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S1:  Details of the Model:

Generating Franck-Condon Factors

Details of the lineshape calculations can be found in our prior publications1-2, but will be briefly 

summarized here .  Generally, Franck-Condon factors may be calculated from the Huang-Rhys 

factor (S), associated Laguerre polynomials (L(S)) and integers corresponding to vibrational 

initial and final states (n and m) using the following equation:

(1)𝐹𝑚
𝑛 = |∫𝜓 ∗

𝑚𝜓𝑛𝑑𝑄|2 = 𝑒 ―𝑆𝑆𝑛 ― 𝑚(𝑚!
𝑛!)(𝐿𝑛 ― 𝑚

𝑚 (𝑆))2

Boltzmann prefactors Ω(ω,T) must be multiplied to the probabilities in the above equation.

With the condition that:

(2)∑𝛺(𝑇)𝐹𝑛
𝑚 = 1

For a Huang-Rhys value of 24.5, the following plot may be obtained:
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Alternatively, the equivalent lineshape expression below* is perhaps more compactly employed 

within a programming environment:

(3)𝜎(𝜔) = |𝜇𝑒𝑔|2𝑒 ―𝑆(2𝑛 + 1)∑∞
𝑛 = 0

∑∞
𝑚 = 0(𝑆𝑚 + 𝑛

𝑚!𝑛! )(𝑛 + 1)𝑛𝑛𝑚𝛿(𝜔 ― 𝜔𝑒𝑔 ― (𝑛 ― 𝑚)𝜔0)

where the value of ω0 is assumed to be the LO phonon mode for bulk CdSe (208 cm-1 (25.79 

meV)).    is the phonon occupation number: and ωeg is the excitation 𝑛 𝑛 = (𝑒(ħ𝜔
𝑘𝑇) ― 1)

―1

frequency.

Each Franck-Condon factor is then broadened by a gaussian lineshape and summed.3  In this 

paper an energy mesh of 0.1 meV was chosen.  The LO phonon frequency for CdSe is 208 cm-1.

(4)𝜎(𝜔) = ∑𝛺(𝑇)𝐹𝑛
𝑚𝑒

―
1
2(𝐸 ― (𝑚 ― 𝑛)

𝜎 )2

This process is done for both core and surface, and their respective areas are normalized.  

Marcus Jortner theory and steady state approximation:

Following previously published work in our group, the ratio of the core and surface bands can be 

calculated using Marcus Jortner theory.1, 4

The calculation is based on Marcus-Jortner electron transfer theory, in which the medium 

phonon modes were assumed to be negligible and set to zero (eq. 1).5  

*http://tdqms.uchicago.edu/sites/tdqms.uchicago.edu/files/uploads/12/12.%20Coupling%20to%20Nucl
ear%20Motion%2011-20-2014.pdf
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(5)𝑊 = 𝐴𝑒 ―𝑆(2𝑛 + 1)𝐼𝑝(2𝑆(𝑛(𝑛 + 1)
1
2)[(𝑛 + 1)

𝑛 ]
𝑝
2

Where  is the average phonon occupation number:𝑛

(6)𝑛 = (𝑒(ℎ𝜔
𝑘𝑇) ― 1)

―1

And p is defined as: 

(7)𝑝 =
∆𝐺
ℏω

Ip(x) is the modified Bessel function with imaginary arguments.  The variables A is the 

electronic , which is defined in Jortner’s paper.  S is the Huang-Rhys parameter.6  

For the case of figure 4b in the article, the values of 25, 50 and 75 meV of ∆G were used, 

while all other parameters were held fixed.  The Huang Rhys parameter was 20, and the constant 

A=1013.  The value of ω is 208 cm-1, which corresponds to the energy of the LO phonon for bulk 

CdSe.7  The forward and reverse rates were then calculated through detailed balance approach, in 

the same manner as previously described in the work of Mooney et al.4  The forward rate is defined 

here as W, whereas the reverse rate is  .  In this case the radiative lifetime of the core 1S state 𝑊𝑒
∆𝐺

𝑘𝑏𝑇

was set to be 20 ns (τr), and the radiative lifetime of the surface state is set to 80 ns (τrS). which are 

estimated based on TCSPC measurements.  Following the work by Mooney, the following 

equations were solved using the fsolve function MATLAB® 2018a for the values of n0, n1, and n2 

which refer to the ground, core 1S and surface state respectively. 

(8)
𝑑𝑛0

𝑑𝑡 =
― 𝑛0

𝜏0
+

𝑛1

𝜏𝑟
+

𝑛2

𝜏𝑟𝑆
= 0

(9)
𝑑𝑛1

𝑑𝑡 =
𝑛0

𝜏0
―

𝑛1

𝜏𝑟
― 𝑛1𝑊 + 𝑛2𝑊𝑒

∆𝐺
𝑘𝑏𝑇 = 0
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(10)
𝑑𝑛2

𝑑𝑡 = 𝑛1𝑊 ― 𝑛2𝑊𝑒
∆𝐺

𝑘𝑏𝑇 ―
𝑛2

𝜏𝑟𝑆
= 0

(11)𝑛0 + 𝑛1 + 𝑛2 = 1

These populations are then related to their emission areas and scaled by their respective 

lifetimes.

(12)𝐴1𝑆 =
𝑛1

𝜏𝑟

(13)𝐴𝑆 =
𝑛2

𝜏𝑟𝑆

Effect of Lattice contraction:

In this work the effect of lattice contraction is estimated through a linear temperature dependence 

of 0.3 meV/K, which was estimated by looking at the emission energies of the sample at 300K 

and 100K.  Generally, the temperature dependent lattice contraction can be obtained through the 

Varshni empirical equation if more accurate values are needed.8  
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S2:  CIE Equations:

Emission spectra can be transformed into CIE (International Commission on Illumination 

/ Commission internationale de l'éclairage) coordinates.  We summarize these concepts briefly 

here, but readers should consult relevant colorimetry textbooks for more information.9  CIE 

tristimulus values are defined in terms of the integrated response of raw spectral data in units of 

intensity vs wavelength (in nm) weighted by the three distinct color matching functions (CMF) 

that span the visible spectrum (380nm -780 nm). There are three CMFs, one for blue, green and 

red which approximate the physiological responses of the three color types of distinct color cones 

in the human eye.   Usually, the 1931 CMFs are employed, which assume a 2̊ field of view of the 

stimulus by a “standard observer”, (i.e a human possessing normal color vision), but regardless of 

the CMFs used, the chromaticity tristimulus values (here in the emissive case) can be calculated 

as

(14)𝑋 = ∫𝜆𝐿𝑒,𝛺,𝜆(𝜆)𝑥(𝜆)𝑑𝜆

(15)𝑌 = ∫𝜆𝐿𝑒,𝛺,𝜆(𝜆)𝑦(𝜆)𝑑𝜆

(16)𝑍 = ∫𝜆𝐿𝑒,𝛺,𝜆(𝜆)𝑧(𝜆)𝑑𝜆

Written in their summation form:

(17)𝑋 = ∑
𝑖𝑥𝑖𝐿𝑖∆𝜆

(18)𝑌 = ∑
𝑖𝑦𝑖𝐿𝑖∆𝜆
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(19)𝑍 = ∑
𝑖𝑧𝑖𝐿𝑖∆𝜆

X,Y,Z tristimulus values can then be expressed in terms of normalized CIE chromaticity 

coordinates (x,y,z):

(20)𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍

(21)𝑦 =
𝑌

𝑋 + 𝑌 + 𝑍

(22)𝑧 =
𝑍

𝑋 + 𝑌 + 𝑍

(23)𝑥 + 𝑦 + 𝑧 = 1

Since z can be calculated if x and y are known (equation 23), usually CIE coordinates are 

reported in terms of (x,y) coordinates, and these coordinates are plotted on the x-y projection 

which corresponds to the plane of the CIE color space chromaticity diagram as shown below.
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1931 CIE color space Chromaticity diagram,  

https://www.originlab.com/fileexchange/details.aspx?fid=168
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S3.  The 1931 CMFs.

Figure S1: Plot of the 1931 colour matching functions (CMFs).  

The CIE chromaticity (x,y) coordinates in this paper are obtained through the use of equations 

14-23.    Since the 1931 CMFs are spaced by 1 nm increments, experimental photoluminescence 

data was also collected in 1 nm intervals.  For simulated data that had a much finer wavelength 

resolution, linear interpolation of the CMFs was employed.
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S4.  Comparison of emission of molecular dye and theoretical 1 nm line source and their 
CIE (x,y) coordinates

Figure S2: Illustration of conversion from photoluminescence spectra (Panel (a)) to (x,y) 
chromaticity coordinates in the 1931 CIE colour space (Panel (b)) of a 1 nm line source and of a 
typical molecular dye (Rhodamine 6 G).  A theoretical line source of 1 nm spectra linewidth 
would lie on the boundary of the chromaticity diagram, by contrast an asymmetric emission of a 
molecular dye with approximately 30 nm linewidth is slightly off the boundary layer.
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Figure S2 illustrates a typical example of a line source and a molecular dye (Rhodamine 6 G) 

from which to understand the process of conversion from photoluminescence spectra to (x,y) 

chromaticity coordinates in the 1931 CIE colour space.  Transformations of this nature are 

commonly done and described elsewhere, and well as in the Supporting Information.[refs]  A 

theoretical line source of 1 nm spectra linewidth would lie on the boundary of the chromaticity 

diagram, by contrast an asymmetric emission of a molecular dye with approximately 30 nm 

linewidth is slightly closer to the center of the CIE plane.  The importance is to note that spectral 

information cannot be retrieved from chromaticity coordinates.  However, chromaticity 

coordinates provide a simple way compare the spectral output which may be useful for 

simulating the output of emissive devices as a function of temperature.
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S5.  Looking at impact of background correction upon calculated CIE coordinates 

Figure S3:  The effect of baseline scatter on the resulting CIE coordinates is illustrated.  Panel 
(a) shows the photoluminescence spectra of typical 3.2 nm CdSe NCs embedded in a polystyrene 
matrix.  Panel (b) shows the change in CIE coordinates as a function of the the Showing 
Scattering contribution to the CIE coordinate for low PLQY samples.
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Figure S3 shows the importance of addressing potential baseline scatter issues which may be 

present in NC samples in semiconductor films.  We show that a general conversion of the 

photoluminescence data to CIE coordinates will not necessarily result in the “correct” CIE 

coordinates if baseline corrections are not conducted.  Panel (a) shows the corrected and 

uncorrected photoluminescence spectra of a typical CdSe NC.  Panel (b) shows the CIE 

coordinates before and after baseline subtraction.  The uncorrected photoluminescence results in 

a pair of chromaticity coordinates which is significantly blue shifted in comparison with the 

narrow emission of the NC which has a chromaticity pair much closer to the edge of the CIE 

diagram.  
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S6.  Polynomial approximation to Core:Surface fitting as empirical alternative to 

Marcus Jortner theory 

Figure S4:  The ratio of photoluminescence intensity of core and surface emissive states 
between 300K - 90K can be calculated either using semiclassical Marcus-Jortner theory or 
conveniently approximated through a 4th order polynomial fit.  The results are shown for NC 
sizes of radii 0.89 nm and 1.13 nm in panels (a) and (b) respectively.
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S7.  Polynomial fits for size dependence chromaticity calculations

Figure S5:  The ratio of photoluminescence intensity of core and surface emissive states for 
various sizes at 300K (a), 200K (b) and 100 K (c) are fitted to third order polynomials. 
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S8.  Settings for calculations in figures 5

S=21, 

∆G =20 meV, 

Inhomogeneous Linewidth (Gaussian) = 50 meV.

Energies 2.7 eV – 2.1 eV ( data point every 20 meV)

S8: Parameters used for calculations in figure 5

Initial Energy 2.55 eV.

Panels a/b

A=1E15, S=21, τcore = 20 ns, τsurface 80 ns.  Linewidth 50 meV

Panels c/d

A=1E15, G=20 meV, τcore = 20 ns, τsurface 80 ns.  Linewidth 50 meV.
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S9.  Effects on temperature/chromaticity trajectories of other parameters.

Figure S8:  The influence of lattice contraction (a) and linewidth (b) parameters.  The lattice 
contraction manifests itself as a spectral blueshift, whereas increasing the line broadness of the 
surface state moves the emission profile to the center of the CIE coordinate space.
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Figure S8 shows the effect of varying the lattice contraction energy in meV as a function of 

temperature linearly from 300 K to 80K.  Panel (b) shows the effect of varying the linewidth of 

the surface state in units of ћω.  
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S10. Temperature dependence simulation (Simulation vs Data)

Figure S9 (a) shows CIE temperature trajectory for the 1.1 nm radius sample as function of 

temperature compared with data.  Panels (b) and (c) show the normalized photoluminescence 

spectra at 90K and 300K respectively, compared with the model simulation.  The parameters 

used in this calculation are as follows.  E=2.45 eV, S=18, ω=208 cm-1, ∆G=40 meV, core line 
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broadening =2hω, (Gaussian), surface line broadening= 4hω (Gaussian).  The lattice contraction 

shift was +60 meV at 90K and was linearly varied for temperatures between 300K and 90K.   

The core:surface ratio was determined from the 4th order polynomial fit to data in Figure S4, 

panel (b).  
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