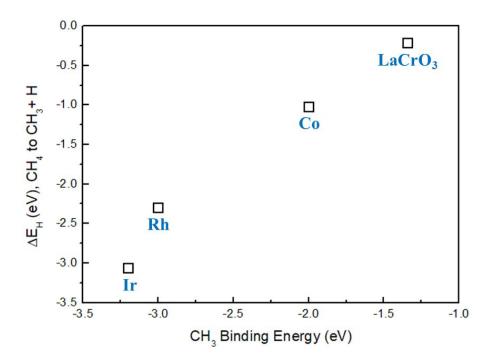
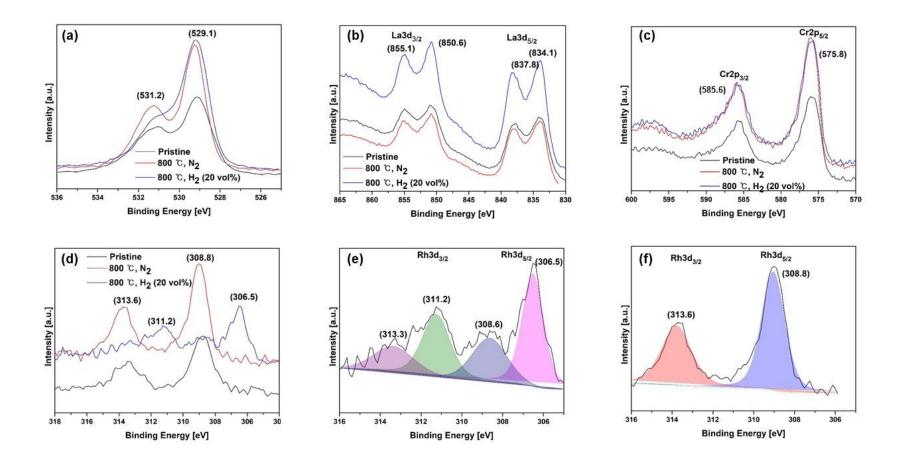
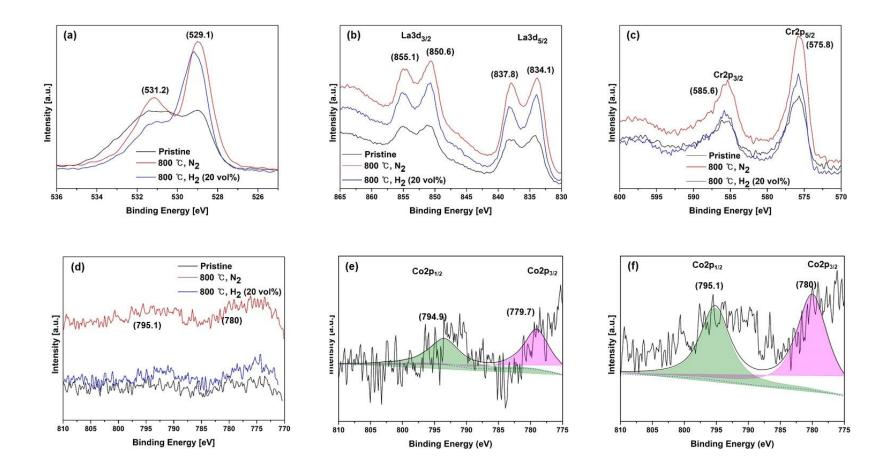
Importance of Exsolution in Transition Metal (Co, Rh, and Ir)-doped LaCrO₃ Perovskite Catalysts for Boosting Dry Reforming of CH₄ Using CO₂ for Hydrogen Production

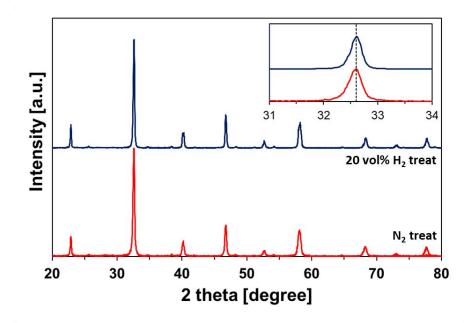
Joo Hyeng Oh,^{†,§} Byeong Wan Kwon,[†] Jinwon Cho,[†] Chan Hyun Lee,[†] Min Kyeong Kim,[†] Sun Hee Choi,^{†,‡} Sung Pil Yoon,^{†,‡} Jonghee Han,[†] Suk Woo Nam,[†] Ki Bong Lee^{*,§} and Hyung Chul Ham^{*,†,‡}

[†]Fuel Cell Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
[§]Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
[‡]Division of Energy & Environment Technology, KIST School, Korea University of Science

and Technology (UST), Seoul 02792, Republic of Korea

*Corresponding Author: (K.B. Lee) Tel. +82 2 3290 4851; Fax: +82 2 926 6102; E-mail: kibonglee@korea.ac.kr; (H.C. Ham) Tel. +82 2 958 5889; Fax: +82 2 958 5199; E-mail: hchahm@kist.re.kr.


Figure S1. Reaction energies of the dehydrogenation of CH₄ versus CH₃ binding energies.

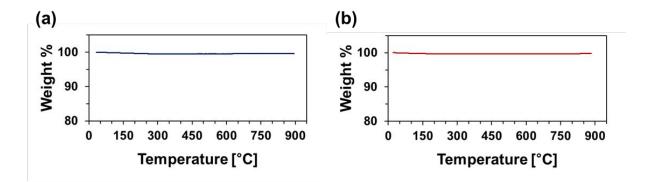

Figure S2. XPS spectra of LaCr_{0.95}Rh_{0.05}O_{3- δ} perovskite-based catalyst: (a) O1s, (b) La3d, (c) Cr2p, (d) Rh3d core-line spectra and curved-fitted Rh3d spectra after treated at 800 °C under (e) N₂ and (f) H₂ (20 vol%) conditions.

Figure S3. XPS spectra of $LaCr_{0.95}Co_{0.05}O_{3-\delta}$ perovskite-based catalyst: (a) O1s, (b) La3d, (c) Cr2p, (d) Co2p core-line spectra after the heat treatment at 800 °C under (e) N₂ and (f) H₂ (20 vol%) conditions.

Figure S4. X-ray diffraction spectra of $LaCr_{0.95}Ir_{0.05}O_{3-\delta}$ after N₂ or 20 vol% H₂ (balanced with N₂) treatment. Inset: Detailed XRD spectrum between 31° and 34°.

Figure S5. Thermogravimetric analysis of H₂ treated $LaCr_{0.95}Ir_{0.05}O_{3-\delta}$ perovskite-based catalyst at (a) before and (b) after the dry reforming reaction of CH₄ using CO₂ at 750 °C.

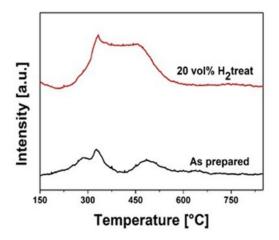


Figure S6. H₂-TPR profile of $LaCr_{0.95}Ir_{0.05}O_{3-\delta}$ at before/after activation under 20 vol% H₂ (balanced with N₂) treatment.