The Azide-para-Fluoro Substitution on Polymers: Multi-purpose Precursors for Efficient Sequential Postpolymerization Modification

 Janina-Miriam Noy, ${ }^{a}$ Yuman Li, ${ }^{b}$ Willi Smolan, ${ }^{a, c}$ Peter J. Roth ${ }^{b, *}$${ }^{\text {a }}$ Centre for Advanced Macromolecular Design, University of New South Wales, Kensington, Sydney, NSW 2052, Australia;
${ }^{\mathrm{b}}$ Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom;
${ }^{\text {c }}$ present address: Department for Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany

* Corresponding Author email address: p.roth@surrey.ac.uk

Experimental Section
Instrumentation
Synthesis: General Remarks
Synthesis: Pentafluoroaryl-functional polymers
Synthesis: Azide-functional model compound
Synthesis: N-propargyl-4-cyano 4-(dithiobenzoyl)valeramide

List of all Polymers

Results and Discussion
8
Azide-para-fluoro substitution on 2,3,4,5,6-pentafluorobenzyl-functional polymers
Azide-para-fluoro substitution on poly(2,3,4,5,6-pentafluorostyrene)
Optimisation of CuAAC conditions using a small molecule model azide
CuAAC Modification on azide-functional polymer
Azide-to-amine reduction
Solubility Tests

Experimental Section

Instrumentation

NMR spectroscopic measurements were performed on 300 , 400, or 500 MHz Bruker instruments in 5 mm NMR tubes. Residual solvent signals of $\mathrm{CHCl}_{3}\left(\delta_{H}=7.26 \mathrm{ppm}, \delta_{C}=77.2 \mathrm{ppm}\right), \mathrm{DMSO}-\mathrm{d}_{5}\left(\delta_{H}=2.51 \mathrm{ppm}\right)$ and $\mathrm{CD}_{2} \mathrm{HCN}\left(\delta_{H}=1.94 \mathrm{ppm}\right)$ were used as references. Fourier transform infrared spectroscopy (FT-IR) was performed on a Bruker IFS 66/S spectrometer or an Agilent Cary 600 Series spectrometer, in both cases under attenuated total reflectance (ATR).
Size exclusion chromatography (SEC) was performed on one of two instruments: a Shimadzu system using N, N-dimethylacetamide (DMAc) (equipped with four $300 \times 7.8 \mathrm{~mm}^{2}$ linear phenogel columns operating at $50^{\circ} \mathrm{C}$ and a flow rate of $1 \mathrm{~mL} / \mathrm{min}$, and calibrated with PS standards) or a Viscotek GPCMax VE 2001 setup using tetrahydrofuran (THF) (equipped with three linear $7.5 \times 300 \mathrm{~mm}$ PLgel mixed-D columns operating at $35^{\circ} \mathrm{C}$ and a flow rate of $0.7 \mathrm{~mL} / \mathrm{min}$, and calibrated with PMMA standards). For both instruments, samples were prepared at concentrations of $2-3 \mathrm{~g} / \mathrm{L}$ in the respective solvents and filtered through $0.2 \mu \mathrm{~m}$ regenerated cellulose syringe filters before injection. Plotted traces are from the respective refractive index detectors.
Differential scanning calorimetry (DSC) was done on a TA Instruments DSC Q1000 instrument using a heat-cool-heat cycle between $27^{\circ} \mathrm{C}$ and $210^{\circ} \mathrm{C}$ at heating/cooling rates of $10^{\circ} \mathrm{C} / \mathrm{min}$
Thermogravimetric analysis (TGA) was done on a TA Instruments TGA Q500 instrument by heating from RT to $600^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} /$ min under nitrogen.

Synthesis: General Remarks

Azobis(isobutyronitrile) (AIBN) was recrystallized from methanol and stored in a freezer. RAFT agent 4-cyano-4(phenylcarbonothioylthio) pentanoic acid (CPPA) was purchased from Sigma-Aldrich and used as received. The commercial monomers 2,3,4,5,6-pentafluorostyrene and oligo(ethylene glycol) methyl ether acrylate (PEGA, monomer $M_{n}=480 \mathrm{~g} / \mathrm{mol}$) were deinhibited by passing through a short plug of basic alumina directly before polymerization. Copper(I) bromide was stirred in boiling acetic acid, then filtered and washed with acetic acid and ethanol to extract copper(II) bromide impurities. The preparation of RAFT agent benzyl propyl trithiocarbonate (BPTC) is described in the literature. ${ }^{1}$

Synthesis: Pentafluoroaryl-functional polymers

Poly(2,3,4,5,6-pentafluorobenzyl methacrylate), 1a. Several batches were prepared according to a literature procedure, ${ }^{2}$ see table below for details. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=5.16,5.07,5.03\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right.$, splitting due to tacticity), 1.90, 1.83, 1.76, 1.56, $1.36\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.14,0.95,0.90,0.79,0.74\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=-142.4(2 \mathrm{~F}$, ortho), -151.9 (1 F, para), -161.5 (2 F, meta). FT-IR v/cm ${ }^{-1}=2956(\mathrm{w}, \mathrm{C}-\mathrm{H}$ stretch), 1734 ($\mathrm{m}-\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretch), 1656 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$ stretch), 1523, 1502 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$ stretch), 1128 ($\mathrm{m}, \mathrm{C}-\mathrm{F}$ stretch), 933 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$ bending).

Scheme S1. Synthesis of monomer 1 b.

Poly[2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl methacrylate], 1b. The monomer (Scheme S1) was prepared as follows. Pentafluorobenzaldehyde ($1.00 \mathrm{~g}, 0.63 \mathrm{~mL}, 5.1 \mathrm{mmol}, 1 \mathrm{eq}$.) was weighed into a 10 mL round bottom flask and water $(1.7 \mathrm{~mL})$ and methacrylic acid ($0.44 \mathrm{~g}, 0.43 \mathrm{~mL}, 5.1 \mathrm{mmol}, 1 \mathrm{eq}$.) were added. The mixture was stirred for a few minutes and cyclohexyl isocyanide ($0.56 \mathrm{~g}, 0.63 \mathrm{~mL}, 5.1 \mathrm{mmol}, 1 \mathrm{eq}$.) was added slowly. The mixture was stirred overnight at room temperature. The water was decanted and the sticky solid residue was dried under reduced pressure. The crude product was purified by silica gel column chromatography using ethyl acetate-hexane $2: 3$ to afford the title compound in quantitative yield (2.0 g). ${ }^{1} \mathrm{H} \mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta / \mathrm{ppm}=6.45(\mathrm{~s}, 1 \mathrm{H},-\mathrm{COOCH}-), 6.29(\mathrm{~d}, 1 \mathrm{H},-\mathrm{CONH}-), 6.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HHC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right.$), $5.74\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{HHC=C}(\mathrm{CH})_{3}\right)$), $3.85(\mathrm{~m}, 1$ $\mathrm{H},-\mathrm{NHCH}-\mathrm{Cy}), 1.99\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right.$), 1.94-1.16 (m, 10 H, cyclohexyl); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=164.9$ (COO), 164.7 (CONH), $135.0\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right), 127.9\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\right), 65.4$ (-OCOCH-$), 48.4$ (-NHCH-cyclohexyl), 32.7, 32.6 (Cy), $25.4(\mathrm{Cy}), 24.6,24.5(\mathrm{Cy}), 18.2\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right) ;$ ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=-141.4\left(\mathrm{~m}, 2 \mathrm{~F}\right.$, ortho), $-151.9\left(\mathrm{t}, 1 \mathrm{~F}\right.$, para), $-161.4\left(\mathrm{~m}, 2 \mathrm{~F}\right.$, meta); FT-IR v/cm ${ }^{-1}=3363(\mathrm{w}, \mathrm{N}-\mathrm{H}$, stretch), 2939, 2860 ($\mathrm{w}, \mathrm{C}-\mathrm{H}$ alkyl, $\mathrm{C}=\mathrm{CH}_{2}$, stretch), 1736 ($\mathrm{m} / \mathrm{s}, \mathrm{C}=\mathrm{O}$, ester, stretch), 1655 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$, amide, stretch), 1505 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$, stretch), 1129 (s, C-N, stretch), 997 (s, C-F, stretch).
The polymer 1 lb was prepared in analogy to procedure in the literature. ${ }^{3} \mathrm{DP}=60$; SEC ($\mathrm{DMAc}, \mathrm{PS}$ calibration, $19.5 \mathrm{~kg} / \mathrm{mol}, ~ Ð=1.26$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=6.06$ (bs, $2 \mathrm{H}, \mathrm{NH}, \mathrm{ArCH}$), 3.79 (bs, $1 \mathrm{H}, \mathrm{NHCH}$), 1.90, 1.72, 1.37, 1.18, 0.61 ($\mathrm{m}, 15 \mathrm{H}, \mathrm{Cy}$, backbone). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=-141.0\left(2 \mathrm{~F}\right.$, ortho), -151.1 (1 F, para), $-161.0\left(2 \mathrm{~F}\right.$, meta). FT-IR v/cm ${ }^{-1}=2932,2854$ ($\mathrm{w}, \mathrm{C}-\mathrm{H}$ stretch), 1740 ($\mathrm{C}=\mathrm{O}$ ester stretch), 1683 ($\mathrm{C}=\mathrm{O}$ amide stretch), 1521, 1504 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$ stretch), 1125 ($\mathrm{m}, \mathrm{C}-\mathrm{F}$ stretch).

Poly[2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl acrylate], 1c was prepared in analogy to a literature procedure using BPTC as RAFT agent. ${ }^{3} \mathrm{DP}=55$; SEC (DMAc, PS calibration, $8.9 \mathrm{~kg} / \mathrm{mol}, ~ Đ=1.45$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta / \mathrm{ppm}=$ 6.17 (bs, $1 \mathrm{H}, \mathrm{ArCH}$), 3.75 (bs, $1 \mathrm{H}, \mathrm{NHCH}$), 2.54 (bs, 1 H , backbone CH), 1.89, 1.64, 1.33, 1.13 ($\mathrm{m}, 12 \mathrm{H}$, backbone $\mathrm{CH}_{2}, \mathrm{Cy}$); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=-141.9\left(2 \mathrm{~F}\right.$, ortho), -151.6 (1 F, para), $-161.2\left(2 \mathrm{~F}\right.$, meta). FT-IR v/cm ${ }^{-1}=2931,2854(\mathrm{w}, \mathrm{C}-\mathrm{H}$ stretch), 1747 ($C=0$ ester stretch), 1670 ($C=O$ amide stretch), 1521, 1506 ($s, C=C$ stretch), 1128 (m, C-F stretch).

Poly[(2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl acrylate) 0.30 -co-(oligo (ethylene glycol) methyl ether acrylate) $)_{0.70}$, 1c-co-PEGA (shown above) was prepared in analogy to a literature procedure using BPTC as RAFT agent and a 30:70 molar ratio of the respective monomers. ${ }^{3} \mathrm{DP}=30+62=92$. SEC (DMAc, PS calibration, $28.5 \mathrm{~kg} / \mathrm{mol}, ~ Ð=1.39$). ${ }^{1 \mathrm{H}}$ NMR (300 MHz , CDCl_{3}) $\delta / \mathrm{ppm}=6.28$ (bs, ArCH), 4.17 (bs, COOCH_{2}), 3.84-3.52 (m, NHCH, PEG), 3.37 (bs, OCH O_{3}), 2.30 (bs, backbone CH), 1.98-1.11 $\left(\mathrm{m}\right.$, backbone $\left.\mathrm{CH}_{2}, \mathrm{Cy}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=-140.6\left(2 \mathrm{~F}\right.$, ortho), $-152.3\left(1 \mathrm{~F}\right.$, para), $-161.3\left(2 \mathrm{~F}\right.$, meta) . $\mathrm{FT}-\mathrm{IR} \mathrm{v} / \mathrm{cm}^{-1}=$ 2934, 2854 ($\mathrm{m}, \mathrm{C}-\mathrm{H}$ stretch), 1740 ($\mathrm{m}, \mathrm{C}=\mathrm{O}$ ester stretch), 1684 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ amide stretch), 1523, 1508 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$ stretch), 1097 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$ stretch).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 c -coPEGA with assignments.

Reaction $\mathbf{1 \rightarrow 2} \mathbf{~ s e e}$ main paper.

Poly(2,3,4,5,6-pentafluorostyrene), 3, Several samples were prepared by RAFT using BPTC as RAFT agent, see table below for details. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta / \mathrm{ppm}=2.73,2.40\left(1 \mathrm{H}, \mathrm{CH}\right.$ backbone), $2.01\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ backbone); ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm}=-143.1\left(2 \mathrm{~F}\right.$, ortho) $,-154.1(1 \mathrm{~F}$, para $),-161.0(2 \mathrm{~F}$, meta $) . \mathrm{FT}-\mathrm{IR} \mathrm{v} / \mathrm{cm}^{-1}=1653$ ($\mathrm{m}, \mathrm{C}=\mathrm{C}$ stretch), 1522,1496 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$ stretch), 1128 (C-F stretch).

Figure S2. ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of poly(2,3,4,5,6-pentafluorostyrene) 3.

Reaction $\mathbf{3} \rightarrow \mathbf{4}$ see main paper.

The synthesis of polymer poly($2,3,4,5,6$-pentafluorophenyl acrylate) 5 ($D P=178, ~ Đ=1.23$) is described elsewhere. ${ }^{4}$ Its attempted modification with sodium azide followed the same procedure as for $\mathbf{1 a}$.
 The monomer ethylene glycol 2,3,4,5,6-pentafluorophenyl ether acrylate was prepared in three steps from 2-hydroxyethyl acrylate (Scheme S2).

Step 1 (2-methylsulfonyl ethyl acrylate): Hydroxyethyl acrylate (HEA) ($15.00 \mathrm{~g}, 129 \mathrm{mmol}, 14.83 \mathrm{~mL}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150$ mL) in a 500 mL two-necked flask equipped with a with a dropping funnel, drying tube, and thermometer. The solution was cooled to $0-5^{\circ} \mathrm{C}$ with an ice-water bath before triethylamine ($19.61 \mathrm{~g}, 193 \mathrm{mmol}, 27.01 \mathrm{~mL}, 1.5 \mathrm{eq}$.) was added into the flask. Then, methanesulfonyl chloride ($22.20 \mathrm{~g}, 193 \mathrm{mmol}, 1.5 \mathrm{eq}$.) dissolved in $50 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise from the dropping funnel under vigorous stirring while the temperature was not allowed to exceed $10^{\circ} \mathrm{C}$. A white salt precipitated and the mixture was allowed to warm to RT and stirred overnight. Diethyl ether (50 mL) and aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ were added and stirring was continued for 5 min upon which the salt re-dissolved. The phases were separated, the aqueous phase was washed with diethyl ether $(2 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with water $(100 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (100 mL), aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{~mL})$ and aqueous $\mathrm{NaCl}(2 \times 100 \mathrm{~mL})$. The organic phase was dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The product was dried in vacuum. Yield: 96%, yellow oil. ${ }^{1} \mathrm{H} N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta / p p m=6.47(1 \mathrm{H} \mathrm{d}, \mathrm{CH}), 6.15(1 \mathrm{H}, \mathrm{q},=\mathrm{CH}), 5.90(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 4.44\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.05\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta / \mathrm{ppm}=165.6(>\mathrm{C}=\mathrm{O}), 131.9(=\mathrm{CH}-), 128.6\left(=\mathrm{CH}_{2}\right), 67.5\left(-\mathrm{CH}_{2}-\right), 61.9\left(-\mathrm{CH}_{2}-\right), 37.5\left(-\mathrm{CH}_{3}\right) ; \mathrm{FT}-\mathrm{IR}, \mathrm{v} / \mathrm{cm}^{-1}=3050-2950(\mathrm{C}-\mathrm{H}$ stretch $\left.\left(\mathrm{CH}_{2}\right)\right), 1722$ ($\mathrm{C}=\mathrm{O}$ stretch), 1637 ($\mathrm{C}=\mathrm{C}$ stretch), 1350, 1167 ($\mathrm{S}=\mathrm{O}$), 1297 ($\mathrm{C}-\mathrm{O}$), 750 (CH_{2} rocking).

Step 2 (2-iodo ethyl acrylate): 2-methylsulfonyl ethyl acrylate ($10.00 \mathrm{~g}, 51 \mathrm{mmol}$) was dissolved in anhydrous acetone (280 mL) in a 500 mL two-necked flask equipped with a reflux condenser. Sodium iodide ($15.44 \mathrm{~g}, 102 \mathrm{mmol}, 2 \mathrm{eq}$.) and inhibitor BHT (a few crystals) were added and the solution was heated to reflux overnight during which the colour changed from light yellow to yellow. A precipitated salt was removed by filtration and the solvent was removed under reduced pressure. The residual crude product was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with water $(3 \times 150 \mathrm{~mL})$. The organic phase was dried with MgSO_{4}, filtered, and the solvent removed under reduced pressure. The product was dried in vacuum. Yield: 96%, yellow-brown liquid. ${ }^{1} \mathrm{H} N \mathrm{NR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=6.46(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}) 6.14(1 \mathrm{H}, \mathrm{q}, \mathrm{CH}), 5.88(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 4.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.33\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right)$.

Step 3 (ethylene glycol 2,3,4,5,6-pentafluorophenyl ether acrylate): In a 250 mL round bottom flask equipped with a reflux condenser $\mathrm{Cs}_{2} \mathrm{CO}_{3}(9.51 \mathrm{~g}, 29 \mathrm{mmol}, 1.1$ eq.) was added to anhydrous acetone (100 mL) and stirred for several days. 2,3,4,5,6Pentafluorophenol ($5.37 \mathrm{~g}, 29 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added and stirred for 20 min before 2 -iodo ethyl acrylate ($6.00 \mathrm{~g}, 27 \mathrm{mmol}, 1 \mathrm{eq}$.) was added. The suspension was refluxed overnight. A white precipitate was removed by filtration and the solvent was removed under reduced pressure. The yellow-brown filtrate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and washed with water ($3 \times 150 \mathrm{~mL}$), aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$. The organic phase was dried with MgSO_{4}, filtered, and the solvent removed under reduced pressure. The residual liquid was purified by silica gel column chromatography using hexane-ethyl acetate $4: 1 \mathrm{v} / \mathrm{v}$. The product was dried in vacuum. Yield: $12.8 \mathrm{~g}(73 \%($ step 3$))$, yellow liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=6.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}), 6.11$ $(1 \mathrm{H}, \mathrm{q}, \mathrm{CH}), 5.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}), 4.43\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=165.8$ (C=O), 135.9-143.5 (CF), 131.5 $(=\mathrm{CH}-), 127.8\left(=\mathrm{CH}_{2}\right), 73.0\left(\mathrm{CH}_{2}\right), 62.9\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=-156.7(2 \mathrm{~F}, \mathrm{~d}$, ortho), $-162.9(1 \mathrm{~F}, \mathrm{t}$, para $),-163.3$ ($2 \mathrm{~F}, \mathrm{t}$, meta); FT-IR, v/cm ${ }^{-1}=2955\left(\mathrm{C}-\mathrm{H}\right.$ stretch $\left(\mathrm{CH}_{2}\right)$), 1728 ($\mathrm{C}=\mathrm{O}$ stretch), 1637 ($\mathrm{C}=\mathrm{C}$ stretch), 1510-1474 (C-H bending (CH_{2}), 1268 (C-O stretch), 1161 (C-F) cm ${ }^{-1}$. UV-Vis ($0.1 \mathrm{mmol} / \mathrm{L}$ in MeCN): $\lambda_{\max 1}=236 \mathrm{~nm}, \lambda_{\max 1}=260 \mathrm{~nm}$. Soluble in methanol, acetonitrile, acetone, chloroform, dichloromethane, diethyl ether, hexane. Insoluble in water.

Figure S3. ${ }^{1} \mathrm{H} N M R$ spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ethylene glycol 2,3,4,5,6-pentafluorophenyl ether acrylate with assignments.

Figure S4. ${ }^{13} \mathrm{C} N M R$ spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of
 ethylene glycol 2,3,4,5,6-pentafluorophenyl ether acrylate with assignments. The $\underline{C-F}$ (d) was assigned based on the lower estimated integral (1 C). The quaternary aromatic carbon did not give a signal strong enough to be discerned in the noise.

Figure S5. ${ }^{19} \mathrm{~F}$ NMR spectrum ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ethylene glycol 2,3,4,5,6-pentafluorophenyl ether acrylate with assignments.

Scheme S3. Structure of 6-co-PEGA.

The polymer 6-co-PEGA (Scheme 3) was prepared in analogy to a literature procedure using an ethylene glycol 2,3,4,5,6pentafluorophenyl ether acrylate-PEGA feed ratio of $40: 60 .{ }^{3} \mathrm{DP}=33+45=78$. SEC (DMAc, PS calibration, $23.9 \mathrm{~kg} / \mathrm{mol}, ~ Ð=1.27$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=4.33\left(\mathrm{bs}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 4.14\left(\mathrm{bs}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OPEG}\right), 3.37(\mathrm{~m}, \mathrm{PEG}), 3.37(\mathrm{~s}, \mathrm{OCH}$), $2.34(\mathrm{bs}, \mathrm{CH}), 1.88-1.25$ ($\mathrm{m}, \mathrm{CH}_{2}$); ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=-156.6$ (2 F , ortho), -161.1 (3 F, meta + para).
As 6-co-PEGA did not undergo the desired para-fluoro substitution with sodium azide (see main paper), further homo-/copolymers of 6 were not investigated in this study.

Scheme S4. Synthesis of an azide-functional model compound.

2-(tert-Butylamino)-2-oxo-1-(4-azido-2,3,5,6-tetrafluorophenyl) ethyl acetate was prepared in two steps (Scheme S4).
Step 1 (2-(tert-Butylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl acetate): Pentafluorobenzaldehyde ($0.5 \mathrm{~g}, 0.31 \mathrm{~mL}, 2.6$ $\mathrm{mmol}, 1$ eq.) was added to water (1.0 mL) in a 5 mL round bottom flask before acetic acid ($0.16 \mathrm{~g}, 0.15 \mathrm{~mL}, 2.6 \mathrm{mmol}, 1 \mathrm{eq}$.) was added. The mixture was stirred for a few minutes and tert-butyl isocyanide ($0.21 \mathrm{~g}, 0.29 \mathrm{~mL}, 2.6 \mathrm{mmol}, 1$ eq.) was added slowly to the mixture which was left to stir overnight at room temperature. The water was decanted and remaining solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using ethyl acetate-hexane 1:3 to obtain the product as a slight yellow liquid ($0.73 \mathrm{~g}, 2.2 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta / \mathrm{ppm}=6.29(\mathrm{~s}, 1 \mathrm{H},-\mathrm{COOCH}-), 6.24$ ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CONH}-$), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}-\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta / \mathrm{ppm}=168.3$ (COO), 164.8 (CONH), 65.3 $(\mathrm{CH}), 52.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.5\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.7\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta / \mathrm{ppm}=-140.9(\mathrm{~m}, 2 \mathrm{~F}$, ortho), $-152.4(\mathrm{t}, 1 \mathrm{~F}$, para $)$, -161.5 (m, 2 F, meta).
Step 2 (2-(tert-Butylamino)-2-oxo-1-(4-azido-2,3,5,6-tetrafluorophenyl) ethyl acetate): The product of the previous step (0.3 g , $0.884 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in DMF (15 mL) and sodium azide ($143.7 \mathrm{mg}, 2.21 \mathrm{mmol}, 2.5 \mathrm{eq}$) was added. The solution was stirred in the dark for 2 h at $80^{\circ} \mathrm{C}$. Completion was confirmed by ${ }^{19} \mathrm{~F}$ NMR spectroscopy of a withdrawn sample ($100 \mu \mathrm{~L}$) diluted with $\mathrm{CDCl}_{3}(500 \mu \mathrm{~L})$. The product was isolated by adding water (15 mL) and extracting the product with diethyl ether ($3 \times 50 \mathrm{~mL}$), followed by drying $\left(\mathrm{MgSO}_{4}\right)$, and removing the solvent by blowing air into the solution. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta / \mathrm{ppm}=6.27(\mathrm{~s}$, $1 \mathrm{H},-\mathrm{COOCH}-), 6.24(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CONH}-), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}-\right), 1.39\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}, \mathrm{CDCl} 3), \delta / \mathrm{ppm}=168.4(\mathrm{COO})$, $164.9(\mathrm{CONH}), 65.5(\mathrm{CH}), 52.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.5\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.8\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta / \mathrm{ppm}=-141.7(\mathrm{~m}, 2 \mathrm{~F}$, ortho)), -152.2 (m, 2 F, meta). FT-IR, $\mathrm{v} / \mathrm{cm}^{-1}=2120$ (s , azide $\mathrm{N}=\mathrm{N}=\mathrm{N}$). ESI MS: 363.1 ($100 \%, \mathrm{M}+\mathrm{H}^{+}$).

Synthesis: N-propargyl-4-cyano 4-(dithiobenzoyl)valeramide

Scheme S5. Synthesis of alkyne-functional RAFT agent
4-Cyano-4-dithiobenzoylvaleric acid (Scheme S5) ($460 \mathrm{mg}, 1.65 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in anhydrous dichloromethane (8 mL) in a flask under nitrogen atmosphere. $4-N, N$-dimethylaminopyridine ($41.6 \mathrm{mg}, 0.34 \mathrm{mmol}, 0.21 \mathrm{eq}$), propargyl amine ($96.5 \mathrm{mg}, 1.75$ mmol, 1.06 eq), and dicyclohexyl carbodiimide ($455 \mathrm{mg}, 2.20 \mathrm{mmol}, 1.33 \mathrm{eq}$) were added in that order. The solution was stirred until TLC control indicated completion (250 min). The product was purified by column chromatography yielding $298 \mathrm{mg}(57 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=7.88$ (d, $2 \mathrm{H}, \mathrm{Ar}$), 7.56 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}$), 7.38 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}$), 6.13 (bs, NH), 4.06 (app. $\left.\mathrm{q}(1: 1: 1: 1), \mathrm{J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CCH}\right), 2.69-2.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.23(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

List of all Polymers

Table S1. List of all Polymers with Calculated Molar Masses and SEC-determined Molar Masses and Dispersities

Code	Full Name	Details of Synthesis (conversion)	$M_{\mathrm{n}}{ }^{\text {calc } a}$	$\boldsymbol{M}_{\mathbf{n}}{ }^{\text {SEC } ~} b$	$\boldsymbol{D}^{\text {b }}$
3	Poly(2,3,4,5,6-pentafluorostyrene)	$D^{\text {c }}=48$	9.5	n.d.	n.d.
4	Poly(4-azido-2,3,5,6-pentafluorostyrene ${ }_{0.90}$-co-2,3,4,5,6pentafluorostyrene ${ }_{0.10}$)	azide-para fluoro substitution of $\mathbf{3}(\mathrm{DP}=48)$ (90\%)	9.7	n.d.	n.d.
3	Poly(2,3,4,5,6-pentafluorostyrene)	DP $=62$	12.3	n.d.	n.d.
4	Poly(4-azido-2,3,5,6-pentafluorostyrene ${ }_{0.89}$-co-2,3,4,5,6pentafluorostyrene ${ }_{0.11}$)	azide-para fluoro substitution of $3(D P=62)$ (89\%)	12.4	n.d.	n.d.
3	Poly($2,3,4,5,6$-pentafluorostyrene)	DP $=170$	33.2	8.3 T ${ }^{\text {d }}$	1.32
4	Poly(4-azido-2,3,5,6-pentafluorostyrene ${ }_{0.89}$-co-2,3,4,5,6pentafluorostyrene ${ }_{0.11}$)	azide-para fluoro substitution of $\mathbf{3}$ ($\mathrm{DP}=170$) (89\%)	33.7	8.0 T	1.29
3	Poly($2,3,4,5,6$-pentafluorostyrene)	DP $=30$	6.2	5.0	1.14
4	Poly(4-azido-2,3,5,6-pentafluorostyrene ${ }_{0.91}$-co-2,3,4,5,6pentafluorostyrene ${ }_{0.09}$)	azide-para fluoro substitution of $\mathbf{3}(\mathrm{DP}=30)$ (91\%)	6.8	19.3	1.22
9	Poly(4-amino-2,3,5,6-pentafluorostyrene ${ }_{0.91}$-co-2,3,4,5,6pentafluorostyrene ${ }_{0.09}$)	same-pot amine reduction of 4 ($\mathrm{DP}=30$)	6.1	18.8	1.19
5	Poly(2,3,4,5,6-pentafluorophenyl acrylate)	DP $=178$	42.6	69.6	1.23
$\begin{aligned} & \text { 6-co- } \\ & \text { PEGA } \end{aligned}$	Poly[(ethylene glycol 2,3,4,5,6-pentafluorophenyl ether acrylate) $)_{0.42^{-}}$ co-(oligo(ethylene glycol) methyl ether acrylate) 0.58]	DP $=78$	37.7	23.9	1.27
1 a	Poly(2,3,4,5,6-pentafluorobenzyl methacrylate)	DP $=40$	10.9	10.5	1.15
2a	Poly(4-azido-2,3,5,6-tetrafluorobenzyl methacrylate)	azide-para fluoro substitution of 1a ($\mathrm{DP}=40$) (quant.)	11.8	14.4	1.47
7a/A	Poly[4-(4-decyl-1H-1,2,3-triazol-1-yl)-2,3,5,6-tetrafluorobenzyl methacrylate]	CuAAC modification of $2 \mathrm{a}(\mathrm{DP}=40)$ with 1dodecyne	18.5	21.8	1.62
1b	Poly[2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl methacrylate]	DP $=60$	23.7	19.5	1.26
2b	Poly[2-(cyclohexylamino)-2-oxo-1-(4-azido-2,3,5,6-tetrafluorophenyl) ethyl methacrylate]	azide-para fluoro substitution of 1b (quant.)	25.1	18.4	1.32
7b/A	Poly[2-(cyclohexylamino)-2-oxo-1-(4-(4-decyl-1H-1,2,3-triazol-1-yl)-2,3,5,6-tetrafluorophenyl) ethyl methacrylate]	CuAAC modification of $\mathbf{2 b}$ with 1-dodecyne (96% conversion)	35.1	48.7	1.37
7b/B	Poly[2-(cyclohexylamino)-2-oxo-1-(4-(4-acryloxymethyl-1H-1,2,3-triazol-1-yl)-2,3,5,6-tetrafluorophenyl) ethyl methacrylate]	CuAAC modification of $\mathbf{2 b}$ with propargyl acrylate (97% conversion)	30.7	33.1	1.34
7b/C	Poly[2-(cyclohexylamino)-2-oxo-1-(4-(4-butyl-1H-1,2,3-triazol-1-yl)-2,3,5,6-tetrafluorophenyl) ethyl methacrylate]	CuAAC modification of $\mathbf{2 b}$ with 1-hexyne (95\% conversion)	30.0	47.0	1.35
7b/D	Poly[2-(cyclohexylamino)-2-oxo-1-(4-(4-(4-cyano 4- (dithiobenzoyl)valeramido methyl)-1H-1,2,3-triazol-1-yl)-2,3,5,6tetrafluorophenyl) ethyl methacrylate]	CuAAC modification of $\mathbf{2 b}$ with N -propargyl-4cyano 4-(dithiobenzoyl)valeramide (quant.)	44.1	54.1	1.35
1a	Poly(2,3,4,5,6-pentafluorobenzyl methacrylate)	DP $=65$	17.5	10.3 T	1.13
2a	Poly(4-azido-2,3,5,6-tetrafluorobenzyl methacrylate)	azide-para fluoro substitution of 1a $(D P=65)$ (quant.)	19.0	9.6 T	1.16
8 a	Poly(4-acetamido-2,3,5,6-tetrafluorobenzyl methacrylate)	azide-thioacetate modification of 2a($D P=65$) (quant.)	20.1	4.1 T	1.23
1 c	Poly[2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl acrylate]	DP $=55$	21.0	8.9	1.45
2 c	Poly[2-(cyclohexylamino)-2-oxo-1-(4-azido-2,3,5,6-tetrafluorophenyl) ethyl acrylate]	azide-para fluoro substitution of $\mathbf{1 c}$ (quant.)	22.3	n.d.	n.d.
10c	Poly[2-(cyclohexylamino)-2-oxo-1-(4-amino-2,3,5,6-tetrafluorophenyl) ethyl acrylate]	azide-to-amine reduction of $\mathbf{2 c}$ (quant.)	20.8	13.5	1.39
$\begin{aligned} & \text { 1c-co- } \\ & \text { pPEGA } \end{aligned}$	Poly[(2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl acrylate) 0.30 -co-(oligo(ethylene glycol) methyl ether acrylate) ${ }_{0.70}$]	DP $=92$	41.4	28.5	1.39
$\begin{aligned} & \text { 2c-co- } \\ & \text { pPEGA } \end{aligned}$	Poly[(2-(cyclohexylamino)-2-oxo-1-(4-azido-2,3,5,6-tetrafluorophenyl) ethyl acrylate) ${ }_{0.32}$-co-(oligo(ethylene glycol) methyl ether acrylate) ${ }_{0.68}$]	azide-para fluoro substitution of $\mathbf{1 c}$-co-pPEGA (quant.)	42.1	30.3	1.40
10c-co- pPEGA	Poly[(2-(cyclohexylamino)-2-oxo-1-(4-amino-2,3,5,6tetrafluorophenyl) ethyl acrylate) $0_{0.32}$-co-(oligo(ethylene glycol) methyl ether acrylate) ${ }_{0.68}$]	azide-to-amine reduction of $\mathbf{2 c}$-co-pPEGA (quant.)	41.3	31.0	1.40
1a	Poly(2,3,4,5,6-pentafluorobenzyl methacrylate)	DP = 145	38.8	19.2	1.34
2a	Poly(4-azido-2,3,5,6-tetrafluorobenzyl methacrylate)	azide-para fluoro substitution of 1 a $(D P=145)$ (quant.)	42.2	n.d.	n.d.
10a	Poly(4-amino-2,3,5,6-tetrafluorobenzyl methacrylate)	same-pot amine reduction of 2a ($\mathrm{DP}=145$)	38.4	41.4	1.20
11a/E	Poly(4-acrylamido-2,3,5,6-tetrafluorobenzyl methacrylate)	amidation of 10a ($D P=145$) with acryloyl chloride	46.2	77.9	1.31
11a/F	Poly(4-(3,5-dinitrobenzamido)-2,3,5,6-tetrafluorobenzyl methacrylate)	amidation of 10a $(D P=145)$ with $3,5-$ dinitrobenzoyl chloride	66.5	136.3	1.29

${ }^{a}$ Molar mass calculated from degree of polymerization and mass of end groups
${ }^{b}$ Determined by size exclusion chromatography in DMAc (PS calibration)
${ }^{c}$ Degree of polymerization determined from crude NMR measurement by quantifying the amount of residual monomer
${ }^{d} \mathrm{~T}=$ Size exclusion chromatography in THF (PMMA calibration)

Results and Discussion

Azide-para-fluoro substitution on 2,3,4,5,6-pentafluorobenzyl-functional polymers

Figure S6. ${ }^{19} \mathrm{~F}$ NMR spectra ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (i) poly[2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl methacrylate] 1b, (ii) its azide derivate $\mathbf{2 b}$ and triazoles $\mathbf{7 b}$ after CuAAC modification with (iii) 1-dodecyne (7b/A), (iv) propargyl acrylate ($7 b / B$), (v) 1-hexyne ($7 b / C$), and (vi) the propargylfunctional dithioester ($7 b / D$). The inset figures indicate the approximate molar ratio of a side produce with a chemical shift of -163 ppm. The spectra show broad signals presumably due to poor solvation around the sterically crowded methacrylic repeat units. This broadening was already observed in our previous study ${ }^{3}$ and the attachment of further functionality through CuAAC, while (nearly) quantitative, leads to further peak broadening.

Figure S7. ${ }^{19} \mathrm{~F}$ NMR spectra ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (i) poly[(2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl acrylate) 0.32 -co-(oligo(ethylene glycol) methyl ether acrylate) ${ }_{0.68}$] 1c-co-pPEGA; (ii) its azide derivate 2c-co-pPEGA, and (iii) after reduction to the 2,3,5,6-tetrafluoroaniline derivative 10c-copPEGA.

Figure S8. FT-IR spectra of (i) poly(2,3,4,5,6-pentafluorobenzyl methacrylate) 1a, (ii) its azide derivative 2a, (iii) 2,3,5,6tetrafluoroacetanilide 8a, (iv) 2,3,5,6-tetrafluoroaniline 10a, and after acylation with (v) acryloyl chloride, 11a/E and (vi) 3,5dinitrobenzoyl chloride, 11a/F with relevant vibrations highlighted.

Figure S9. ${ }^{19} \mathrm{~F}$ NMR spectra (376 MHz) of (i) poly $(2,3,4,5,6$ pentafluorostyrene) $\mathbf{3}\left(\mathrm{CDCl}_{3}\right)$; (ii) after substitution of approx. 91% of the para-fluorides with azide, 4 (DMAc-CDCl ${ }_{3}$ 1:3) and (iii) following same-pot azide-to-amine reduction to give the anilinederivative 9 (DMAc-CDCl 1 1:3). The sharp signals in spectra (ii) and (iii) originate from approx. $5 \mathrm{~mol}-\%$ of residual $2,3,4,5,6$ pentafluorostyrene monomer that had not been removed before modification but which indicates that the modification also took place on the small molecules. The small broad signals in the same spectra originate from unmodified 2,3,4,5,6-pentafluorostyrene repeat units.

CuAAC Modification: Optimisation of conditions using a small molecule model azide

Scheme S6. CuAAC model reactions.

Table S2. Overview of CuAAC reactions on a small molecule model (Scheme S6)

Entry	Yne	Catalyst	Additives	Solv.	Temp.	Time	Triazole
1	1-Pentyne (1.2 eq)	CuBr (0.08 eq)	4,4'-Dinonyl-2,2'-dipyridyl (0.16 eq), Pyridine (1 eq)	CDCl_{3}	$0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$	19 h	0\%
2	1-Pentyne (1.2 eq)	CuBr (0.12 eq)	$\mathrm{Et}_{3} \mathrm{~N}$ (1.2 eq), Diisopropylamine (1.2 eq)	CDCl_{3}	RT	16 h	13\%
3	1-Pentyne (2 eq)	$\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Br}(0.4 \mathrm{eq})$	Piperidine (4 eq), Ethyldiisopropylamine (0.8 eq)	THF	RT	4 h	0\% (mixture of products)
4	1-Dodecyne (1.2 eq)	CuBr (0.12 eq)	$\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{eq})$	CDCl_{3}	$40^{\circ} \mathrm{C}$	a) 2 h b) 22.5 h	a) 46% b) 85%
5	1-Dodecyne (1.2 eq)	CuBr (0.12 eq)	$\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{eq})$	CDCl_{3}	$40^{\circ} \mathrm{C}^{\text {a }}$	a) 1.75 h b) 5.25 h c) 23.5 h d) 4 d e) 5 d	a) 9% b) 25% c) 79% d) 94% e) 95%
6	1-Dodecyne (1.2 eq)	CuBr (0.12 eq)	$\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{eq})$	DMF	$80^{\circ} \mathrm{C}$	20.5 h	100\%

[^0]
CuAAC Modification on azide-functional polymer

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (i) poly[2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl methacrylate] 1b and following azide substitution and CuAAC modification with (ii) 1-dodecyne, 7b/A; (iii) 1-hexyne, 7b/C; (iv) an alkyne-functional RAFT agent, 7b/D.

Azide-to-amine reduction

Figure S11. Size exclusion chromatograms of (A) (i) poly[(2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl acrylate) o.32-co-(oligo(ethylene glycol) methyl ether acrylate $)_{0.68}$ 1c-co-pPEGA (DP = 92), (ii) its azide derivate 2c-co-pPEGA, and (iii) after reduction to the 2,3,5,6-tetrafluoroaniline derivative 10c-co-pPEGA; (B) (i) poly[2-(cyclohexylamino)-2-oxo-1-(2,3,4,5,6-pentafluorophenyl) ethyl acrylate] 1c ($D P=55$) and (ii) its 2,3,5,6-tetrafluoroaniline derivative 10c after one-pot substitutionreduction.

Solubility Tests

Table S3. Observed solubilities of four methacrylic polymer examples in a variety of aqueous and organic solvents. The insolubility of aniline-functional polymer 10a in aqueous HCl demonstrated the low basicity of the nitrogen lone pair. Importantly, all below polymers were soluble in solvents of intermediate polarity.

Solvent	1a (pentafluoro)	2a (azide)	10a (aniline)	11a/F (dinitrobenzamide)
Water Aq. $\mathrm{HCl}(\mathrm{pH} 2-3)$ Methanol Ethanol	no	no	no	
Dimethylsulfoxide N, N-Dimethylformamide	no	no	nes	no
N, N-Dimethylacetamide	no	no	yes	no

References

1. Quek, J. Y.; Roth, P. J.; Evans, R. A.; Davis, T. P.; Lowe, A. B. Reversible addition-fragmentation chain transfer synthesis of amidine-based, CO2-responsive homo and AB diblock (Co)polymers comprised of histamine and their gas-triggered selfassembly in water. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (2), 394-404 DOI: doi:10.1002/pola.26397.
2. Noy, J.-M.; Friedrich, A.-K.; Batten, K.; Bhebhe, M. N.; Busatto, N.; Batchelor, R. R.; Kristanti, A.; Pei, Y.; Roth, P. J. Para-Fluoro Postpolymerization Chemistry of Poly(pentafluorobenzyl methacrylate): Modification with Amines, Thiols, and Carbonylthiolates. Macromolecules 2017, 50 (18), 7028-7040 DOI: 10.1021/acs.macromol.7b01603.
3. Noy, J.-M.; Koldevitz, M.; Roth, P. J. Thiol-reactive functional poly(meth)acrylates: multicomponent monomer synthesis, RAFT (co)polymerization and highly efficient thiol-para-fluoro postpolymerization modification. Polymer Chemistry 2015, 6 (3), 436447 DOI: 10.1039/c4py01238k.
4. Zhu, Y.; Noy, J.-M.; Lowe, A. B.; Roth, P. J. The synthesis and aqueous solution properties of sulfobutylbetaine (co)polymers: comparison of synthetic routes and tuneable upper critical solution temperatures. Polymer Chemistry 2015, 6 (31), 5705-5718 DOI: 10.1039/C5PY00160A.

[^0]: ${ }^{a}$ reaction in NMR tube; not stirred

