C-3), 38.4 (C-6), 29.8 (C-4), 20.2 (Me).

Data for diastereomer C of 3i: Rf 0.50 ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta} 7.13-7.32(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.52(1 \mathrm{H}, \mathrm{dq}, J=15.2,6.5 \mathrm{~Hz}, 8-\mathrm{H})$, $5.40(1 \mathrm{H}, \mathrm{ddd}, J=15.1,9.1,1.5 \mathrm{~Hz}, 7-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, 2-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{td}, J=8.2,5.6$ $\left.\mathrm{Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.89\left(1 \mathrm{H}, \mathrm{dt}, J=8.5,7.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.24-3.21(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.55$ $(1 \mathrm{H}, \mathrm{ddt}, J=10.7,8.0,5.6 \mathrm{~Hz}, 3-\mathrm{H}), 1.91\left(1 \mathrm{H}, \mathrm{dq}, J=12.7,7.6 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.57-1.65(1 \mathrm{H}, \mathrm{m}, 4-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 1.58(3 \mathrm{H}, \mathrm{dd}, J=6.3,1.6 \mathrm{~Hz}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 158.9$ (C Ar), 144.1 (C Ar), 135.7 (C Ar), 134.3 (C-7), 128.7 ($2 \times \mathrm{CH}$ Ar), 128.1 ($3 \times \mathrm{CH}$ Ar), 127.0 (CH Ar), 125.42 (C8), 126.1 (CH Ar), 113.7 ($2 \times \mathrm{CH}$ Ar), 84.7 (C-2), 67.90 (C-5), 55.44 (OMe), 53.4 (C-6), 52.3 (C3), 31.1 (C-4), $18.0(\mathrm{Me})$. HRMS (Cl): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 309.18491, found m / z 309.18512. IR (film) $v_{\max }$: 2980, 2360, 1728, 1513, 1245, $1062 \mathrm{~cm}^{-1}$.

Partial data diastereomer D of 3i: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.18-7.21(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 7.08-7.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.90(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{Ar}), 6.72(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.65(1 \mathrm{H}, \mathrm{ddd}, J=$ $15.1,8.9,1.6 \mathrm{~Hz}, 7-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{dq}, J=15.2,6.5 \mathrm{~Hz}, 8-\mathrm{H}), 4.49(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, 2-\mathrm{H}), 4.10$ $\left(1 \mathrm{H}, \mathrm{td}, J=8.0,5.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.96\left(1 \mathrm{H}, \mathrm{dt}, J=8.5,7.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.24-3.27$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.45-2.51(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.09\left(1 \mathrm{H}, \mathrm{dq}, J=12.5,7.5 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.00(1 \mathrm{H}, \mathrm{ddt}, J=$
$\left.12.0,7.5,5.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.69(3 \mathrm{H}, \mathrm{dd}, J=6.3,1.5 \mathrm{~Hz}, \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 158.7$ (C Ar), 143.9 (C Ar), 135.4 (C Ar), 132.5 (C-7), 128.6 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.9 ($3 \times \mathrm{CH} \mathrm{Ar}$), 127.3 (2 x CH Ar), 125.39 (C-8), 113.6 ($2 \times \mathrm{CH}$ Ar), 84.0 (C-2), 67.91 (C-5), 55.37 (OMe), 52.7 (C-3), 51.6 (C-6), 30.0 (C-4), 18.2 (Me).
8.11. (\pm)-(2S,3R)-3-[(1'R)-Cyclohex-2-en-1-yl]-2-(4-methoxyphenyl)tetrahydrofuran and (\pm)-(2S,3R)-3-[(1'S)-cyclohex-2-en-1-yl]-2-(4-methoxyphenyl)tetrahydrofuran (3j)

Alcohol \boldsymbol{E}-1a ($53.8 \mathrm{mg}, 0.302 \mathrm{mmol}$) and $\mathbf{Z - 2 j}(29.6 \mathrm{mg}, 0.302 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(25.7$ $\mathrm{mg}, 0.0905 \mathrm{mmol}$) were subjected to the general procedure ($\mathrm{FCC}: 6 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield an inseparable $2: 1$ mixture of diastereomer $\mathbf{3 j}$ as a colorless oil ($50.6 \mathrm{mg}, 65 \%$).

Data for major diastereomer A of $\mathbf{3 j}$ (from the mixture): $\mathbf{R f}_{\mathbf{f}} 0.50$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.26(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 5.76-5.82$ $(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 5.66-5.71(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 2-\mathrm{H}), 3.99-4.10\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.89-$ $3.96\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.21-2.28(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.13-2.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.05-2.13$ $\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.92-1.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclohexenyl), 1.83-1.90 $\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.61-1.70(2 \mathrm{H}, \mathrm{m}, 2$ x CH cyclohexenyl), 1.40-1.54 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclohexenyl), 1.13-1.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclohexenyl). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.10$ (C Ar), 135.2 (C Ar), 129.3 (C-8), 128.7 (C-7), 128.06 (2 x CH Ar), 113.86 ($2 \times \mathrm{CH} \mathrm{Ar}$), 83.9 (C-2), 68.1 (C-5), 55.4 (OMe), 52.2 (C-3), 36.8 (C-6), 29.8 (C4), $29.1\left(\mathrm{CH}_{2}\right.$ cyclohexenyl), $25.44\left(\mathrm{CH}_{2}\right.$ cyclohexenyl), $21.96\left(\mathrm{CH}_{2}\right.$ cyclohexenyl). HRMS (CI): calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 259.16926, found m / z 259.16922. IR (film) $v_{\text {max }}$: 3657, 2980, 2888, 1512, 1382, $1244 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of $\mathbf{3 j}$ (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.27(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 5.62-5.65(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 5.41-$ $5.47(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 2-\mathrm{H}), 3.99-4.10\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.89-3.96\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right)$, $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.21-2.28(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.05-2.13\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.92-1.99(2 \mathrm{H}, \mathrm{m}$, CH_{2} cyclohexenyl), 1.77-1.91 $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right.$ and CH cyclohexenyl), $1.72-1.76(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclohexenyl), $1.40-1.54\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ cyclohexenyl), $1.28-1.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ cyclohexenyl). ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\boldsymbol{\delta} 159.13$ (C Ar), $135.0(\mathrm{C} \mathrm{Ar}), 130.4$ (C-7), 128.1 (C-8), 128.05 ($2 \times \mathrm{CH}$ $\mathrm{Ar}), 113.90$ ($2 \times \mathrm{CH} \mathrm{Ar}$), 83.7 (C-2), 67.9 (C-5), 55.4 (OMe), 52.0 (C-3), 37.2 (C-6), 30.2 (C-4), $26.8\left(\mathrm{CH}_{2}\right.$ cyclohexenyl), $25.35\left(\mathrm{CH}_{2}\right.$ cyclohexenyl), $22.01\left(\mathrm{CH}_{2}\right.$ cyclohexenyl $)$.
8.12. (\pm)-(2S,3R)-3-[(1'R)-Cyclopent-2-en-1-yl]-2-(4-methoxyphenyl)tetrahydrofuran and (\pm)-(2S,3R)-3-[(1'S)-cyclopent-2-en-1-yl]-2-(4-methoxyphenyl)tetrahydrofuran (3k)

Alcohol \boldsymbol{E}-1a $(53.0 \mathrm{mg}, 0.298 \mathrm{mmol})$ and $\boldsymbol{Z}-\mathbf{2 k}(50.0 \mathrm{mg}, 0.596 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(25.4$ $\mathrm{mg}, 0.0894 \mathrm{mmol}$) were subjected to the general procedure except using 2 eq. of the $\mathbf{Z} \mathbf{- 2 k}$ and conducting the reaction at r.t. (FCC: $6 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield an inseparable 3:1 mixture of diastereomer (3.5:1 dr shown in crude NMR) 3k as a colorless oil ($64.7 \mathrm{mg}, 89 \%$).

Data for major diastereomer A of 3k (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.50$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.26(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.79-5.83$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.69-5.74(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.06\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right)$, $3.95\left(1 \mathrm{H}, \mathrm{td}, J=8.4,4.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.74-2.83(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.20-2.28(2 \mathrm{H}, \mathrm{m}$, $\left.9-\mathrm{H}_{2}\right), 2.06-2.17\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.87-1.97\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.75-1.86\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.25-$ $1.36\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.2$ (C Ar), 134.9 (C Ar), 132.5 (C-7), 132.4 (C-8), 128.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.8 ($2 \times \mathrm{CH} \mathrm{Ar}$), 85.2 (C-2), $68.0(\mathrm{C}-5), 55.4(\mathrm{OMe}), 52.6(\mathrm{C}-3)$, 47.3 (C-6), 32.3 (C-9), 30.4 (C-4), 29.0 (C-10). HRMS (EI): calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires $m / z 244.1458$, found $m / z 244.1466$. IR (film) $v_{\text {max }}$: 3677, 2988, 2898, 1510, $1342,1244 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of 3 k (from the mixture): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.26(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.67-5.69(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.45-$ $5.50(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 2-\mathrm{H}), 4.07\left(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.95(1 \mathrm{H}, \mathrm{td}, J=$ $\left.8.4,4.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.74-2.83(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.28-2.34\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.06-2.17$ $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.99-2.05\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.75-1.86\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.50-1.57(1 \mathrm{H}, \mathrm{m}, 10-$ $\left.\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.2$ (C Ar), 134.8 (C Ar), 133.5 (C-7), 131.4 (C-8), 128.0 (2 x CH Ar), 113.9 (2 x CH Ar), 84.9 (C-2), 67.9 (C-5), 55.4 (OMe), 52.2 (C-3), 47.3 (C-6), 32.2 (C9), 30.6 (C-4), 29.0 (C-10).
8.13. (\pm)-(2S,3R)-2-(4-Methoxyphenyl)-3-[(1'S)-3-methylcyclopent-2-en-1-yl]tetrahydrofuran and (\pm)-(2S,3R)-2-(4-methoxyphenyl)-3-[(1'R)-3-methylcyclopent-2-en-1-

yl]tetrahydrofuran (31)

Alcohol \boldsymbol{E}-1a ($20.7 \mathrm{mg}, 0.116 \mathrm{mmol}$) and $\boldsymbol{Z}-\mathbf{2 l}(22.9 \mathrm{mg}, 0.232 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(9.9$ $\mathrm{mg}, 0.035 \mathrm{mmol}$) were subjected to the general procedure except using 2.0 eq. of alcohol $\mathbf{Z}-\mathbf{2 l}$ and conducting reaction at r.t. (FCC: gradient elution: $6 \% \rightarrow 12 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield 2 clean fractions: first fraction of mixture of $10: 1$ diasteromer \mathbf{A} and $\mathbf{B}(10.0 \mathrm{mg}, 33 \%)$ as a colorless oil, and second fraction of mixture of $5.5: 1$ diasteromer \mathbf{A} and \mathbf{B} as a colorless oil ($12.1 \mathrm{mg}, 41 \%$).

Data for major diastereomer A of 31 (from the mixture): $\mathbf{R f}_{f} 0.40$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.25(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.28-5.33$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.06\left(1 \mathrm{H}, \mathrm{q}, J=8.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.94(1 \mathrm{H}, \mathrm{td}, J=8.3$, $\left.4.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.72-2.81(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.12-2.20\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.03-2.11(2 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.94\left(1 \mathrm{H}, \mathrm{ddt}, J=13.2,8.3,6.7 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.77-1.86\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.72(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Me}), 1.35\left(1 \mathrm{H}, \mathrm{dtd}, J=12.8,8.1,6.4 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.1(\mathrm{C} \mathrm{Ar})$, 142.3 (C-8), 135.1 (C Ar), 128.03 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.2 (C-7), 113.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 85.2 (C-2), 68.0 (C-5), 55.4 (OMe), 53.0 (C-3), 47.5 (C-6), 36.6 (C-9), 30.4 (C-4), 29.9 (C-10), 16.9 (Me). NOESY2D ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): between $2-\mathrm{H}$ and $6-\mathrm{H}$, between $2-\mathrm{H}$ and $7-\mathrm{H}$, between $2-\mathrm{H}$ and $10-\mathrm{H}_{\mathrm{B}}$. HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 281.15120, found m / z 281.15128. IR (film) $v_{\text {max }}$: 2930, 1611, 1512, 1245, 1031, $828 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of 31 (from the mixture): ${ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz , $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.25(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.08-5.11(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.49$ $(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 2-\mathrm{H}), 4.06\left(1 \mathrm{H}, \mathrm{q}, J=8.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.94\left(1 \mathrm{H}, \mathrm{td}, J=8.3,4.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.72-2.81 $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.12-2.20\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.03-2.11\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right)$, $1.94\left(1 \mathrm{H}, \mathrm{ddt}, J=13.2,8.3,6.7 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.77-1.86\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.35(1 \mathrm{H}$, $\left.\mathrm{dtd}, J=12.8,8.1,6.4 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.1$ (C Ar), 141.2 (C-8), 135.1 (C Ar), 127.95 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.3 (C-7), 113.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.8 (C-2), 67.9 (C-5), 55.4 (OMe), 52.5 (C-3), 47.6 (C-6), 36.5 (C-9), 30.6 (C-4), 28.3 (C-10), 16.8 (Me).
8.14. (\pm)-(2S,3R)-2-(4-Methoxyphenyl)-3-[(1'S)-3-phenylcyclopent-2-en-1-yl]tetrahydrofuran (3m)

Alcohol \boldsymbol{E}-1a ($38.0 \mathrm{mg}, 0.212 \mathrm{mmol}$) and $\boldsymbol{Z}-\mathbf{2 m}(34.0 \mathrm{mg}, 0.212 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(18.0$ $\mathrm{mg}, 0.0633 \mathrm{mmol}$) were subjected to the general procedure except conducting reaction at r.t. (FCC: gradient elution: $7 \% \rightarrow 15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 m}$ as a yellow oil ($67.5 \mathrm{mg}, 99 \%$).

Data for $\mathbf{3 m}$: $\mathbf{R f}_{\mathbf{f}} 0.50\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.43(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 7.21-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.15(1 \mathrm{H}, \mathrm{q}, J=2.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.56$ $(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2-\mathrm{H}), 4.13\left(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.98\left(1 \mathrm{H}, \mathrm{td}, J=8.4,4.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.81$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.96-3.04(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.61-2.71\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.19-2.27\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right)$, $2.11\left(1 \mathrm{H}, \mathrm{dtd}, J=13.1,8.3,5.0 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.90\left(1 \mathrm{H}, \mathrm{ddd}, J=8.3,7.3,3.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.54(1 \mathrm{H}$, ddt, $\left.J=12.9,9.0,7.1 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.2$ (C Ar), 143.8 (C-8), 136.5 (C Ar), 134.9 (C Ar), 128.4 (2 x C-H Ar), 128.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.5 (C-7), 127.4 (C-H Ar), 125.8 (2 x C-H Ar), 113.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 85.1 (C-2), 68.1 (C-5), 55.4 (OMe), 52.7 (C-3), 47.9 (C-6), 32.9 (C-9), 30.6 (C-4), 29.2 (C-10). NOESY- 2D ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): between 2-H and 6-H, between 2H and $7-\mathrm{H}$, between $2-\mathrm{H}$ and $10-\mathrm{H}_{\mathrm{B}}$. HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 343.16685$, found $m / z 343.16690$. IR (film) $v_{\max }$: 2965, 1712, 1512, 1245, 1030, $827 \mathrm{~cm}^{-1}$.
8.15. (\pm)-(2S,3S)-2-(2-Bromo-4-methoxyphenyl)-3-cinnamyltetrahydrofuran (3n)

Alcohol $\boldsymbol{E}-\mathbf{- 1 b}$ ($66.8 \mathrm{mg}, 0.261 \mathrm{mmol}$), cinnamyl alcohol $\boldsymbol{E}-\mathbf{2 a}(35.0 \mathrm{mg}, 0.261 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i}{ }^{\mathrm{P}}\right)_{4}(22.0 \mathrm{mg}, 0.0774 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $8 \% \rightarrow 12 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 n}$ as a colorless oil ($39.7 \mathrm{mg}, 45 \%$).

Data for $\mathbf{3 n}$: Rf 0.45 ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.25-7.36(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.17-7.22(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.07(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{Ar}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, \mathrm{Ar}), 6.42$ $(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 8-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.93(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, 2-\mathrm{H}), 4.19$
$\left(1 \mathrm{H}, \mathrm{td}, J=8.1,5.6 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.01-4.08\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.58(1 \mathrm{H}, \mathrm{dddd}, J=$ $\left.13.0,6.4,4.6,1.4 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.30-2.38\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.20-2.30(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{dq}, J=$ $\left.14.3,7.3 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.77-1.88\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.3$ (C Ar), 137.6 (C Ar), 134.0 (C Ar), 131.5 (C-8), 128.6 ($3 \times \mathrm{CH} \mathrm{Ar}$), 128.5 (C-7), 127.2 (CH Ar), 126.1 ($2 \times \mathrm{CH}$ Ar), 122.7 (C Ar), 117.7 (CH Ar), 114.0 (CH Ar), 84.4 (C-2), 68.2 (C-5), 55.7 (OMe), 47.8 (C-3), 35.9 (C-6), 31.0 (C-4). HRMS (CI): calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 373.07977, found m / z 373.07950. IR (film) $v_{\max }: 3658,2980,1602,1491,1283,964 \mathrm{~cm}^{-1}$.
8.16. (\pm)-(2S,3S)-3-Cinnamyl-2-(3,4-dimethylphenyl)tetrahydrofuran (3o)

Alcohol \boldsymbol{E}-1c ($59.3 \mathrm{mg}, 0.31 \mathrm{mmol}$), cinnamyl alcohol \boldsymbol{E}-2a ($41.6 \mathrm{mg}, 0.310 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(26.4 \mathrm{mg}, 0.0930 \mathrm{mmol})$ were subjected to the general procedure (FCC : gradient elution: $6 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield 3 o as a colorless oil ($50.2 \mathrm{mg}, 53 \%$).

Data for 3o: Rf 0.50 ($25 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.27-7.31(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.16-7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.05-7.13(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.41(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 8-\mathrm{H}), 6.14(1 \mathrm{H}, \mathrm{dt}$, $J=15.8,6.9 \mathrm{~Hz}, 7-\mathrm{H}), 4.42(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.12\left(1 \mathrm{H}, \mathrm{dt}, J=8.4,7.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.02(1 \mathrm{H}$, $\left.\mathrm{td}, J=8.3,4.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 2.40-2.52\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.25(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 2.16-2.24(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-$ H_{A} and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 1.80\left(1 \mathrm{H}\right.$, dddd, $\left.\left.J=13.4,6.1,3.9,2.4 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 139.8 (C Ar), 137.6 (C Ar), 136.7 (C Ar), 135.9 (C Ar), 131.4 (C-8), 129.7 (CH Ar), 128.6 ($2 \times \mathrm{CH}$ Ar and C-7), 127.7 (CH Ar), 127.2 (CH Ar), 126.1 ($2 \times \mathrm{CH}$ Ar), 123.9 (CH Ar), 86.1 (C-2), 68.0 (C-5), 48.0 (C-3), 35.7 (C-6), 32.5 (C-4), 20.0 (Me), 19.6 (Me). HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 293.18999, found m / z 293.18997. IR (film) $v_{\text {max }}$: 2971, 1497, 1449, 964, 743, $692 \mathrm{~cm}^{-1}$
8.17. (\pm)-(2S,3R)-3-Benzhydryl-2-(2-bromophenyl)tetrahydrofuran (3p)

Alcohol \boldsymbol{E}-1d ($69.6 \mathrm{mg}, 0.308 \mathrm{mmol}$), benzhydrol $2 \mathbf{2 d}(56.7 \mathrm{mg}, 0.308 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ ($26.2 \mathrm{mg}, 0.0923 \mathrm{mmol}$) were subjected to the general procedure (FCC: gradient elution: $5 \% \rightarrow 7 \%$ $\mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 p}$ as a white foam ($90.5 \mathrm{mg}, 75 \%$).

Data for 3p: $\mathbf{R}_{\mathbf{f}} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.25-7.39(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.17-7.24(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.98-7.12(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.08(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, 2-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{td}, J$ $\left.=8.3,5.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.02\left(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 4.00(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}, 6-\mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{ddt}, J$ $=10.6,7.4,5.1 \mathrm{~Hz}, 3-\mathrm{H}), 2.11-2.23\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.79-1.89\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 144.0$ (C Ar), 142.8 (C Ar), 141.6 (C Ar), 132.9 (CH Ar), 132.8 (CH Ar), 128.72 (3 x CH Ar), 128.69 ($3 \times \mathrm{CH} \mathrm{Ar}$), 128.2 ($3 \times \mathrm{CH} \mathrm{Ar}$), 127.2 (CH Ar), 126.5 (CH Ar), 126.4 (CH Ar), 122.8 (C Ar), 84.4 (C-2), 68.0 (C-5), 55.2 (C-6), 50.1 (C-3), 31.3 (C-4). HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{OBrNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 415.06680$, found $m / z 415.06686$. IR (film) $v_{\max }: 3649,2980$, 2887, 1450, 1521, $1037 \mathrm{~cm}^{-1}$.
8.18. (\pm)-(2S,3S)-3-(4-Methoxybenzyl)-2-phenyltetrahydrofuran (3q)

Alcohol \boldsymbol{E}-1e ($207.4 \mathrm{mg}, 1.401 \mathrm{mmol}$), 4-methoxybenzylic alcohol 2c $(192.4 \mathrm{mg}, 1.401$ $\mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(119.3 \mathrm{mg}, 0.4201 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $7 \% \rightarrow 15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 q}$ as a colorless oil ($274.0 \mathrm{mg}, 73 \%$).

Data for 3q: Rf 0.50 ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.24-7.37(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.06(2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 4.53(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2-\mathrm{H}), 4.09$ $\left(1 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.04\left(1 \mathrm{H}, \mathrm{td}, J=8.2,5.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.13.6,5.4 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.55\left(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.5 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.34(1 \mathrm{H}, \mathrm{dqd}, J=9.5,7.5,5.4 \mathrm{~Hz}, 3-\mathrm{H})$, $2.01-2.11\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.78\left(1 \mathrm{H}, \mathrm{dq}, J=12.3,7.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 158.1 (C Ar), 142.6 (C Ar), 132.6 (C Ar), 129.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.5 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), $127.5(\mathrm{C}-\mathrm{H} \mathrm{Ar})$, 126.2 (2 x C-H Ar), 113.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 85.6 (C-2), 68.1 (C-5), 55.4 (OMe), 50.2 (C-3), 37.5 (C-6), 32.4 (C-4). HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 291.13555, found m / z 291.13568. IR (film) $v_{\max }$: 2980, 1510, 1243, 1177, 1034, $699 \mathrm{~cm}^{-1}$.
8.19. (\pm)-(2S,3R)-3-Benzhydryl-2-phenyltetrahydrofuran (3r)

Alcohol \boldsymbol{E}-1e ($57.3 \mathrm{mg}, 0.387 \mathrm{mmol}$), benzhydrol $\mathbf{2 d}(71.2 \mathrm{mg}, 0.387 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$ ($33.0 \mathrm{mg}, 0.116 \mathrm{mmol}$) were subjected to the general procedure (FCC: gradient elution: $7 \% \rightarrow 10 \%$ $\mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 r}$ as a colorless oil ($93.8 \mathrm{mg}, 78 \%$).

Data for 3r: $\mathbf{R f}_{\mathbf{f}} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.14-7.39(13 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.01(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}), 4.76(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, 2-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{dt}, J=8.3,4.2 \mathrm{~Hz}, 5-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 4.07\left(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.99(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, 6-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{ddt}, J=11.6,7.9,4.0$ $\mathrm{Hz}, 3-\mathrm{H}), 2.12-2.23\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.72-1.82\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 144.0$ (C Ar), 143.7 (C Ar), 143.6 (C Ar), 128.7 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.6 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.09 (2 x C-H Ar), 128.07 (2 x C-H Ar), 126.9 (C-H Ar), 126.5 (C-H Ar), 126.4 (C-H Ar), 125.8 (2 x C-H Ar), 84.8 (C-2), 67.9 (C-5), 55.6 (C-6), 51.7 (C-3), 30.9 (C-4). HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 337.15629$, found m / z 337.15631. IR (film) $v_{\text {max }}$: 2980, 2360, 1493, 1451, 1382, $1058 \mathrm{~cm}^{-1}$.
8.20. (\pm)-(3R)-4-Benzhydryl-1-oxaspiro[4.4]nonane (3s)

Alcohol $1 f(41.4 \mathrm{mg}, 0.329 \mathrm{mmol})$, benzhydrol $2 d(60.4 \mathrm{mg}, 0.329 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ ($28.0 \mathrm{mg}, 0.0986 \mathrm{mmol}$) were subjected to the general procedure (FCC: gradient elution: $5 \% \rightarrow 7 \%$ $\mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield 3 s as a white foam ($72.0 \mathrm{mg}, 75 \%$).

Data for $\mathbf{3 s}$: $\mathbf{R}_{\mathbf{f}} 0.50$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.33-7.37(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.22-7.28(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.11-7.16(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 3.79(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, 6-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{dt}$, $\left.J=8.8,4.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.69\left(1 \mathrm{H}, \mathrm{q}, J=8.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.10(1 \mathrm{H}, \mathrm{ddd}, J=11.7,10.0,7.6 \mathrm{~Hz}, 3-\mathrm{H})$, $1.93\left(1 \mathrm{H}, \mathrm{dtd}, J=12.7,7.5,4.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.46-1.64\left(6 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 7-\mathrm{H}_{\mathrm{A}}, 8-\mathrm{H}_{\mathrm{A}}, 9-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.10-\mathrm{H}_{2}\right)$, 1.37-1.45 ($\left.1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{B}}\right), 1.05-1.16\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 145.3$ (C Ar), 143.8 (C Ar), 128.73 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.65 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.2 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 127.8 ($2 \times \mathrm{C}-$ H Ar), 126.5 (C-H Ar), 126.3 (C-H Ar), 93.2 (C-2), 63.6 (C-5), 54.8 (C-6), 47.6 (C-3), 37.8 (C-7),
33.6 (C-4), 31.6 (C-10), 23.7 (C-9), 23.1 (C-8). HRMS (EI): calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}$ [M] ${ }^{+}$requires m / z 292.1822, found m / z 292.1818. IR (film) $v_{\max }$: 2980, 2888, 1493, 1451, 1153, $947 \mathrm{~cm}^{-1}$.
8.21. (\pm)-(3R)-4-Benzhydryl-1,8-dioxaspiro[4.5]decane (3t)

Alcohol $\mathbf{1 g}(13.6 \mathrm{mg}, 0.096 \mathrm{mmol})$, benzhydrol $\mathbf{2 d}(17.7 \mathrm{mg}, 0.096 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$ $(8.2 \mathrm{mg}, 0.029 \mathrm{mmol}$) were subjected to the general procedure (FCC: gradient elution: $12 \% \rightarrow 16 \%$ $\mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield 3 t as a yellow foam ($17.7 \mathrm{mg}, 60 \%$).

Data for 3t: $\mathbf{R f}_{\mathbf{f}} 0.40$ ($60 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.31-7.39(4 \mathrm{H} \mathrm{m}$, $\mathrm{Ar})$, 7.22-7.32 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.11-7.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 3.61-3.82 ($6 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 5-\mathrm{H}_{2}, \mathrm{CH}_{2}$ tetrahydropyranyl and CH tetrahydropyranyl), $3.55(1 \mathrm{H}, \mathrm{ddd}, J=11.1,4.6,2.4 \mathrm{~Hz}, \mathrm{CH}$ tetrahydropyranyl), $2.84(1 \mathrm{H}, \mathrm{td}, J=11.4,7.5 \mathrm{~Hz}, 3-\mathrm{H}), 1.89\left(1 \mathrm{H}, \mathrm{dtd}, J=12.8,7.5,3.2 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right)$, 1.59-1.75 $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right.$ and CH tetrahydropyranyl), $1.53(1 \mathrm{H}, \mathrm{dd}, J=13.1,2.2 \mathrm{~Hz}, \mathrm{CH}$ tetrahydropyranyl), 1.14-1.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ tetrahydropyranyl). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 145.1 (C Ar), 143.2 (C Ar), 128.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.7 (2 x C-H Ar), 126.4 (C-H Ar), 125.7 (C-H Ar), 80.2 (C-2), 65.0 (C-5), $64.0\left(\mathrm{CH}_{2}\right.$ tetrahydropyranyl), $63.9\left(\mathrm{CH}_{2}\right.$ tetrahydropyranyl), $53.5(\mathrm{C}-6), 51.8(\mathrm{C}-3), 37.8\left(\mathrm{CH}_{2}\right.$ tetrahydropyranyl), $32.7(\mathrm{C}-4)$, $31.2\left(\mathrm{CH}_{2}\right.$ tetrahydropyranyl). HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 331.16685, found $m / z 331.16690$. IR (film) $v_{\max }$: 3657, 2980, 2888, $1382,1251,1151 \mathrm{~cm}^{-1}$.
8.22. (\pm)-(2S,3R)-2-(4-Methoxyphenyl)-3-[(1'S)-3-phenylcyclopent-2-en-1-yl]-1oxaspiro[4.5]decane (3u)

Alcohols $\boldsymbol{E}-\mathbf{1 h}(50.0 \mathrm{mg}, 0.203 \mathrm{mmol})$ and $\mathbf{Z - 2 m}(32.5 \mathrm{mg}, 0.203 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right) 4(17.3$ $\mathrm{mg}, 0.0609 \mathrm{mmol}$) were subjected to the general procedure except conducting the reaction at r.t. (FCC: gradient elution: $5 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 u}$ as a yellow foam ($78.3 \mathrm{mg}, 99 \%$).

Data for 3u: $\mathbf{R}_{\mathbf{f}} 0.40$ ($20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.40-7.46(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.29-7.36(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.21-7.28(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.13(1 \mathrm{H}, \mathrm{q}, J=$ $2.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 2-\mathrm{H}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.83-2.94(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.53-2.66$ $\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.18-2.27(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.14\left(1 \mathrm{H}, \mathrm{dd}, J=11.9,7.5 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.96(1 \mathrm{H}, \mathrm{dtd}, J=$ $\left.13.2,8.3,4.9 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.59-1.82\left(7 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right.$ and $3 \mathrm{x} \mathrm{CH}_{2}$ cyclohexyl), 1.31-1.50 ($5 \mathrm{H}, \mathrm{m}, 10-$ H_{B} and $2 \mathrm{x} \mathrm{CH}_{2}$ cyclohexyl). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.3$ (C Ar), 143.6 (C-8), 136.5 (C Ar), 134.4 (C Ar), 128.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.5 (C-7), 127.3 (C-H Ar), 125.7 (2 x C-H Ar), 113.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.4 (C-2), 81.8 (C-5), 55.4 (OMe), 52.9 (C-3), 47.1 (C-6), 41.3 (C4), 39.2 (CH_{2} cyclohexyl), $38.9\left(\mathrm{CH}_{2}\right.$ cyclohexyl), 32.9 (C-9), 29.4 (C-10), $25.8\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $24.2\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $23.8\left(\mathrm{CH}_{2}\right.$ cyclohexyl). HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ requires $m / z 389.24751$, found $m / z 389.24783$. IR (film) $v_{\text {max }}: 3656,2980,2929,1512,1244,1072$ cm^{-1}.
8.23. (\pm)-(2S,3R)-2-(4-Methoxyphenyl)-3-[(1'S)-3-phenylcyclopent-2-en-1-yl]-1,8dioxaspiro[4.5]decane (3v)

Alcohols $\boldsymbol{E}-\mathbf{1 i}(60.0 \mathrm{mg}, 0.242 \mathrm{mmol})$ and $\mathbf{Z}-\mathbf{2 m}(38.7 \mathrm{mg}, 0.242 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(20.6$ $\mathrm{mg}, 0.0725 \mathrm{mmol}$) were subjected to the general procedure except conducting the reaction at r.t. (FCC: gradient elution: $20 \% \rightarrow 35 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 v}$ as a yellow solid ($94.0 \mathrm{mg}, 99 \%$).

Data for 3v: Rf 0.30 ($60 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). M.p.: $89{ }^{\circ} \mathrm{C}\left(10 \% \mathrm{EtOAc}-\right.$ pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.43(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 7.23-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.90(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, Ar), $6.12(1 \mathrm{H}, \mathrm{q}, J=2.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 2-\mathrm{H}), 3.85-3.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ tetrahydropyranyl), $3.68-3.75(1 \mathrm{H}, \quad \mathrm{m}, \mathrm{CH}$ tetrahydropyranyl), $3.59-3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ tetrahydropyranyl), 2.86-2.95 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 2.55-2.68 $\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.22-2.31(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.15-$ $2.21\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.99\left(1 \mathrm{H}, \mathrm{dtd}, J=13.2,8.2,4.5 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.85-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ tetrahydropyranyl), $1.76-1.82\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ tetrahydropyranyl and CH_{2} tetrahydropyranyl), $1.72(1 \mathrm{H}$, $\left.\mathrm{t}, J=11.6 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.38\left(1 \mathrm{H}, \mathrm{dq}, J=15.2,7.8 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.4$ (C Ar), 143.9 (C-8), 136.4 (C Ar), 133.8 (C Ar), 128.54 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.45 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.4 (C-H Ar), 127.1 (C-7), 125.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 113.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.6 (C-2), 78.5 (C-5), 65.6 (CH_{2} tetrahydropyranyl), $65.5\left(\mathrm{CH}_{2}\right.$ tetrahydropyranyl), $55.4(\mathrm{OMe}), 52.6(\mathrm{C}-3), 46.9(\mathrm{C}-6), 41.9(\mathrm{C}-4)$, $39.4\left(\mathrm{CH}_{2}\right.$ tetrahydropyranyl), $39.0\left(\mathrm{CH}_{2}\right.$ tetrahydropyranyl), $32.9(\mathrm{C}-9), 29.4(\mathrm{C}-10)$. HRMS
(ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 413.20872$, found $\mathrm{m} / \mathrm{z} 413.21051$. IR (film) $v_{\max }: 3657,2980,1461,1248,1152,1073 \mathrm{~cm}^{-1}$.
8.24. (\pm)-(2S,3S)-3-Cinnamyl-2-(4-methoxyphenyl)-5,5-dimethyltetrahydrofuran (3w)

Alcohol $\boldsymbol{E}-\mathbf{- 1 j}(62.2 \mathrm{mg}, 0.302 \mathrm{mmol})$, cinnamyl alcohol $\boldsymbol{E}-\mathbf{2 a}(40.5 \mathrm{mg}, 0.302 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(25.7 \mathrm{mg}, 0.0905 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $20 \% \rightarrow 35 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 w}$ as a colorless oil ($51.8 \mathrm{mg}, 55 \%$).

Data for $\mathbf{3 w}$: $\mathbf{R f}_{\mathrm{f}} 0.50$ ($35 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.23-7.33(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.15-7.22(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.34(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 8-\mathrm{H}), 6.05$ ($1 \mathrm{H}, \mathrm{dt}, J=15.8,6.7 \mathrm{~Hz}, 7-\mathrm{H}$), $4.46(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.35$ (1 H , dddd, J $\left.=13.5,6.6,4.2,1.5 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.25(1 \mathrm{H}, \mathrm{dddd}, J=9.2,7.9,3.9,2.2 \mathrm{~Hz}, 3-\mathrm{H}), 2.09-2.18(2 \mathrm{H}, \mathrm{m}, 4-$ H_{A} and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 1.61-1.71\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.38(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, CDCl3) $^{\boldsymbol{\delta}} 159.3$ (C Ar), 137.6 (C Ar), 133.6 (C Ar), 131.1 ($\mathrm{C}-8$), 128.6 ($\mathrm{C}-7$), 128.6 ($2 \times \mathrm{CH} \mathrm{Ar)}$, 128.2 (CH Ar), 127.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.9 ($2 \times \mathrm{CH}$ Ar), 85.8 (C-2), 80.0 (C-5), 55.4 (OMe), 48.7 (C-3), 46.1 (C-4), 34.8 (C-6), 29.9 (Me), 29.6 (Me). HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 323.20056$, found m / z 323.20053. IR (film) $v_{\max }: 2980,2889,1512$, $1461,1245,1153 \mathrm{~cm}^{-1}$.

8.25. (\pm)-(2S,3S)-3-Cinnamyl-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran (3x)

Alcohol $\boldsymbol{E}-1 \mathbf{k}$ ($69.2 \mathrm{mg}, 0.306 \mathrm{mmol}$), cinnamyl alcohol \boldsymbol{E}-2a ($41.0 \mathrm{mg}, 0.306 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(26.0 \mathrm{mg}, 0.0915 \mathrm{mmol})$ were subjected to the general procedure ($\mathrm{FCC}: 3 \% \mathrm{Et}_{2} \mathrm{O}-$ pentane) to yield $\mathbf{3 x}$ as a colorless oil ($30.8 \mathrm{mg}, 33 \%$).

Data for 3x: $\mathbf{R}_{\mathbf{f}} 0.30\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.25-7.34(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.16-7.24(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.84-6.94(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.50(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{dt}$, $J=14.4,7.2 \mathrm{~Hz}, 5-\mathrm{H}), 5.35(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, 2-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.58(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 3-$ H), 2.61-2.81 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.62$ (C Ar), 159.59 (C Ar), 137.3
(C Ar), 133.6 (C Ar), 132.7 (C-6), 127.0 (C Ar), 128.7 ($3 \times \mathrm{CH}$ Ar), 127.7 ($2 \times \mathrm{CH}$ Ar), 127.4 (CH $\mathrm{Ar}), 127.2$ (C-5), 126.3 ($2 \times \mathrm{CH}$ Ar), 124.5 (CH Ar), 120.8 (CH Ar), 114.1 ($2 \times \mathrm{CH}$ Ar), 109.7 (CH Ar), 89.4 (C-2), 55.4 (OMe), 50.5 (C-3), 38.1 (C-4). NOESY- 2D ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$): between 2-H and $4-\mathrm{H}_{2}$, between $2-\mathrm{H}$ and $5-\mathrm{H}$, between $2-\mathrm{H}$ and $6-\mathrm{H}$. HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 343.16926, found m / z 343.16937. IR (film) $v_{\max }: 3658,2980,1513,1247$, $956,826 \mathrm{~cm}^{-1}$.
8.26. (\pm)-(2S,3S)-3-Benzhydryl-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran (3y)

E-1k
$+$

Alcohol $\boldsymbol{E}-1 \mathbf{k}$ ($20.2 \mathrm{mg}, 0.0891 \mathrm{mmol}$), benzhydrol $2 d$ ($16.4 \mathrm{mg}, 0.0891 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(7.6 \mathrm{mg}, 0.027 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: 4% $\rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 y}$ as a white foam ($20.7 \mathrm{mg}, 60 \%$).

Data for $\mathbf{3 y}$: $\mathbf{R f}_{\mathbf{f}} 0.40\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.19-7.32(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.13(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 6.83-6.89(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.75(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.59(1 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}, \mathrm{Ar}), 6.14(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}), 5.30(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}, 2-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{dd}, J=11.5$, $4.1 \mathrm{~Hz}, 3-\mathrm{H}), 4.09(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 160.0 (C-4), 159.4 (C-5), 142.7 (C Ar), 142.6 (C Ar), 134.5 (C Ar), 128.82 ($5 \times \mathrm{C}-\mathrm{H}$ Ar), 128.78 (2 x C-H Ar), 128.7 (C Ar), 128.5 (2 x C-H Ar), 127.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.96 (C-H Ar), 126.95 (C-H Ar), 126.3 (C-H Ar), 120.0 (C-H Ar), 113.9 (2 x C-H Ar), 109.4 (C-H Ar), 88.2 (C-2), 58.1 (C-6), 55.4 (OMe), 55.0 (C-3). HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 415.16685, found $m / z 415.16687$. IR (film) $v_{\text {max }}$: 2980, 2887, 2360, 1457, 1302, $1022 \mathrm{~cm}^{-1}$.
8.27. (\pm)-(2S,3S,4R,5R)-3-Benzhydryl-2-(4-methoxyphenyl)-5-methyl-4phenyltetrahydrofuran and (\pm)-(2S,3S,4S,5S)-3-benzhydryl-2-(4-methoxyphenyl)-5-methyl-4-phenyltetrahydrofuran (3z)

Alcohol \boldsymbol{E}-11 ($5.0 \mathrm{mg}, 0.019 \mathrm{mmol}$), benzhydrol $\mathbf{2 d}(3.5 \mathrm{mg}, 0.019 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ $(1.7 \mathrm{mg}, 0.0057 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction at
$0^{\circ} \mathrm{C}$ for 24 hours (FCC: gradient elution: $5 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield inseparable 8:1 mixture of diastereomers $\mathbf{3 z}$ as a colorless oil ($8.0 \mathrm{mg}, 99 \%$).

Data for major diastereomer A of $\mathbf{3 z}$ (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.50$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.23(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.15(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 6.95-7.11$ $(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.65-6.68(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.95(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, 2-\mathrm{H})$, $4.26(1 \mathrm{H}, \mathrm{dq}, J=8.7,5.9 \mathrm{~Hz}, 5-\mathrm{H}), 4.06(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, 6-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.47(1 \mathrm{H}$, ddd, $J=11.4,7.1,4.7 \mathrm{~Hz}, 3-\mathrm{H}), 2.64(1 \mathrm{H}, \mathrm{dd}, J=8.8,7.1 \mathrm{~Hz}, 4-\mathrm{H}), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{Me})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 158.6$ (C Ar), 143.6 (C Ar), 142.5 (C Ar), 142.1 (C Ar), 135.7 (C Ar), 128.7 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.63 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.46 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.3 (2 x C-H Ar), 128.13 (2 x C-H Ar), 128.10 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 127.4 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 126.6 (C-H Ar), 126.3 (C-H Ar), 126.04 (C-H $\mathrm{Ar}), 113.8$ ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.6 (C-2), 83.4 (C-5), 61.3 (C-4), 60.9 (C-3), 59.5 (C-6), 55.4 (OMe), 19.5 (Me). NOESY- 2D ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): between 2-H and Me , between $2-\mathrm{H}$ and 6 - H , between $2-\mathrm{H}$ and $4-\mathrm{H}$, between 3-H and 5-H. HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 457.21380, found $m / z 457.21353$. IR (film) $v_{\text {max }}$: 2980, 2888, $1382,1248,1152,954 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of $\mathbf{3 z}$ (from the mixture): ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{M H z}$, CDCl $_{3}$) $\boldsymbol{\delta} 7.23(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 6.95-7.17(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.53$ ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}$), $4.77(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.39-4.44(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.62-3.68(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, 6-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{dd}, J=8.3,4.1 \mathrm{~Hz}, 4-\mathrm{H}), 1.49$ $(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 158.6(\mathrm{C} \mathrm{Ar}), 143.7(\mathrm{C} \mathrm{Ar}), 142.1(\mathrm{C} \mathrm{Ar})$, 140.6 (C Ar), 129.1 (C Ar), 128.57 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.53 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.0 (2 x C-H Ar), 127.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}), 127.8$ ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.5 (C-H Ar), 126.1 (CH Ar), 125.95 (C-H Ar), 113.4 (2 x C-H Ar), 85.9 (C-2), 81.3 (C-5), 56.2 (C-4), 55.4 (OMe), 53.3 (C-3), 52.3 (C-6), 22.7 (Me). NOESY- 2D ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l 3}$): between 2-H and 5-H, between 2-H and 6-H.

8.28. (\pm)-($2 S, 3 S, 4 R, 5 S$)-3-Benzhydryl-2-(4-methoxyphenyl)-5-methyl-4-

 phenyltetrahydrofuran and (\pm)-(2S,3S,4S,5R)-3-benzhydryl-2-(4-methoxyphenyl)-5-methyl-4-phenyltetrahydrofuran (3aa)

Alcohol \boldsymbol{E}-1m ($23.9 \mathrm{mg}, 0.0864 \mathrm{mmol}$), benzhydrol $2 d(15.9 \mathrm{mg}, 0.0864 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(7.3 \mathrm{mg}, 0.026 \mathrm{mmol})$ were subjected to the general procedure except conducting the
reaction at $0^{\circ} \mathrm{C}$ for 24 hours (FCC : gradient elution: $5 \% \rightarrow 6 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield inseparable 13:1 mixture of diastereomers 3aa as a colorless oil ($37.7 \mathrm{mg}, 99 \%$).

Data for major diastereomer \mathbf{A} of 3 aa (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.50$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $\boldsymbol{\delta}$ 7.17-7.27 (3H, m, Ar), 7.07-7.15 (5H, m, Ar), 6.96-7.06 ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.64(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 4.58(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 2-$ H), $4.32(1 \mathrm{H}$, quint, $J=6.3 \mathrm{~Hz}, 5-\mathrm{H}), 4.09(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, 6-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.35(1 \mathrm{H}$, ddd, $J=11.2,7.5,3.5 \mathrm{~Hz}, 3-\mathrm{H}), 3.01(1 \mathrm{H}, \mathrm{dd}, J=6.4,3.4 \mathrm{~Hz}, 4-\mathrm{H}), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{Me})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 158.8$ (C Ar), 143.6 (C Ar), 143.3 (C Ar), 142.7 (C Ar), 133.1 (C Ar), 129.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.59 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.57 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.51 (2 x C-H Ar), 128.41 (2 x C-H Ar), 128.37 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.07 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 126.5 (C-H Ar), 126.4 (C-H Ar), 126.1 (CH Ar), 113.46 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 86.6 (C-2), 77.8 (C-5), 60.9 (C-3), 58.3 (C-6), 56.5 (C-4), 55.38 (OMe), 16.7 (Me). NOESY- 2D ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): between 2-H and 4-H, between 2-H and 5-H, between $2-\mathrm{H}$ and $6-\mathrm{H}$, between $4-\mathrm{H}$ and $6-\mathrm{H}$. HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ requires $m / z 457.21380$, found $m / z 457.21353$. IR (film) $v_{\text {max }}$ 2980, 2888, 1382, 1248, 1152, 954 cm^{-1}.

Partial data for minor diastereomer B of 3aa (from the mixture): ${ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz , $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.31-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.07-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.96-7.06(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{Ar}), 6.56(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 4.85-4.89(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.84(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 2-\mathrm{H}), 3.80-$ $3.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.52(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, 6-\mathrm{H}), 3.31-3.34(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.02$ $(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 158.4(\mathrm{C} \mathrm{Ar}), 143.5(\mathrm{C} \mathrm{Ar}), 137.2(\mathrm{C} \mathrm{Ar})$, 136.6 (C Ar), 128.63 (C Ar), 128.59 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.46 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.23 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.22 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.12 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 127.92 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.85 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 126.7 (C-H Ar), 126.6 (C-H Ar), 126.3 (C-H Ar), 113.48 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.8 (C-2), 78.9 (C-5), 57.3 (C-3), 55.41 (OMe), 54.8 (C-4), 53.1 (C-6), 16.9 (Me). NOESY- 2D ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l 3) : ~ b e t w e e n ~ 2 - H ~}$ and $6-\mathrm{H}$, between $3-\mathrm{H}$ and $5-\mathrm{H}$.
8.29. (\pm)-(2S,3R)-3-Cinnamyl-2-(4-methoxyphenyl)tetrahydro-2H-pyran (3ab)

Alcohol \boldsymbol{E}-1n ($50.5 \mathrm{mg}, 0.263 \mathrm{mmol}$), cinnamyl alcohol \boldsymbol{E}-2a ($35.2 \mathrm{mg}, 0.263 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(22.4 \mathrm{mg}, 0.0789 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $7 \% \rightarrow 12 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{3 a b}$ as a colorless oil ($40.0 \mathrm{mg}, 50 \%$).

Data for 3ab: $\mathbf{R f}_{\mathbf{f}} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.24-7.33(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.15-7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.90(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.22(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 9-\mathrm{H}), 6.00$ $(1 \mathrm{H}, \mathrm{dt}, J=14.9,7.2 \mathrm{~Hz}, 8-\mathrm{H}), 4.09\left(1 \mathrm{H}, \mathrm{dt}, J=11.6,4.1 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 3.94(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 2-\mathrm{H})$, $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.54\left(1 \mathrm{H}, \mathrm{td}, J=11.5,2.6 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.04-2.12\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.96-2.04(1 \mathrm{H}$, $\left.\mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 1.72-1.87\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 5-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.7-\mathrm{H}_{\mathrm{B}}\right), 1.62-1.70\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.34(1 \mathrm{H}, \mathrm{qd}, J=13.0$, $4.1 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.4$ (C Ar), 137.7 (C Ar), 133.6 (C Ar), 131.5 (C9), 128.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.2 (C-8), 127.0 (C-H Ar), 126.0 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 113.9 (2 x C-H Ar), 85.6 (C-2), 69.0 (C-6), 55.4 (OMe), 42.2 (C-3), 36.0 (C-7), 30.0 (C-4), 26.7 (C-5). HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 309.18491$, found $\mathrm{m} / \mathrm{z} 309.18488$. IR (film) $v_{\text {max }}$: $3658,2980,2933,1512,1241,1075 \mathrm{~cm}^{-1}$.
8.30. (\pm)-(4S,5S)-4-Cinnamyl-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one (3ac)

Carboxylic acid \boldsymbol{E}-10 ($45.6 \mathrm{mg}, 0.238 \mathrm{mmol}$), cinnamyl alcohol \boldsymbol{E}-2a ($31.8 \mathrm{mg}, 0.238$ mmol) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(20.0 \mathrm{mg}, 0.0704 \mathrm{mmol})$ were subjected to the general procedure (FCC : gradient elution: $15 \% \rightarrow 45 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield 3ac as a colorless oil ($55.0 \mathrm{mg}, 75 \%$).

Data for 3ac: $\mathbf{R f}_{\mathbf{f}} 0.50$ ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.19-7.34(7 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 6.92(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.45(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 8-\mathrm{H}), 6.04(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.1 \mathrm{~Hz}$, $7-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.81\left(1 \mathrm{H}, \mathrm{dd}, J=17.2,7.9 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.54-$ $2.68(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.46-2.54\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.42\left(1 \mathrm{H}, \mathrm{dd}, J=17.2,7.9 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 2.31-2.39(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}$). ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 176.0$ ($\mathrm{C}=\mathrm{O}$), 160.0 (C Ar), 136.9 (C Ar), 133.0 (C-8), 130.1 (C Ar), 128.7 (2 x C-H Ar), 127.7 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 127.6 (C-H Ar), 126.2 (2 x C-H Ar), 125.9 (C-7), 114.2 (2 x C-H Ar), 86.1 (C-5), 55.4 (OMe), 44.5 (C-4), 35.4 (C-6), 35.0 (C-3). HRMS (Cl): calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 309.14852, found m / z 309.14856. IR (film) $v_{\max }$: $2980,1774,1514,1248,1144,1029 \mathrm{~cm}^{-1}$.
8.31. (\pm)-($4 R, 5 S)-4-\left[\left(1^{\prime} R, 2^{\prime} E\right)\right.$-1,3-diphenylallyl]-5-(4-methoxyphenyl)dihydrofuran-2(3H)one and $(\pm)-(4 R, 5 S)-4-\left[\left(1^{\prime} S, 2^{\prime} E\right)-1,3\right.$-diphenylallyl]-5-(4-methoxyphenyl)dihydrofuran-2(3H)- one (3ad)

Carboxylic acid $\boldsymbol{E}-1 \mathbf{1 o}$ ($200.0 \mathrm{mg}, 1.031 \mathrm{mmol}$), trans-1,3-diphenyl-2-propen-1-ol $\boldsymbol{E}-\mathbf{2 g}$ $(219.0 \mathrm{mg}, 1.031 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}(88.6 \mathrm{mg}, 0.312 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction at at $0^{\circ} \mathrm{C}$ (FCC : gradient elution: $15 \% \rightarrow 30 \% \mathrm{Et}_{2} \mathrm{O}-$ pentane) to yield separable $4: 1$ mixture of diastereomers $\mathbf{3 a d}$ as a colorless oil ($399.0 \mathrm{mg}, 99 \%$).

Data for major diastereomer A of 3ad: $\mathbf{R f}_{\mathbf{f}} 0.40$ ($70 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.32-7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.17-7.30(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.51$ $(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 8-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{dd}, J=15.7,9.2 \mathrm{~Hz}, 7-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, 5-\mathrm{H}), 3.79$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.54(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, 6-\mathrm{H}), 2.96-3.06(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.64(1 \mathrm{H}, \mathrm{dd}, J=18.0,8.7 \mathrm{~Hz}$, $\left.3-\mathrm{H}_{\mathrm{A}}\right), 2.35\left(1 \mathrm{H}, \mathrm{dd}, J=18.0,7.1 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 176.0(\mathrm{C}=\mathrm{O}), 159.8$ (C Ar), 141.3 (C Ar), 136.6 (C Ar), 132.0 (C-8), 131.1 (C Ar), 130.6 (C-7), 129.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.6 (2 x C-H Ar), 128.0 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.79 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.75 (C-H Ar), 127.3 (C-H Ar), 126.4 (2 x C-H Ar), 114.3 (2 x C-H Ar), 84.9 (C-5), 55.4 (OMe), 52.6 (C-6), 48.6 (C-4), 33.6 (C-3). HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 407.16177, found m / z 407.16190. IR (film) $v_{\max }$: 2982, 1764, 1524, 1278, 1124, $1019 \mathrm{~cm}^{-1}$.

Data for minor diastereomer B of 3ad: $\mathbf{R f}_{\mathbf{f}} 0.50\left(70 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{5 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.28-7.35(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.17-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.79$ $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.50(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 8-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}, 7-\mathrm{H}), 5.17$ $(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, 5-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.49(1 \mathrm{H}, \mathrm{t}, J=9.2 \mathrm{~Hz}, 6-\mathrm{H}), 2.90-2.97(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $2.81\left(1 \mathrm{H}, \mathrm{dd}, J=17.9,8.6 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.66\left(1 \mathrm{H}, \mathrm{dd}, J=17.9,5.9 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 176.4$ ($\mathrm{C}=\mathrm{O}$), 159.6 (C Ar), 141.3 (C Ar), 136.6 (C Ar), 132.7 ($\mathrm{C}-8$), 131.2 (C Ar), 129.5 (C-7), 129.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.0 (C-H Ar), 127.4 (C-H Ar), 126.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.5 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 114.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.2 (C-5), 55.5 (OMe), 52.6 (C6), 48.6 (C-4), 32.7 (C-3).
8.32. (\pm)-(5R,6S)-5-Cinnamyl-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (3ae)

Carboxylic acid $\boldsymbol{E}-\mathbf{1 p}(45.9 \mathrm{mg}, 0.224 \mathrm{mmol}$), cinnamyl alcohol \boldsymbol{E}-2a ($30.0 \mathrm{mg}, 0.224$ $\mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}(19.0 \mathrm{mg}, 0.0669 \mathrm{mmol})$ were subjected to the general procedure (FCC: gradient elution: $18 \% \rightarrow 25 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield 3ae as a colorless oil ($38.9 \mathrm{mg}, 55 \%$).

Data for 3ae: Rf $0.50\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.24-7.31(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.17-7.26(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.92(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.32(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 9-\mathrm{H}), 6.00$ (1 H, ddd, $J=15.6,8.2,6.3 \mathrm{~Hz}, 8-\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2-\mathrm{H}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.75(1 \mathrm{H}$, ddd, $\left.J=17.9,7.1,4.6 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.61\left(1 \mathrm{H}, \mathrm{ddd}, J=17.8,9.5,6.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 2.15-2.23(1 \mathrm{H}, \mathrm{m}, 7-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 2.04-2.14\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.91-2.04\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 1.74(1 \mathrm{H}$, dddd, $J=15.0,11.3,6.8$, $\left.4.7 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta} 171.1$ (C-6), 159.7 (C Ar), 136.8 (C Ar), 132.6 (C9), 130.1 (C Ar), 128.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.2 (C-H Ar), 125.9 (C-8), 125.8 ($2 \times$ C-H Ar), 113.8 (2 x C-H Ar), 86.1 (C-2), 55.1 (OMe), 39.4 (C-3), 34.7 (C-7), 29.3 (C-5), 24.3 (C4). HRMS (Cl): calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 323.16417$, found $\mathrm{m} / \mathrm{z} 323.16418$. IR (film) $v_{\max }: 2980,1727,1514,1246,1072,966 \mathrm{~cm}^{-1}$.
8.33. (+)-(2R,3R,4S)-3-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-4-phenyltetrahydrofuran and (+)-(2S,3S,4S)-3-(4-methoxybenzyl)-2-(4-methoxyphenyl)-4-phenyltetrahydrofuran [(+)-3af]

Alcohol (+)-(E)-1q ($30.0 \mathrm{mg}, 0.118 \mathrm{mmol})$, 4-methoxybenzylic alcohol $\mathbf{2 c}(15.7 \mathrm{mg}, 0.118$ $\mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(9.7 \mathrm{mg}, 0.034 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction at at $0^{\circ} \mathrm{C}$ (FCC : gradient elution: $10 \% \rightarrow 15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield inseparable 5:1 mixture of diastereomers (+)-3af as a colorless oil ($43.8 \mathrm{mg}, 99 \%, 99 \%$ ee).

Data for major diastereomer A of (+)-3af (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.50$ ($50 \% \mathrm{Et}_{2} \mathrm{O}-$ pentane $) .[\alpha]_{\mathrm{D}}^{25}=+39.6\left(c=6.75, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.23-7.31(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.14-$ $7.22(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.82-6.90(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.68(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.61(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2-\mathrm{H})$, $4.24\left(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.06\left(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.24(1 \mathrm{H}, \mathrm{q}, J=8.2 \mathrm{~Hz}, 4-\mathrm{H}), 2.66-2.79\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.59(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$,
CDCl_{3}) $\boldsymbol{\delta} 159.3$ (C Ar), 158.0 (C Ar), 142.1 (C Ar), 133.6 (C Ar), 130.9 (C Ar), 130.5 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.7 (2 x C-H Ar), 128.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.7 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 126.5 (C-H Ar), 113.93 (2 x C-H Ar), 113.6 (2 x C-H Ar), 86.2 (C-2), 75.3 (C-5), 57.0 (C-3), 55.40 (OMe), 55.38 (OMe), 51.3 (C-4), 35.7 (C-6). HRMS (ESI): calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 397.17742, found m / z 397.17747. IR (film) $\nu_{\max }: 2980,2889,1510,1381,1243,1031 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of (+)-3af (from the mixture): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, CDCl $_{3}$) $\boldsymbol{\delta} 7.32-7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.14-7.22(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.82-6.90(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 4.77(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 2-\mathrm{H}), 5.50-5.56\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.30(1 \mathrm{H}, \mathrm{dd}, J=8.6,4.3 \mathrm{~Hz}, 5-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.56(1 \mathrm{H}, \mathrm{q}, J=6.1 \mathrm{~Hz}, 4-\mathrm{H}), 2.66-2.79(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $2.43\left(1 \mathrm{H}, \mathrm{dd}, J=14.6,6.4 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.19\left(1 \mathrm{H}, \mathrm{dd}, J=14.4,8.8 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta} 158.0$ (C Ar), 157.9 (C Ar), 140.3 (C Ar), 134.8 (C Ar), 132.1 (C Ar), 129.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 129.0 ($2 \times \mathrm{C}-\mathrm{H} \operatorname{Ar}$), 128.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.5 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 126.6 (C-H Ar), 113.87 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 113.7 (2 x C-H Ar), 84.4 (C-2), 74.0 (C-5), 55.38 (OMe), 55.34 (OMe), 54.2 (C-3), 47.7 (C-4), 32.4 (C-6).

Racemic (\pm)-3af $(99 \%, 5: 1 \mathrm{dr})$ was made with the same procedure with racemic alcohol ($\mathbf{\pm}$) $-(E)-1 q$.
8.34. (+)-(2R,3R,4S)-3-Benzhydryl-2-(4-methoxyphenyl)-4-phenyltetrahydrofuran and (+)-(2S,3S,4S)-3-benzhydryl-2-(4-methoxyphenyl)-4-phenyltetrahydrofuran [(+)-3ag]

Alcohol (+)-(E)-1q (22.7 mg, 0.0894 mmol$)$, benzhydrol 2d (16.4 mg, 0.0894 mmol$)$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(7.6 \mathrm{mg}, 0.027 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction at at $0^{\circ} \mathrm{C}$ (FCC : gradient elution: $10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield inseparable 8:1 mixture of diastereomers (+)-3ag as a white foam (37.4 mg, $99 \%, 99 \%$ ee).

Data for major diastereomer \mathbf{A} of (+)-3ag (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.30\left(25 \% \mathrm{Et}_{2} \mathrm{O}-\right.$ pentane) $[\alpha]_{\mathrm{D}}^{25}=+2.5\left(c=10.0, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathbf{M H z}, \mathbf{C D C l} 3) \boldsymbol{\delta} 7.00-7.23(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 6.81-6.88 (5H, m, Ar), $6.67(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 4.64(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.9.3,7.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,4.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 4.03(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, 6-\mathrm{H}), 3.76(3 \mathrm{H}, \mathrm{s}$, OMe), $3.26(1 \mathrm{H}$, ddd, $J=11.1,6.3,4.5 \mathrm{~Hz}, 3-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{dt}, J=7.2,4.4 \mathrm{~Hz}, 4-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl3) $\boldsymbol{\delta} 158.8$ (C Ar), 145.3 (C Ar), 143.3 (C Ar), 142.8 (C Ar), 134.0 (C Ar), 128.7 (2 x C-H Ar), 128.5 (3 x C-H Ar), 128.44 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.40 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.3 (2 x C-H Ar), 128.1 (C-H Ar), 127.6 (2 x C-H Ar), 126.62 (C-H Ar), 126.56 (C-H Ar), 126.1 (C-H Ar), 113.6 (2 x

C-H Ar), 87.4 (C-2), 75.1 (C-5), 60.8 (C-3), 58.7 (C-6), 55.4 (OMe), 52.1 (C-4). NOESY-2D (500 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): between $2-\mathrm{H}$ and $6-\mathrm{H}$, between $2-\mathrm{H}$ and $4-\mathrm{H}$, between $4-\mathrm{H}$ and $6-\mathrm{H}$. HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 443.19815$, found $m / z 443.19785$. IR (film) $v_{\text {max }}$: $3649,2980,1513,1453,1302,1248 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of (+)-3ag (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.00-7.23(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.89-6.94(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.78-6.81(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.74(2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.54(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.77(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 2-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{dd}, J=8.7$, $\left.5.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.19-4.23\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.64-3.71(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.56-3.62(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 3.39(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, 6-\mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 158.4$ (C Ar), 143.6 (C Ar), 142.7 (C Ar), 141.1 (C Ar), 135.6 (C Ar), 129.1 (C-H Ar), 128.5 ($3 \times \mathrm{C}-\mathrm{H}$ Ar), 128.44 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.40 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.00 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.98 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 126.7 (CH Ar), 126.3 (C-H Ar), 126.2 (C-H Ar), 113.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.6 (C-2), 75.2 (C-5), 55.5 (C-3), $55.4(\mathrm{OMe}), 52.8$ (C-6), 49.7 (C-4). NOESY- 2D ($500 \mathbf{~ M H z}, \mathbf{C D C l}$): between 2-H and 6-H.

Racemic (\pm)-3ag ($99 \%, 8: 1 \mathrm{dr}$) was made with the same procedure with racemic alcohol (\pm)(\boldsymbol{E})-1q.
8.35. (+)-(2R,3R,4S)-2-(4-Methoxyphenyl)-3-[(2'E)-penta-2,4-dien-1-yl]-4phenyltetrahydrofuran and (+)-(2S,3S,4S)-2-(4-methoxyphenyl)-3-[(2'E)-penta-2,4-dien-1-yl]-4-phenyltetrahydrofuran [(+)-3ah]

Alcohol (+)-(E)-1q ($30.0 \mathrm{mg}, 0.118 \mathrm{mmol}$), bis-allyl alcohol $\mathbf{2 f}(15.7 \mathrm{mg}, 0.118 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(9.7 \mathrm{mg}, 0.034 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction at at $0^{\circ} \mathrm{C}$ for 36 hours (FCC : gradient elution: $7 \% \rightarrow 9 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield inseparable 5:1 mixture of diastereomers (+)-3ah as a colorless oil ($11.3 \mathrm{mg}, 30 \%, 99 \%$ ee).

Data for major diastereomer A of (+)-3ah (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.50\left(25 \% \mathrm{Et}_{2} \mathrm{O}-\right.$ pentane $) .[\alpha]_{\mathrm{D}}^{25}=+20.0\left(c=1.35, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.19-7.37(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.90$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.12(1 \mathrm{H}, \mathrm{dt}, J=16.9,10.2 \mathrm{~Hz}, 9-\mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{dd}, J=15.1,10.4 \mathrm{~Hz}, 8-\mathrm{H})$, $5.38-5.48(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.05\left(1 \mathrm{H}, \mathrm{dd}, J=16.8,1.7 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 4.94(1 \mathrm{H}, \mathrm{dd}, J=10.0,1.8 \mathrm{~Hz}, 10-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 4.58(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, 2-\mathrm{H}), 4.28\left(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.09(1 \mathrm{H}, \mathrm{dd}, J=8.7,7.8 \mathrm{~Hz}, 5-$ H_{B}), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.26(1 \mathrm{H}, \mathrm{q}, J=8.3 \mathrm{~Hz}, 4-\mathrm{H}), 2.27-2.34(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.20-2.27(2 \mathrm{H}, \mathrm{m}, 6-$ H_{2}). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.4$ (C Ar), 142.0 (C Ar), 136.9 (C-9), 133.5 (C Ar), 133.3
(C-8), 131.5 (C-7), 128.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.1 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.8 (C-H Ar), 115.6 (C-10), 114.00 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 86.4 (C-2), 75.3 (C-5), 56.2 (C-3), 55.5 (OMe), 51.6 (C-4), 33.1 (C-6). HRMS: stable ion was not found in ESI, EI and CI. IR (film) $v_{\text {max }}$ 2980, 2888, 1461, 1382, $1252,1152 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of (+)-3ah (from the mixture): ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.19-7.37(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.90(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.21(1 \mathrm{H}, \mathrm{dt}, J=17.0,10.3$ $\mathrm{Hz}, 9-\mathrm{H}), 5.84(1 \mathrm{H}, \mathrm{dd}, J=15.3,10.4 \mathrm{~Hz}, 8-\mathrm{H}), 5.38-5.48(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.03(1 \mathrm{H}, \mathrm{dd}, J=16.8,1.7$ $\left.\mathrm{Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 4.94\left(1 \mathrm{H}, \mathrm{dd}, J=10.0,1.8 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{B}}\right), 4.66(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.8.7,6.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.26\left(1 \mathrm{H}, \mathrm{dd}, J=8.6,3.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.61(1 \mathrm{H}, \mathrm{ddd}, J=10.3$, $6.8,3.4 \mathrm{~Hz}, 4-\mathrm{H}), 2.42(1 \mathrm{H}, \mathrm{qd}, J=8.6,6.2 \mathrm{~Hz}, 3-\mathrm{H}), 1.85-1.96\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.66-1.77(1 \mathrm{H}, \mathrm{m}$, 6- H_{B}). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.3$ (C Ar), 140.4 (C Ar), 137.1 (C-9), 134.5 (C Ar), 132.7 (C-7), 132.6 (C-8), 128.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.5 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.8 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.8 (C-H Ar), 115.4 (C-10), 113.95 (2 x C-H Ar), 84.5 (C-2), 74.3 (C-5), 55.5 (OMe), 52.6 (C-3), 48.3 (C-4), 30.6 (C-6).

Racemic (\pm)-3ah ($30 \%, 5: 1 \mathrm{dr}$) was made with the same procedure with racemic alcohol (\pm)-(E)-1q.
8.36. (+)-(2R,3R,4S)-2-(4-Methoxyphenyl)-4-phenyl-3-[(1'S)-3-phenylcyclopent-2-en-1yl]tetrahydrofuran and (+)-(2S,3S,4S)-2-(4-methoxyphenyl)-4-phenyl-3-[(1'R)-3-phenylcyclopent-2-en-1-yl]tetrahydrofuran [(+)-3ai]

(+)-3ai
dr 7:1 (C3-C-4)
Alcohol (+)-(E)-1q (30.0 mg, 0.114 mmol$)$ and ($\boldsymbol{E}) \mathbf{- 2 m}(18.2 \mathrm{mg}, 0.114 \mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(9.7 \mathrm{mg}, 0.034 \mathrm{mmol})$ were subjected to the general procedure except conducting the reaction at at $0^{\circ} \mathrm{C}$ (FCC : gradient elution: $10 \% \rightarrow 15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield inseparable $7: 1$ mixture of diastereomers (+)-3ai as a yellow oil ($41.7 \mathrm{mg}, 91 \%, 99 \%$ ee).

Data for major diastereomer A of (+)-3ai (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.40$ ($30 \% \mathrm{Et}_{2} \mathrm{O}-$ pentane $) \cdot[\alpha]_{\mathrm{D}}^{25}=+57.2\left(c=10.0, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.19-7.44(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.95(1 \mathrm{H}, \mathrm{q}, J=2.0 \mathrm{~Hz}, 7-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, 2-\mathrm{H}), 4.27(1 \mathrm{H}$, $\left.\mathrm{t}, J=8.5 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.10\left(\mathrm{dd}, \mathrm{J}=8.8,7.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37(1 \mathrm{H}, \mathrm{td}, J=8.4,7.3$ $\mathrm{Hz}, 4-\mathrm{H}), 3.11(1 \mathrm{H}, \mathrm{dtd}, J=11.7,6.5,6.0,2.2 \mathrm{~Hz}, 6-\mathrm{H}), 2.51-2.65\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.9-\mathrm{H}_{2}\right), 1.97-$ $2.08\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.48-1.56\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 159.4(\mathrm{C} \mathrm{Ar})$,
143.5 (C-8), 143.4 (C Ar), 136.4 (C Ar), 134.4 (C Ar), 128.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.5 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.39 (2 x C-H Ar), 127.8 (2 x C-H Ar), 127.6 (C-H Ar), 127.3 (C-7), 126.7 (C-H Ar), 125.8 (2 x C-H Ar), 114.0 (2 x C-H Ar), 85.6 (C-2), 76.0 (C-5), 60.1 (C-3), 55.4 (OMe), 50.3 (C-4), 47.1 (C-6), 32.8 (C-9), 27.7 (C-10). HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 419.19815, found $m / z 419.19800$. IR (film) $v_{\text {max }}$: 2980, 1611, 1512, 1381, 1247, $1172 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B of (+)-3ai (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.19-7.44(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.93(1 \mathrm{H}, \mathrm{q}, J=2.1 \mathrm{~Hz}, 7-\mathrm{H}), 4.90$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 2-\mathrm{H}), 4.50\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6,6.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J=8.6,3.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right)$, $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.73(1 \mathrm{H}, \mathrm{td}, J=6.1,3.2 \mathrm{~Hz}, 4-\mathrm{H}), 2.51-2.65(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H}), 2.39-2.49$ $\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 1.97-2.08\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.48-1.56\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ ס 159.3 (C Ar), 142.9 (C-8), 141.4 (C Ar), 136.5 (C Ar), 135.6 (C Ar), 129.01 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.95 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.7 (C-7), 128.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.35 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.2 (C-H Ar), 126.8 (C-H $\mathrm{Ar}), 125.7$ (2 x C-H Ar), 113.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 84.2 (C-2), 74.6 (C-5), 57.1 (C-3), 55.4 (OMe), 49.7 (C-4), 45.8 (C-6), 33.0 (C-9), 29.2 (C-10).

Racemic (\pm)-3ai ($91 \%, 7: 1 \mathrm{dr}$) was made with the same procedure with racemic alcohol (\pm)(\boldsymbol{E})-1q.
8.37. (\pm)-(2S,3S)-3-Cinnamyl-2-phenyltetrahydrofuran (trans-3aj)

Alcohol $\boldsymbol{E}-\mathbf{1 e}(64.3 \mathrm{mg}, 0.434 \mathrm{mmol})$, cinnamyl alcohol \boldsymbol{E}-2a ($58.0 \mathrm{mg}, 0.434 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(37.0 \mathrm{mg}, 0.130 \mathrm{mmol})$ were subjected to the general procedure (FCC : gradient elution: $6 \% \rightarrow 12 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield trans-3aj as a colorless oil ($40.9 \mathrm{mg}, 36 \%$).

Data for trans-3aj: $\mathbf{R f}_{\mathbf{f}} 0.40$ ($20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.35(4 \mathrm{H}$, $\mathrm{d}, J=4.3 \mathrm{~Hz}, \mathrm{Ar}), 7.28-7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.17-7.24(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.42(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 8-\mathrm{H})$, $6.14(1 \mathrm{H}, \mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 7-\mathrm{H}), 4.49(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 2-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{dt}, J=8.4,7.1 \mathrm{~Hz}, 5-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 4.04\left(1 \mathrm{H}, \mathrm{td}, J=8.3,4.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 2.47\left(1 \mathrm{H}, \mathrm{dddd}, J=11.1,6.6,4.3,1.4 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.17-$ $2.32\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 1.78-1.87\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 142.5$ (C Ar), 137.5 (C Ar), 131.6 (C-8), 128.6 ($2 \times \mathrm{CH}$ Ar), 128.5 ($2 \times \mathrm{CH}$ Ar), 128.4 (C-7), 127.6 (CH $\mathrm{Ar}), 127.2$ (CH Ar), 126.4 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.1 ($2 \times \mathrm{CH} \mathrm{Ar}$), 86.1 (C-2), 68.2 (C-5), 48.2 (C-3), 35.7 (C-6), 32.5 (C-4). NOESY- 2D ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): between $2-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{A}}$, between $2-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{B}}$. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 265.15869, found m / z 265.15872. IR (film) $v_{\max }: 3657,2980,1451,1251,1153,964 \mathrm{~cm}^{-1}$.
8.38. (\pm)-(2S,3R)-3-Cinnamyl-2-phenyltetrahydrofuran and (\pm)-(2S,3S)-3-Cinnamyl-2phenyltetrahydrofuran (cis-3aj and trans-3aj)

Alcohol Z-1e ($53.5 \mathrm{mg}, 0.361 \mathrm{mmol}$), cinnamyl alcohol \boldsymbol{E} - $\mathbf{2 a}$ ($48.4 \mathrm{mg}, 0.361 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(30.1 \mathrm{mg}, 0.106 \mathrm{mmol})$ were subjected to the general procedure (FCC : gradient elution: $6 \% \rightarrow 12 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield cis-3aj: trans-3aj as $3: 1 \mathrm{dr}$ mixture ($19.7 \mathrm{mg}, 20 \%$), which was partially separable into 2 fractions: first fraction of cis-3aj ($7.4 \mathrm{mg}, 8 \%$) as a colorless oil, and second fraction of 1.5:1 of diastereomers cis-3aj : trans-3aj as a colorless oil ($12.3 \mathrm{mg}, \mathbf{1 2 \%}$).

Data for cis-3aj: $\mathbf{R f}_{\mathbf{f}}^{\mathbf{0 . 4 0}} \mathbf{(2 0 \%} \mathbf{E t}_{\mathbf{2}} \mathbf{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.23-7.38$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.17-7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.25(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 8-\mathrm{H}), 6.01(1 \mathrm{H}, \mathrm{ddd}, J=15.8,7.9,6.3$ $\mathrm{Hz}, 7-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 4.22\left(1 \mathrm{H}, \mathrm{td}, J=8.1,5.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.95(1 \mathrm{H}, \mathrm{q}, J=7.7$ $\left.\mathrm{Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 2.56(1 \mathrm{H}, \mathrm{dqd}, J=11.2,6.6,4.7 \mathrm{~Hz}, 3-\mathrm{H}), 2.17-2.22\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.85-1.97(2 \mathrm{H}, \mathrm{m}, 4-$ H_{B} and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 1.54-1.74\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta} 140.6(\mathrm{C} \mathrm{Ar}), 137.7(\mathrm{C}$ Ar), 131.2 (C-8), 129.2 (C-7), 128.6 ($2 \times \mathrm{CH}$ Ar), 128.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.2 (CH Ar), 127.1 (CH $\mathrm{Ar}), 126.6$ ($2 \times \mathrm{CH} \mathrm{Ar}$), $126.0(2 \times \mathrm{CH} \mathrm{Ar}), 83.4$ (C-2), 67.6 (C-5), 43.5 (C-3), 33.7 (C-6), 31.1 (C4). NOESY- 2D ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): between 2-H and 3-H. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 265.15869$, found m / z 265.15875. IR (film) $v_{\text {max }}: 3657,2980,2888,1382$, $1152,954 \mathrm{~cm}^{-1}$.

Data for trans-3aj matched those previously reported.

9. General proceure for the hydrogenation of an alkene.

Heterocycle 3 (1 eq.$)$, EtOAc (2 mL) and 10 wt . \% of $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} . \%)$ were added to a twonecked r.b.f. The flask was submerged in an ice bath, and then evacuated and backfilled with hydrogen five times. The reaction mixture was stirred vigorously under hydrogen atmosphere (balloon pressure) at $0^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was filtered through celite and flushed with EtOAc. The crude product was then concentrated in vacuo, and purified by flash column chromatography to afford the corresponding products.

9.1. (\pm)-(2S,3R)-3-Cyclohexyl-2-(4-methoxyphenyl)tetrahydrofuran (6a)

MeO

Alkene $\mathbf{3 j}$ ($31.0 \mathrm{mg}, 0.120 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{C}(3.1 \mathrm{mg})$ and EtOAc (2 mL) were subjected to the general procedure (FCC: gradient elution: $7 \% \rightarrow 15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{6 a}$ as a colorless oil ($27.2 \mathrm{mg}, 87 \%$).

Data for 6a: Rf 0.40 ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.26(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.54(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 2-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{q}, J=8.3 \mathrm{~Hz}, 5-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 3.91\left(1 \mathrm{H}, \mathrm{td}, J=8.1,4.6 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.10(1 \mathrm{H}$, dddd, $J=11.4,8.0,6.8,4.6$ $\left.\mathrm{Hz}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.96-2.05(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.80-1.87\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.70-1.80(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}$ cyclohexyl), 1.53-1.65 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}$ cyclohexyl), $1.29-1.39(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.06-1.28\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right.$ cyclohexyl), 0.96-1.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclohexyl), $0.79-0.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ cyclohexyl). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.0$ (C Ar), 135.5 (C Ar), 128.2 ($2 \times \mathrm{CH} \mathrm{Ar}$), 113.8 ($2 \times \mathrm{CH} \mathrm{Ar}$), 84.1 (C-2), 68.0 (C-5), 55.4 (OMe), 52.9 (C-3), 39.9 (C-6), $32.7\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $30.5\left(\mathrm{CH}_{2}\right.$ cyclohexyl), 30.3 (C-4), $26.6\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $26.53\left(\mathrm{CH}_{2}\right.$ cyclohexyl), $26.49\left(\mathrm{CH}_{2}\right.$ cyclohexyl). HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 283.16685, found $\mathrm{m} / \mathrm{z} 283.16675$. IR (film) $v_{\max }$: $2980,1764,1612,1514,1247,1161 \mathrm{~cm}^{-1}$.

9.2. (\pm)-(2S,3R)-3-Cyclopentyl-2-(4-methoxyphenyl)tetrahydrofuran (6b)

Alkene $\mathbf{3 k}$ ($30.0 \mathrm{mg}, 0.122 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{C}(3.0 \mathrm{mg})$ and EtOAc (2 mL) were subjected to the general procedure (FCC: gradient elution: $7 \% \rightarrow 15 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{6 b}$ as a colorless oil ($18.1 \mathrm{mg}, 60 \%$).

Data for 6b: $\mathbf{R}_{\mathbf{f}} 0.40\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.26(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.46(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 2-\mathrm{H}), 4.06(1 \mathrm{H}, \mathrm{q}, J=8.3 \mathrm{~Hz}, 5-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 3.94\left(1 \mathrm{H}, \mathrm{td}, J=8.2,5.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.11-2.20\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.06(1 \mathrm{H}$, quint, $J=7.7 \mathrm{~Hz}, 3-\mathrm{H}), 1.75-1.84\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}\right.$ and CH cyclopentyl), 1.42-1.66 (5H, m, CH
cyclopentyl and $2 \times \mathrm{CH}_{2}$ cyclopentyl), $1.16-1.28(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclopentyl), $0.85-0.96(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclopentyl). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{1 5 9 . 1}$ (C Ar), 135.2 (C Ar), 128.2 ($2 \times \mathrm{CH}$ Ar), 113.8 (2 x CH Ar), 85.9 (C-2), 67.9 (C-5), 55.4 (OMe), 52.8 (C-3), 42.7 (C-6), $31.8\left(\mathrm{CH}_{2}\right.$ cyclopentyl), 31.6 (C-4), $31.0\left(\mathrm{CH}_{2}\right.$ cyclopentyl), $25.5\left(\mathrm{CH}_{2}\right.$ cyclopentyl), $25.0\left(\mathrm{CH}_{2}\right.$ cyclopentyl). HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 269.15120, found m / z 269.15128. IR (film) $v_{\text {max }}$: $2980,1764,1514,1246,1169,1032 \mathrm{~cm}^{-1}$.
9.3. (+)-(2R,3R,4S)-2-(4-Methoxyphenyl)-4-phenyl-3-[(1'S,3'R)-3-
phenylcyclopentyl]tetrahydrofuran and (+)-(2S,3S,4S)-2-(4-methoxyphenyl)-4-phenyl-
3-[(1'R,3'S)-3-phenylcyclopentyl]tetrahydrofuran [(+)-6c]

Alkene (+)-3ai ($36.3 \mathrm{mg}, 0.0917 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{C}(3.6 \mathrm{mg})$ and EtOAc (2 mL) were subjected to the general procedure (FCC: gradient elution: $6 \% \rightarrow 8 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield an inseparable 7:1 mixture of diastereomer (+)-6c as a colorless oil ($38.9 \mathrm{mg}, 99 \%$).

Data for major diastereomer A of (+)-6c (from the mixture): $\mathbf{R}_{\mathbf{f}} 0.50\left(25 \% \mathrm{Et}_{2} \mathrm{O}\right.$ pentane $) \cdot[\alpha]_{\mathrm{D}}^{25}=+52.8\left(c=4.2, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.40(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, Ar), 7.19-7.38 ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.08-7.17 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.92(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.64(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}, 2-\mathrm{H}), 4.23\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,8.0 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.08\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,6.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.83(3 \mathrm{H}, \mathrm{s}$, OMe), $3.34(1 \mathrm{H}, \mathrm{td}, J=7.9,6.3 \mathrm{~Hz}, 4-\mathrm{H}), 2.96(1 \mathrm{H}, \mathrm{dtd}, J=11.5,9.0,6.3 \mathrm{~Hz}, 8-\mathrm{H}), 2.46(1 \mathrm{H}, \mathrm{q}, J$ $=8.0 \mathrm{~Hz}, 3-\mathrm{H}), 2.15-2.26(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.10\left(1 \mathrm{H}, \mathrm{dt}, J=12.3,6.2 \mathrm{~Hz}, 7-\mathrm{H}_{\mathrm{A}}\right), 1.91-2.04(1 \mathrm{H}, \mathrm{m}, 9-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 1.70\left(1 \mathrm{H}\right.$, dddd, $\left.J=14.2,9.3,8.1,6.1 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.46-1.55\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{B}}\right), 1.24(1 \mathrm{H}, \mathrm{q}, J=$ $11.9 \mathrm{~Hz}, 7-\mathrm{H}_{\mathrm{B}}$), 1.13-1.21(1H, m, 10-HB). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.44$ (C Ar), 146.0 (C $\mathrm{Ar})$, 144.4 (C Ar), 134.2 (C Ar), 128.87 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.85 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.38 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.7 ($2 \times \mathrm{CH}$ Ar), 127.10 ($2 \times \mathrm{CH}$ Ar), 126.6 (CH Ar), 126.0 (CH Ar), 114.0 ($2 \times \mathrm{CH}$ Ar), 87.1 (C2), 75.9 (C-5), 60.7 (C-3), 55.4 (OMe), 51.8 (C-4), 45.4 (C-8), 43.5 (C-8), 43.5 (C-6), 40.4 (C-7), 33.55 (C-9), 30.2 (C-10). NOESY-2D ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$): between 2-H and 4-H, between 2-H and $6-\mathrm{H}$, between $2-\mathrm{H}$ and $7-\mathrm{H}_{\mathrm{A}}$, between $6-\mathrm{H}$ and $8-\mathrm{H}$. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 421.21380, found m / z 421.21384. IR (film) $v_{\max }: 2980,2888,1513,1461$, 1382, $1249 \mathrm{~cm}^{-1}$.

Partial data for minor diastereomer B (+)-6c (from the mixture): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.40(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.19-7.38(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.08-7.17$ (3H, m, Ar), $6.92(2 \mathrm{H}, \mathrm{d}, J$
$=8.7 \mathrm{~Hz}, \mathrm{Ar}), 4.86(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, 2-\mathrm{H}), 4.49\left(1 \mathrm{H}, \mathrm{dd}, J=8.5,5.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.13(1 \mathrm{H}, \mathrm{dd}, J=$ $8.6,2.2 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}$), $3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.53-3.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.70-2.80(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.55(1 \mathrm{H}$, td, $J=9.6,6.9 \mathrm{~Hz}, 3-\mathrm{H}), 2.06-2.16\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 1.91-2.04\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{A}}\right), 1.75-1.81(1 \mathrm{H}, \mathrm{m}, 10-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 1.62-1.66(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.40-1.46\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{B}}\right), 1.20-1.29\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 1.11-1.19(1 \mathrm{H}, \mathrm{m}$, $\left.10-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.36$ (C Ar), 146.5 (C Ar), 142.0 (C Ar), 135.7 (C Ar), 129.0 ($2 \times \mathrm{CH}$ Ar), 128.5 ($2 \times \mathrm{CH} \mathrm{Ar}$), 128.42 ($2 \times \mathrm{CH} \mathrm{Ar}$), 127.8 ($2 \times \mathrm{CH}$ Ar), 127.06 ($2 \times \mathrm{CH} \mathrm{Ar}$), 126.7 (CH Ar), 125.89 (CH Ar), 113.9 ($2 \times \mathrm{CH}$ Ar), 84.8 (C-2), 75.0 (C-5), 58.4 (C-3), 55.4 (OMe), 50.4 (C-4), 44.8 (C-8), 42.0 (C-7), 40.1 (C-6), 33.63 (C-10), 30.7 (C-9). NOESY-2D (500 MHz , CDCl_{3}): between $2-\mathrm{H}$ and $6-\mathrm{H}$, between $6-\mathrm{H}$ and $8-\mathrm{H}$.

10. (\pm)-2-[(2S,3S)-2-(4-Methoxyphenyl)-2,3-dihydrobenzofuran-3-yl]acetaldehyde (7)

3x

67\%

7

Alkene $\mathbf{3 x}$ ($10.0 \mathrm{mg}, 0.0292 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added to a r.b.f. charged with a stirring bar under $-78^{\circ} \mathrm{C}$. The solution was bubbled with O_{3} for $7-10$ min until the blue color was observed, leave it for 2-3 min. Then bubbling O_{2} for few min. and switch to N_{2} bubbling for 3-4 min. until no blue color was seen. DMS was added under dry-ice bath, leave it for 10 min . and let it warmed up to r.t. The crude product was then concentrated in vacuo, and then purified by flash column chromatography to afford 7 as a colorless oil ($5.3 \mathrm{mg}, 67 \%$).

Data for 7: $\mathbf{R}_{\mathbf{f}} 0.30\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 9.84(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$, $7.34(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 7.20(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.13(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.86-6.92$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $5.25(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 2-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, 3-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.85-$ 2.99 (2H, m, 4-H2). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta} 200.4$ (C-5), 159.9 (C Ar), 159.4 (C Ar), 132.5 (C Ar), 129.1 (C-H Ar), 129.0 (C Ar), 127.7 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 124.6 (C-H Ar), 121.2 (C-H Ar), 114.2 (2 x C-H Ar), 109.9 (C-H Ar), 89.6 (C-2), 55.5 (OMe), 49.0 (C-3), 44.9 (C-4). HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 269.11722, found m / z 269.11731. IR (film) $v_{\text {max }}$: $3649,2980,2360,1382,1251,1152 \mathrm{~cm}^{-1}$.

11. General procedure for the Ru-catalyzed oxidation of aromatic rings to carboxylic acids

 To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of cyclobutane in $10.0 \mathrm{~mL} / \mathrm{mmol}$ of a 2:2:3 mixture of $\mathrm{CCl}_{4}: \mathrm{MeCN}: \mathrm{pH} 7$ buffer $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right), \mathrm{NaIO}_{4}$ (20.0 equiv) was added in one portion. The mixture was stirred at that temperature for 15 min and $\mathrm{RuCl}_{3}(5 \mathrm{~mol} \%$) was added in one portion. Themixture was warmed up to room temperature. The reaction was monitored by TLC until completion, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL} / \mathrm{mmol})$. The water layer was acidified until pH 1 using concentrated HCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 3 \mathrm{~mL} / \mathrm{mmol}$). The combined organic layers were dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduced pressure to give the corresponding carboxylic acid, that was purified by chromatography on silica gel using the appropriate mixture of eluents.

11.1. (\pm)-(2S,3R)-3-Benzhydryltetrahydrofuran-2-carboxylic acid (8)

3d
$5.0 \mathrm{~mol}^{2} \mathrm{RuCl}_{3}$

8

Tetrahydrofurane $\mathbf{3 d}(49.0 \mathrm{mg}, 0.142 \mathrm{mmol}), \mathrm{RuCl}_{3}(1.5 \mathrm{mg}, 0.0071 \mathrm{mmol}), \mathrm{NaIO}_{4}(0.588$ g, 2.84 mmol$)$ and $\mathrm{CCl}_{4}: \mathrm{MeCN}: \mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer $(3 \mathrm{~mL})$ were subjected to the general procedure (FCC: 5\% DCM - MeOH) to yield $\mathbf{8}(16.0 \mathrm{mg}, 40 \%)$ as a colorless oil.

Data for 8: Rf 0.20 ($10 \% \mathrm{DCM}-\mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.38(2 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}, \mathrm{Ar}), 7.24-7.33(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.16-7.21(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.28(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, 2-\mathrm{H}), 4.03-4.14$ $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.87(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, 6-\mathrm{H}), 3.51(1 \mathrm{H}, \mathrm{ddt}, J=12.0,7.7,2.5 \mathrm{~Hz}, 3-\mathrm{H}), 1.96-2.06$ $\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.69-1.76\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 175.5(\mathrm{C}=\mathrm{O}), 143.2(\mathrm{C}$ Ar), 142.9 (C Ar), 129.0 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.0 (C-H Ar), 126.9 (C-H Ar), 80.6 (C-2), 68.8 (C-5), 54.4 (C-6), 47.5 (C-3), 29.5 (C-4). NOESY-2D (500 MHz, CDCl $\mathbf{C D}_{3}$): between 2-H and 6-H. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 305.11482, found m / z 305.11484. IR (film) $v_{\text {max }}$ 3658, 2980, 2888, 1461, $1461,1252 \mathrm{~cm}^{-1}$.

11.2. (\pm)-2-[(2S,3R)-2-Phenyltetrahydrofuran-3-yl]acetic acid (9)

Tetrahydrofurane $\mathbf{3 q}(80.0 \mathrm{mg}, 0.299 \mathrm{mmol}), \mathrm{RuCl}_{3}(1.6 \mathrm{mg}, 0.0075 \mathrm{mmol}), \mathrm{NaIO}_{4}(1.270$ g, 5.937 mmol$)$ and $\mathrm{CCl}_{4}: \mathrm{MeCN}: \mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer (3 mL) were subjected to the general procedure except using $2.5 \mathrm{~mol} \%$ of RuCl_{3} (FCC: $5 \% \mathrm{DCM}-\mathrm{MeOH}$) to yield $\mathbf{9}$ ($18.8 \mathrm{mg}, 30 \%$) as a colorless oil.

Data for 9: $\mathbf{R f}_{\mathrm{f}} 0.20(5 \% \mathrm{DCM}-\mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.31-7.35(4 \mathrm{H}, \mathrm{m}$, Ar), 7.25-7.30 (1H, m, Ar), $4.45(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.16\left(1 \mathrm{H}, \mathrm{dt}, J=8.4,7.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.04$ $\left(1 \mathrm{H}, \mathrm{td}, J=8.4,5.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 2.56\left(1 \mathrm{H}, \mathrm{dd}, J=15.0,4.5 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.42-2.51(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.31-$ $2.41\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right), 1.79\left(1 \mathrm{H}, \mathrm{dq}, J=12.3,7.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\boldsymbol{\delta} 177.7(\mathrm{C}=\mathrm{O}), 141.3$ (C Ar), 128.6 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.0 ($\mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.4 (2 x C-H Ar), 85.7 (C-2), 68.0 (C-5), 44.2 (C-3), 36.2 (C-6), 32.3 (C-4). HRMS (ESl): calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$ requires $m / z 205.08702$, found $m / z 205.08693$. IR (film) $v_{\max }: 3658,2980,2888,1461,1461,1252$ cm^{-1}.

12. General procedure for the acylation and alkylation of a lactone.

To a solution of diisopropylamine (1.15 eq.) in dry THF $(1.92 \mathrm{~mL} / \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ was added n-butyllithium (2.5 M in hexanes, 1.10 eq.) dropwise. The solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then cooled to $-78^{\circ} \mathrm{C}$ at which time lactone (1eq.) in THF ($0.22 \mathrm{~mL} / \mathrm{mmol}$) was added over 10 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 hours and electrophile (1.0-1.5 eq.) was added quickly. The mixture was allowed to warm to room temperature, stirred for 3 hours, and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$, and the organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel to give the corresponding product.
12.1. (\pm)-(3S,4S,5S)-3-Benzyl-4-cinnamyl-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one (10a)

Lactone 3ac ($50.0 \mathrm{mg}, 0.162 \mathrm{mmol}$), benzyl bromide ($41.5 \mathrm{mg}, 0.243 \mathrm{mmol}$), diisopropylamine ($28.3 \mathrm{mg}, 0.280 \mathrm{mmol}$) and $n-\mathrm{BuLi}(2.5 \mathrm{M}, 0.11 \mathrm{~mL})$ were subjected to the general procedure (FCC: gradient elution: $15 \% \rightarrow 25 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield 10a as a colorless oil ($35.4 \mathrm{mg}, 55 \%$).

Data for 10a: $\mathbf{R f}_{\mathbf{f}} 0.50\left(60 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ 7.16-7.34 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.03(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.21(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 8-$ H), $5.84(1 \mathrm{H}, \mathrm{dt}, J=15.4,7.4 \mathrm{~Hz}, 7-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 5-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.17(1 \mathrm{H}$, $\left.\mathrm{dd}, J=14.0,5.2 \mathrm{~Hz}, 9-\mathrm{H}_{\mathrm{A}}\right), 3.07\left(1 \mathrm{H}, \mathrm{dd}, J=14.0,6.6 \mathrm{~Hz}, 9-\mathrm{H}_{\mathrm{B}}\right), 2.86(1 \mathrm{H}, \mathrm{ddd}, J=10.5,6.5,5.2$ $\mathrm{Hz}, 3-\mathrm{H}), 2.34(1 \mathrm{H}, \mathrm{ddt}, J=10.6,8.8,5.9 \mathrm{~Hz}, 4-\mathrm{H}), 2.20-2.27\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}$, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 177.7(\mathrm{C}=\mathrm{O}), 160.1$ (C Ar), $138.0(\mathrm{C} \mathrm{Ar}), 136.7$ (C Ar), 133.5 (C-8), 130.2 (C Ar), 129.7 (2 x C-H Ar), 128.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.7 ($2 \times \mathrm{C}-\mathrm{H}$ Ar), 128.3 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.7 (C-H Ar), 127.0 (C-H Ar), 126.2 (2 x C-H Ar), 125.3 (C-7), 114.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 83.9 (C-5), 55.5 (OMe), 48.3 (C-4),
47.0 (C-3), 35.3 (C-9), 33.9 (C-6). NOESY-2D ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): between $5-\mathrm{H}$ and $6-\mathrm{H}_{2}$, between $5-\mathrm{H}$ and $7-\mathrm{H}$, between $5-\mathrm{H}$ and $8-\mathrm{H}$, between $5-\mathrm{H}$ and $3-\mathrm{H}$, between $3-\mathrm{H}$ and $6-\mathrm{H}_{2}$. HRMS (ESl): calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires $m / z 421.17742$, found $m / z 421.17722$. IR (film) $v_{\max }: 2980,1764,1514,1248,1160,1030 \mathrm{~cm}^{-1}$.

12.2. (\pm)-Methyl-(3R,4S,5S)-4-cinnamyl-5-(4-methoxyphenyl)-2-oxotetrahydrofuran-3carboxylate (10b)

Lactone 3ac ($40.0 \mathrm{mg}, 0.130 \mathrm{mmol}$), methyl chloroformate ($18.3 \mathrm{mg}, 0.195 \mathrm{mmol}$), diisopropylamine ($15.2 \mathrm{mg}, 0.149 \mathrm{mmol}$) and $n-\mathrm{BuLi}(2.5 \mathrm{M}, 0.057 \mathrm{~mL})$ were subjected to the general procedure (FCC: gradient elution: $25 \% \rightarrow 35 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{1 0 b}$ as a colorless oil ($24.7 \mathrm{mg}, 52 \%$).

Data for 10b: Rf 0.50 ($70 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta} 7.34(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.19-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.94(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.43(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, 8-\mathrm{H})$, $5.95(1 \mathrm{H}, \mathrm{ddd}, J=15.8,8.4,6.5 \mathrm{~Hz}, 7-\mathrm{H}), 5.03(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, 5-\mathrm{H}), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.66$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.54(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, 3-\mathrm{H}), 3.14(1 \mathrm{H}, \mathrm{dddd}, J=11.7,9.8,8.5,5.0 \mathrm{~Hz}, 4-\mathrm{H}), 2.47-$ $2.56\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.29-2.38\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 170.8(\mathrm{C}=\mathrm{O}), 168.2$ (C=O), 160.5 (C Ar), 136.7 (C Ar), 133.6 (C-8), 128.73 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.69 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.6 (C Ar), 127.8 (C-H Ar), 126.3 (2 x C-H Ar), 125.0 (C-7), 114.4 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 85.0 (C-5), 55.5 (OMe), 53.3 (C-3), 53.1 (OMe), 48.9 (C-4), 33.8 (C-6). NOESY-2D ($500 \mathbf{~ M H z , ~ C D C l 3) : ~ b e t w e e n ~}$ $5-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{A}}$, between $5-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{B}}$, between $5-\mathrm{H}$ and $7-\mathrm{H}$, between $5-\mathrm{H}$ and $3-\mathrm{H}$, between $3-\mathrm{H}$ and $6-\mathrm{H}_{A}$, between $3-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{B}}$. HRMS (ESl): calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 389.13594, found $m / z 389.13577$. IR (film) $v_{\max }$: 2980, 1777, 1736, $1515,1250,1147 \mathrm{~cm}^{-1}$.
12.3. (\pm)-($3 S, 4 S, 5 S$)-4-[(2' $E)$-1,3-Diphenylallyl]-3-(4-iodobenzyl)-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one (10c)

minor diastereomer B

Lactone 3ad-minor diastereomer B ($100.0 \mathrm{mg}, 0.2603 \mathrm{mmol}$), benzyl bromide ($77.3 \mathrm{mg}, 0.260$ mmol), diisopropylamine ($45.5 \mathrm{mg}, 0.450 \mathrm{mmol}$) and $n-\mathrm{BuLi}(2.5 \mathrm{M}, 0.17 \mathrm{~mL})$ were subjected to the general procedure except using 1.73 eq. of diisopropylamine, 1.63 eq. of $n-\mathrm{BuLi}$ (FCC: gradient elution: $15 \% \rightarrow 25 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) to yield $\mathbf{1 0 c}$ as a white solid ($124.8 \mathrm{mg}, 80 \%$).

Data for 10c: Rf 0.40 ($50 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane). M.p.: $78^{\circ} \mathrm{C}\left(10 \% \mathrm{EtOAc}-\right.$ pentane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 7.52(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}), 7.16-7.36(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.06-7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $6.72(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}), 6.70(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.50(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.43(1 \mathrm{H}, \mathrm{d}$, $J=15.6 \mathrm{~Hz}, 8-\mathrm{H}), 5.84(1 \mathrm{H}, \mathrm{dd}, J=15.6,9.7 \mathrm{~Hz}, 7-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, 5-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}$, OMe), $3.43(1 \mathrm{H}, \mathrm{t}, J=9.7 \mathrm{~Hz}, 6-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{dt}, J=7.8,5.3 \mathrm{~Hz}, 3-\mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=13.6,5.0$ $\left.\mathrm{Hz}, 9-\mathrm{H}_{\mathrm{A}}\right), 2.81\left(1 \mathrm{H}, \mathrm{dd}, J=13.6,7.9 \mathrm{~Hz}, 9-\mathrm{H}_{\mathrm{B}}\right), 2.59-2.66(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 178.2(\mathrm{C}=\mathrm{O})$, 159.4 (C Ar), 141.1 (C Ar), 138.0 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 137.4 (C Ar), 136.4 (C Ar), 132.7 (C-8), 132.1 (C Ar), 131.9 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 129.3 (C-7), 129.2 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 128.8 ($2 \times \mathrm{C}-\mathrm{H}$ $\mathrm{Ar})$, 128.2 (2 x C-H Ar), 128.0 ($\mathrm{C}-\mathrm{H} \mathrm{Ar}$), 127.5 ($\mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.7 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 126.5 ($2 \times \mathrm{C}-\mathrm{H} \mathrm{Ar}$), 114.0 (2 x C-H Ar), 92.4 (C Ar), 82.8 (C-5), 55.4 (OMe), 53.8 (C-6), 51.3 (C-4), 46.6 (C-3), 36.3 (C-9). NOESY-2D ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): between $5-\mathrm{H}$ and $3-\mathrm{H}$, between $5-\mathrm{H}$ and $6-\mathrm{H}$, between $5-\mathrm{H}$ and 7-H, between 3-H and 6-H. HRMS (ESl): calculated for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{IO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 623.10536, found $m / z 623.10535$. IR (film) $v_{\max }$: 2980, 2360, 1764, 1461, $1382,1251 \mathrm{~cm}^{-1}$.

13. HPLC chromatograms.

Chiral high performance liquid chromatography (HPLC) was performed on Agilent 1200 series instruments using $4.6 \mathrm{~mm} * 250 \mathrm{mmL}$ Chiralpak IC columns.
i) HPLC traces of (\pm)-3af and (+)-3af

Compound (+)-3af was determined to be > 99\% ee by chiral HPLC (Chiralpak IC); 90:10 Hexane-$i-\mathrm{PrOH}$ at $1.0 \mathrm{~mL} / \mathrm{min} ; 210 \mathrm{~nm}$.
ii) HPLC traces of ($\mathbf{\pm}$)-3ag and (+)-3ag

Compound (+)-3ag was determined to be > 99\% ee by chiral HPLC (Chiralpak IC); 90:10 Hexane-$i-\mathrm{PrOH}$ at $1.0 \mathrm{~mL} / \mathrm{min} ; 210 \mathrm{~nm}$.
iii) HPLC traces of (\pm)-3ah and (+)-3ah

Compound (+)-3ah was determined to be > 99\% ee by chiral HPLC (Chiralpak IC); 90:10 Hexane-$i-\mathrm{PrOH}$ at $1.0 \mathrm{~mL} / \mathrm{min} ; 210 \mathrm{~nm}$.
iv) HPLC traces of ($\mathbf{\pm}$)-3ai and (+)-3ai

Compound (+)-3ai was determined to be > 99\% ee by chiral HPLC (Chiralpak IC); 90:10 Hexane-$i-\mathrm{PrOH}$ at $1.0 \mathrm{~mL} / \mathrm{min} ; 210 \mathrm{~nm}$.

14. NMR study of compounds 3b, 3aa and (+)-6c

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ presents $2-\mathrm{H}$ as a doublet $(J=7.2 \mathrm{~Hz})$ that has COSY crosspeaks with $3-\mathrm{H}$, while $6-\mathrm{H}_{\mathrm{A}}$ is a multiplet that has COSY cross-peaks with $3-\mathrm{H}, 6-\mathrm{H}_{\mathrm{B}}$ and $7-\mathrm{H}$. Unfortunately $6-\mathrm{H}_{\mathrm{B}}$ is overlapped with $3-\mathrm{H}$ and $4-\mathrm{H}_{\mathrm{A}}$ appears as a multiplet.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of 3b, that showed interactions between $2-\mathrm{H}$ and $6-\mathrm{H}_{\mathrm{A}}$ and between $2-\mathrm{H}$ and $7-\mathrm{H}$, among others, confirming the trans relative stereochemistry.

3b

The ${ }^{1} \mathrm{H}$ NMR spectrum of 3aa presents $2-\mathrm{H}$ as a doublet $(J=7.5 \mathrm{~Hz})$ that has COSY crosspeaks with $3-\mathrm{H}$, while $4-\mathrm{H}$ is a doublet of doublet $(J=6.4,3.4 \mathrm{~Hz}$) that has COSY cross-peaks with $3-\mathrm{H}$ and $5-\mathrm{H}$. Moreover, $5-\mathrm{H}$ is a quintet $(J=6.3 \mathrm{~Hz})$ that has COSY cross-peaks with $4-\mathrm{H}$ and Me. Finally, $6-\mathrm{H}$ is a doublet $(J=11.4 \mathrm{~Hz})$ that has COSY cross-peaks with 3-H.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of 3aa, that showed interactions between $2-\mathrm{H}$ and $4-\mathrm{H}$, between $2-\mathrm{H}$ and $5-\mathrm{H}$, between $2-\mathrm{H}$ and $6-\mathrm{H}$, between $4-\mathrm{H}$ and $6-\mathrm{H}$, among others, confirming the trans-trans-cis relative stereochemistry.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $(+)-\mathbf{6 c}$ presents $2-\mathrm{H}$ as a doublet $(J=8.7 \mathrm{~Hz})$ that has COSY crosspeaks with $3-\mathrm{H}$, while $4-\mathrm{H}$ is a triplet of doublet ($J=7.9,6.3 \mathrm{~Hz}$) that has COSY crosspeaks
with $3-\mathrm{H}$ and $5-\mathrm{H}_{2}$. Moreover, $6-\mathrm{H}$ is a multiplet that has COSY crosspeaks with $3-\mathrm{H}, 7-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{B}}$ and $10-\mathrm{H}_{2}$. Finally, $8-\mathrm{H}$ is a doublet of triplet of doublet $(J=11.5,9.0,6.3 \mathrm{~Hz})$ that has COSY crosspeaks with $7-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{B}}$ and $9-\mathrm{H}_{2}$.

Additional support for the structure was found upon inspection of the NOESY 2D spectra of $(+)-\mathbf{6 c}$, that showed interactions between $2-\mathrm{H}$ and $4-\mathrm{H}$, between $2-\mathrm{H}$ and $6-\mathrm{H}$, between $2-\mathrm{H}$ and $7-$ H_{A}, between $6-\mathrm{H}$ and $8-\mathrm{H}$, among others, confirming the relative stereochemistry below.

(+)-6c

15. Mechanistic study

a) Evidence for an allyl cation intermediate

For those examples that involve allyl alcohols as alkylating agents, using two different regioisomeric allyl alcohols, $\mathbf{2 a}$ and $\mathbf{2 a}^{\mathbf{\prime}}$, the same product trans-3a was obtained in similar yields, under identical conditions. These results support the formation of a common allyl cationic intermediate.

b) Evidence for concerted mechanism

The possible influence of double bond geometry in homoallyl alcohol 1 was investigated. While the E isomer gives the trans diastereoisomer as a sole product, the Z isomer leads to a major cis product (stereochemistry was determined by NOESY-2D). These results point towards an asynchronous concerted mechanism.

c) Proposed mechanism

i) Isolation of stable titanium complex $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{2}(\mathrm{OHFIP})_{2}$

To a microwave vial charged with a stirring bar was added $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(100.0 \mathrm{mg}, 0.3521$ $\mathrm{mmol})$ and HFIP ($0.74 \mathrm{~mL}, 7.0 \mathrm{mmol}$), the solution was stirred under Ar at $70^{\circ} \mathrm{C}$ for 2 hours. Then the solvent was removed under reduced pressure to obtain a white foam.

Data for $\mathbf{4} \mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{2}(\mathrm{OHFIP})_{2}$: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 4.82(2 \mathrm{H}, \mathrm{m}, 2 \times 1-\mathrm{H}), 4.64$ ($2 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{H}$), $1.29(12 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, 4 \times \mathrm{Me}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 121.8(\mathrm{q}, J=$ $284.4 \mathrm{~Hz}, 4 \times \mathrm{CF}_{3}$), $82.0(2 \times \mathrm{C}-2), 78.9(2 \times \mathrm{C}-1)$, $25.7(4 \times \mathrm{Me}) .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 76.15 ($12 \mathrm{~F}, \mathrm{~s}, 4 \times \mathrm{CF}_{3}$). ${ }^{\mathbf{1 9} \mathbf{F}}$ ($\mathbf{4 7 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) - ${ }^{\mathbf{1}} \mathbf{H}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ HOESY: between CF_{3} and Me (irradiate ${ }^{19}$ F @ -76.15 ppm). HRMS (EI): m/z (ESI+) 147.0 [100], 295.0 [81], 499.0 [1.2], 500.0 [0.3], 501.0 [0.8], $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{Ti}[\mathrm{M}]^{+}$predicted $\mathrm{m} / \mathrm{z} 500.0331$, found $\mathrm{m} / \mathrm{z} 500.0311$, Delta $=$ +3.9 ppm .
ii) Evidence of intermediate complex 5

To a microwave vial charged with a stirring bar was added cinnamyl alcohol $\boldsymbol{E}-\mathbf{2 a}(23.5 \mathrm{mg}$, $0.175 \mathrm{mmol}), \mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{2}(\mathrm{OHFIP})_{2} 4(74.6 \mathrm{mg}, 0.353 \mathrm{mmol})$ and $\mathrm{CDCl}_{3}(2.0 \mathrm{~mL})$. The solution was stirred under Ar for 10 min . and then the solution was transferred to an NMR tube for NMR experiments (the present of broad peaks in proton NMR made integration difficult).

Data for 5': ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\boldsymbol{\delta} 7.21-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.60(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}$, $5-\mathrm{H}), 6.37(1 \mathrm{H}, \mathrm{dt}, J=14.9,5.8 \mathrm{~Hz}, 4-\mathrm{H}), 4.38-4.66\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}\right.$ and $\left.3-\mathrm{H}_{2}\right), 3.95-4.24(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $2-\mathrm{H}), 1.22(12 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, 4 \times \mathrm{Me}) .{ }^{19}$ F NMR ($471 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}-75.65\left(6 \mathrm{~F}, \mathrm{~s}, 2 \times \mathrm{CF}_{3}\right)$. NOESY-2D (500 MHz, $\mathbf{C D C l}_{3}$): between 3- H_{2} and Me , between 2- H and Me .

iii) Evidence of formation of product 3a from complex 5

To a microwave vial charged with a stirring bar was added cinnamyl alcohol $\boldsymbol{E}-\mathbf{2 a}(23.5 \mathrm{mg}$, $0.175 \mathrm{mmol}), \mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{2}(\mathrm{OHFIP})_{2} 4(74.6 \mathrm{mg}, 0.353 \mathrm{mmol})$ and $\mathrm{CDCl}_{3}(2.0 \mathrm{~mL})$. The solution was stirred under Ar for 10 min . and then alcohol 1a $(31.1 \mathrm{mg}, 0.175 \mathrm{mmol})$ and $\operatorname{HFIP}(1.75 \mathrm{~mL})$ were added. The reaction was heated overnigh at $70^{\circ} \mathrm{C}$. Solvent was then removed by evaporator. Purification using silica gel flash chromatography (gradient elution: $12 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ - pentane) afforded $\mathbf{3 a}$ as a colorless oil ($20.6 \mathrm{mg}, 40 \%$).

Data for 3a matched those previously reported.

16. References

(1) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139 (29), 9819-9822.
(2) Carreño, M. C.; García-Cerrada, S.; Urbano, A.; Di Vitta, C. J. Org. Chem. 2000, 65 (14), 4355-4363.
(3) Shibuya, M.; Ito, S.; Takahashi, M.; Iwabuchi, Y. Org. Lett. 2004, 6 (23), 4303-4306.
(4) Limnios, D.; Kokotos, C. G. J. Org. Chem. 2014, 79 (10), 4270-4276.
(5) Moskalenko, A. I.; Belopukhov, S. L.; Ivlev, A. A.; Boev, V. I. Russian J. Org. Chem. 2011, 47 (7), 10911096.
(6) Chintalapudi, V.; Galvin, E. A.; Greenaway, R. L.; Anderson, E. A. Chem. comm. 2016, 693-696.
(7) Lee, J.; Torker, S.; Hoveyda, A. H. Angewandte Chemie Int. Ed. 2017, 56(3), 821-826.
(8) Nuzzi, A.; Fiasella, A.; Antonio, J.; Pagliuca, C.; Ponzano, S.; Pizzirani, D.; Mandrup, S.; Ottonello, G.; Tarozzo, G.; Reggiani, A. J. Med. Chem. 2016, 111, 138-159.
(9) Grigg, R. D.; Van Hoveln, R.; Schomaker, J. M. J. Am. Chem. Soc. 2012, 134 (39), 16131-16134.
(10) Cho, S. J.; Jensen, N. H.; Kurome, T.; Kadari, S.; Manzano, M. L.; Malberg, J. E.; Caldarone, B.; Roth, B. L.; Kozikowski, A. P. J. Med. Chem. 2009, 52 (7), 1885-1902.
(11) Poplata, S.; Bach, T. J. Am. Chem. Soc. 2018, 140 (9), 3228-3231.
(12) Yang, F.; Rauch, K.; Kettelhoit, K.; Ackermann, L. Angewandte Chemie Int. Ed. 2014, 1 (II), 11285-11288.
(13) Liu, G.; Wurst, J. M.; Tan, D. S. Org. Lett. 2009, 11 (16), 3670-3673.
(14) Colomer, I.; Coura Barcelos, R.; Donohoe, T. J. Angewandte Chemie Int. Ed. 2016, 55 (15), 4748-4752.
(15) Karimi, B.; Maleki, J. J. Org. Chem. 2003, 68 (12), 4951-4954.
(16) Chong, K.-W.; Hong, F.-J.; Thomas, N. F.; Low, Y.-Y.; Kam, T.-S. J. Org. Chem. 2017, 82 (12), 6172-6191.
(17) Patel, N. R.; Kelly, C. B.; Jouffroy, M.; Molander, G. A. Org. Lett. 2016, 18 (4), 764-767.
(18) Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. ACS Catal. 2017, 7 (4), 2425-2429.
(19) Sinisterra, V.; Pregnolato, M. Tetrahedron Letters. 2011, 67, 2670-2675.
(20) Luan, X.; Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.; Linden, A.; Dorta, R. J. Am. Chem. Soc. 2008, 130 (21), 6848-6858.
(21) Li, P.; Yi, C.; Qu, J. Biomolecular Chemistry. 2015, 13(17), 5012-5021.
(22) Alamillo-Ferrer, C.; Karabourniotis-Sotti, M.; Kennedy, A. R.; Campbell, M.; Tomkinson, N. C. O. Org. Lett. 2016, 18 (13), 3102-3105.
(23) Chromans, F.; Alder, I. H. Chemistry - A European Journal. 2010, 10210, 1445-1448.
(24) Baldwin, John J.; Claremon, David A.; Tice, Colin M.; Cacatian, Salvacion; Dillard, Lawrence W.; Ishchenko, Alexey V.; Yuan, Jing; Xu, Zhenrong; Mcgeehan, Gerard; Zhao, Wei; Simpson, Robert D.; Singh, Suresh B.; Flaherty, Patrick T. WO 2007117557A2, Oct 18, 2007
(25) Yong, S.; Chem, G. Chem. Soc. Rev. 2018, 47, 53-68.
(26) Denmark, S. E.; Wang, Z. Org. Lett. 2001, 3 (7), 1073-1076.
(27) Nagarajan, S. R.; Lu, H.; Gasiecki, A. F.; Khanna, I. K.; Parikh, M. D.; Desai, B. N.; Rogers, T. E.; Clare, M.; Chen, B. B.; Russell, M. A. Bioorg. Med. Chem. 2007, 15, 3390-3412.
(28) Marie K.; Brands J.; Brewer S. E.; Davies A. J.; Dolling Ulf H.; Hammond D. C.; Lieberman D. R.; Scott J. P. WO2005080309A1, 01 Sep 2005.
(29) Tian Y.; Xu X.; Zhang L.; Qu J. Org. Lett., 2016, 18 (2), pp 268-271.
(30) Yamauchi Y.; Miyake Y.; Nishibayashi Y.Organometallics 2009, 28, 1, 48-50.

[^0]: [*] Yuxiang Zhu, Dr I. Colomer, Amber L. Thompson and Prof. T. J. Donohoe, Department of Chemistry,
 University of Oxford,
 Chemistry Research Laboratory,
 Mansfield Road,
 Oxford,
 OX1 3TA (UK)
 E-mail: timothy.donohoe@chem.ox.ac.uk

