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I. Derivation of a mathematical relationship relating enantiomeric ratios (er) at individual 

stereocenters to a global diastereomeric ratio (dr). 

 

We start by defining the enantiomeric ratio (er) as R relative to S (Eq.S1), the alcohol (er2) and 

amine (er3) individual stereocenters in the manner that current optical methods would measure 

them (Eqs.S2 and S3, respectively), and the dr as threo over erythro (Eq.S4).1 We will then 

proceed to establish dr as a function of er2 and er3, giving us a possible method of directly 

calculating dr. Here A, B, C, and D represent the concentrations of these structures, i.e. the total 

speciation we are seeking. 
 

𝑒𝑟 =
𝑅

𝑆
 

 

𝑒𝑟2 =
𝑥

𝑦
=

𝐴 + 𝐵

𝐶 + 𝐷
 

 

𝑒𝑟3 =
𝑢

𝑣
=

𝐴 + 𝐶

𝐵 + 𝐷
 

 

𝑑𝑟 =
𝑡ℎ𝑟𝑒𝑜

𝑒𝑟𝑦𝑡ℎ𝑟𝑜
=

𝐴 + 𝐷

𝐵 + 𝐶
 

Let us also observe that: 

 
𝑑𝑟

𝑑𝑟
=

1

𝑑𝑟
× 𝑑𝑟 =

(𝐵 + 𝐶)(𝐴 + 𝐷)

(𝐴 + 𝐷)(𝐵 + 𝐶)
= 1 

 

In order to establish a relationship between dr, er2 and er3, we used an algebraic manipulation 

involving a fractional expression, i.e. ((𝑒𝑟2  ×  𝑒𝑟3) + 1 )/(𝑒𝑟2 + 𝑒𝑟3) and evaluate it by 

substituting the definitions from Eqs. 2 and 3, and multiplying the terms out to get: 

 

𝑓(𝑒𝑟2, 𝑒𝑟3) =
(𝑒𝑟2 × 𝑒𝑟3) + 1

(𝑒𝑟2 + 𝑒𝑟3)
 

 

=
𝑥𝑢 + 𝑦𝑣

𝑥𝑣 + 𝑦𝑢
 

 

=
𝐴2 + 𝐴𝐶 + 𝐴𝐵 + 2𝐵𝐶 + 𝐵𝐷 + 𝐶𝐷 + 𝐷2

𝐵2 + 𝐵𝐷 + 𝐴𝐵 + 2𝐴𝐷 + 𝐶𝐴 + 𝐶𝐷 + 𝐶2
 

 

We can multiply the final expression shown above by 
𝑑𝑟

𝑑𝑟
= 1 (shown in Eq.S5) using the property 

of the multiplicative identity to keep the value the same. We can then expand the first two 

expressions in both the numerator and the denominator to find like terms: 

 

=
(𝐴2 + 𝐴𝐶 + 𝐴𝐵 + 2𝐵𝐶 + 𝐵𝐷 + 𝐶𝐷 + 𝐷2)(𝐵 + 𝐶)(𝐴 + 𝐷)

(𝐵2 + 𝐵𝐷 + 𝐴𝐵 + 2𝐴𝐷 + 𝐶𝐴 + 𝐶𝐷 + 𝐶2)(𝐴 + 𝐷)(𝐵 + 𝐶)
 

 

                                                      
1Enantiomeric and diastereomeric ratios are interchangeable with enantiomeric excesses and diastereomeric 

excesses, respectively. Ratios were chosen over excesses to simplify the derivation of Eq. 6a.  

Eq.S2 

Eq. S3 

Eq. S4 

Eq. S5 

Eq.S1 

Eq.S6a 

Eq.S7a 

Eq.S6b 

Eq.S6c 
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=
(𝐴2𝐶 + 𝐴𝐶2 + 𝐴𝐵𝐶 + 𝐵𝐶𝐷 + 𝐶2𝐷 + 𝐶𝐷2 + 2𝐵𝐶2 + 𝐴2𝐵 + 𝐴𝐵2 + 𝐴𝐵𝐶 + 𝐵𝐶𝐷 + 𝐵2𝐷 + 𝐵𝐷2 + 2𝐵2𝐶)(𝐴 + 𝐷)

(𝐴2𝐶 + 𝐴𝐶2 + 𝐴𝐵𝐷 + 𝐴𝐶𝐷 + 𝐶2𝐷 + 𝐶𝐷2 + 2𝐴𝐷2 + 𝐴2𝐵 + 𝐴𝐵2 + 𝐴𝐵𝐷 + 𝐴𝐶𝐷 + 𝐵2𝐷 + 𝐵𝐷2 + 2𝐴2𝐷)(𝐵 + 𝐶)
 

 

=
(𝐴2𝐶 + 𝐴𝐶2 + 𝐶2𝐷 + 𝐶𝐷2 + 𝐴2𝐵 + 𝐴𝐵2 + 𝐵2𝐷 + 𝐵𝐷2 + 2𝐴𝐵𝐶 + 2𝐵𝐶𝐷 + 2𝐵𝐶2 + 2𝐵2𝐶)(𝐴 + 𝐷)

(𝐴2𝐶 + 𝐴𝐶2 + 𝐶2𝐷 + 𝐶𝐷2 + 𝐴2𝐵 + 𝐴𝐵2 + 𝐵2𝐷 + 𝐵𝐷2 + 2𝐴𝐵𝐷 + 2𝐴𝐶𝐷 + 𝐴𝐷2 + 2𝐴2𝐷)(𝐵 + 𝐶)
 

 

Now, we can define the variable 𝑍 = (𝐴2𝐶 + 𝐴𝐶2 + 𝐶2𝐷 + 𝐶𝐷2 + 𝐴2𝐵 + 𝐴𝐵2 + 𝐵2𝐷 + 𝐵𝐷2), which 

corresponds with the first eight terms in both the numerator and the denominator of the of Eq.S7c. 

Hence, we can substitute in 𝑍 and rewrite the above as: 

 

=
(𝑍 + 2𝐴𝐵𝐶 + 2𝐵𝐶𝐷 + 2𝐵𝐶2 + 2𝐵2𝐶)[(𝐴 + 𝐷)]

(𝑍 + 2𝐴𝐵𝐷 + 2𝐴𝐶𝐷 + 𝐴𝐷2 + 2𝐴2𝐷)[(𝐵 + 𝐶)]
 

 

We now see that the portion of expression in Eq.S8 put into brackets on the right corresponds 

exactly with our definition of dr as shown in Eq.S4. Thus, we can also pull out the like terms in 

the latter halves of the numerator and denominator (2𝐵𝐶 and 2𝐴𝐷, respectively), and simplify the 

expression as follows: 

 

=
(𝑍 + 2𝐴𝐵𝐶 + 2𝐵𝐶𝐷 + 2𝐵𝐶2 + 2𝐵2𝐶)

(𝑍 + 2𝐴𝐵𝐷 + 2𝐴𝐶𝐷 + 𝐴𝐷2 + 2𝐴2𝐷)
× 𝑑𝑟 

 

=
𝑍 + 𝐵𝐶 ∙ 2(𝐴 + 𝐵 + 𝐶 + 𝐷)

𝑍 + 𝐴𝐷 ∙ 2(𝐴 + 𝐵 + 𝐶 + 𝐷)
× 𝑑𝑟 

 

It is now evident that the only terms that differ in this fraction are 𝐵𝐶 and 𝐴𝐷. Let us assume that 

𝐵𝐶 = 𝐴𝐷 = 𝑋, and substitute this value into the equation, as we did when evaluating Eq.S7c to get 

Eq.S8. Then: 

 

=
𝑍 + 𝑋 ∙ 2(𝐴 + 𝐵 + 𝐶 + 𝐷)

𝑍 + 𝑋 ∙ 2(𝐴 + 𝐵 + 𝐶 + 𝐷)
× 𝑑𝑟 

 
= (1) 𝑑𝑟 

 

So, with our above assumption intact, we have explicitly shown that Eq.S6a equals dr: 

 

𝑓(𝑒𝑟2, 𝑒𝑟3) =
(𝑒𝑟2 × 𝑒𝑟3) + 1

(𝑒𝑟2 + 𝑒𝑟3)
= 𝑑𝑟 

 

Therefore, we now know that only if 𝐵𝐶 = 𝐴𝐷, can we directly calculate dr from a function of er2 

and er3 (Eq.S6a). 

 

 

 

 

 

 

 

 

Eq.S8 

Eq.S9a 

Eq.S10a 

Eq. S7b 

Eq.S7c 

Eq.S9b 

Eq.S10b 
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II. Three-dimensional scatterplots of generated er2 and er3 values and the deviation of the 

calculated dr with the actual dr value using the derivation from SI. 

 

The purple data points represent percent compositions that do not satisfy the special circumstance, 

whereas the cyan data points represent percent compositions that satisfy the special circumstance. 

 

Figure S1A. Three-dimensional scatterplot of the generated er2 and er3 values (x- and y-axis, 

respectively) and the deviation of the calculated dr with the actual dr value using Eq. 6.  

 

S1B. Three-dimensional scatterplot of the generated er2 and er3 values (x- and y-axis, respectively) 

and the deviation of the calculated dr with the actual dr value using Eq. 6. blown up to show the 

percent difference of derived dr values to actual dr values that are less than 100%.  

 

S1C. Three-dimensional scatterplot of the generated er2 and er3 values (x- and y-axis, respectively) 

and the deviation of the calculated dr with the actual dr value using Eq. 6. blown up to show the 

percent difference of derived dr values to actual dr values that are less than 10%.  

 

S1D. Alternative view of Three-dimensional scatterplot of the generated er2 and er3 values (x- and 

y-axis, respectively) and the deviation of the calculated dr with the actual dr value using Eq. 6. 

blown up to show the percent difference of derived dr values to actual dr values that are less than 

10%.  
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III. Derivation for the complete speciation for a scalemic mixture of four stereoisomers using 

enantiomeric excess (ee) values at individual stereocenters and a diastereomeric excess value (de). 

 

We now turn to an analysis on how to accomplish a complete speciation of all four stereoisomers 

if the enantioenrichment at the two separate stereocenters and the diastereomeric excess (de) is 

known.2 We begin by defining the ee as the enrichment of R relative to S (Eqs.S11 and S12) and 

the de as erythro relative to threo (Eq.S13a).  
 

𝑒𝑒2 = % 2𝑅 − % 2𝑆 

𝑒𝑒2 =
(2𝑅, 3𝑅) + (2𝑅, 3𝑆) − (2𝑆, 3𝑅) − (2𝑆, 3𝑆)

(2𝑅, 3𝑅) + (2𝑅, 3𝑆) + (2𝑆, 3𝑅) + (2𝑆, 3𝑆)
 𝑋 100% 

𝑒𝑒2 = (
𝐴 + 𝐵 − 𝐶 − 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
) 𝑋 100% 

𝑒𝑒3 = % 3𝑅 − % 3𝑆 

𝑒𝑒3 =
(2𝑅, 3𝑅) + (2𝑆, 3𝑅) − (2𝑅, 3𝑆) − (2𝑆, 3𝑆)

(2𝑅, 3𝑅) + (2𝑅, 3𝑆) + (2𝑆, 3𝑅) + (2𝑆, 3𝑆)
 𝑋 100% 

𝑒𝑒3 = (
𝐴 + 𝐶 − 𝐵 − 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
) 𝑋 100% 

𝑑𝑒 = % 𝑡ℎ𝑟𝑒𝑜 − % 𝑒𝑟𝑦𝑡ℎ𝑟𝑜 

𝑑𝑒 =
(2𝑅, 3𝑅) + (2𝑆, 3𝑆) − (2𝑅, 3𝑆) − (2𝑆, 3𝑅)

(2𝑅, 3𝑅) + (2𝑅, 3𝑆) + (2𝑆, 3𝑅) + (2𝑆, 3𝑆)
𝑋 100% 

𝑑𝑒 = (
𝐴 + 𝐷 − 𝐵 − 𝐶

𝐴 + 𝐵 + 𝐶 + 𝐷
) 𝑋 100% 

First, we must express the percent composition of stereoisomers possessing 2R-, 2S-, 3R-, and 3S-

handedness using the ee2, and ee3 values (Eqs.S14-S17). We can also express the percent 

composition of erythro and threo stereoisomers using the de values (Eqs.S18 and S19).  

 

𝐴 + 𝐵 = (
𝑒𝑒2

2
) + 50 

𝐶 + 𝐷 = (
−𝑒𝑒2

2
) + 50 

𝐴 + 𝐶 = (
𝑒𝑒3

2
) + 50 

𝐵 + 𝐷 = (
−𝑒𝑒3

2
) + 50 

                                                      
2 Excesses were chosen over ratios to simplify the percent composition derivation.  

Eq.S11a 

Eq.S11b 

Eq.S11c 

Eq.S12a 

Eq.S12b 

Eq.S12c 

Eq.S13a 

Eq.S13b 

Eq.S13c 

Eq.S14 

Eq.S15 

Eq.S16 

Eq.S17 
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𝐴 + 𝐷 = (
𝑑𝑒

2
) + 50 

𝐵 + 𝐶 = (
−𝑑𝑒

2
) + 50 

We can now express the components B, C, and D in terms of A (Eqs.S20-S22).  

𝐵 = (
𝑒𝑒2

2
) + 50 − 𝐴 

𝐶 = (
𝑒𝑒3

2
) + 50 − 𝐴 

𝐷 = (
𝑑𝑒

2
) + 50 − 𝐴 

Using the mass balance in terms of percent composition (Eq. S23) and substituting Eqs.S20-S22 

for B, C, and D, respectively, we arrive at Eq.S24a. By combining like terms (Eqs.S24b, S24c) 

and expressing A in terms of ee1, ee2 and de, we can now use Eqs.S20-S22 to determine the 

complete speciation. 

 
𝐴 + 𝐵 + 𝐶 + 𝐷 = 100 

𝐴 + [(
𝑒𝑒2

2
) + 50 − 𝐴] + [(

𝑒𝑒3

2
) + 50 − 𝐴] + [(

𝑑𝑒

2
) + 50 − 𝐴] = 100 

𝐴 +
𝑒𝑒2

2
+

𝑒𝑒3

2
+

𝑑𝑒

2
+ 150 − 3𝐴 = 100 

 
𝑒𝑒2

2
+

𝑒𝑒3

2
+

𝑑𝑒

2
− 2𝐴 = −50 

 

𝐴 =
1

4
𝑒𝑒2 +

1

4
𝑒𝑒3 +

1

4
𝑑𝑒 + 25 

 

Thus, we have shown that a four component stereoisomeric mixture can be fully characterized 

from readily measurable experimental parameters (ee2, ee3 and de values). 

 

 

 

 

 

 

 

 

 

 

 

 

Eq.S18 

Eq.S19 

Eq.S20 

Eq.S21 

Eq.S22 

Eq.S23 

Eq.S24a 

Eq.S24b 

Eq.S24c 

Eq.S24d 
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IV. Validation of complete speciation mathematics via a few randomly generated percent 

compositions. 

 

Table S1. Validation of Speciation Math 

 

 

 

 

 

(2R,3R) (2R,3S) (2S,3R) (2S,3S)

A B C D Total ee2 ee3 de (ee2 + ee3 +de) /4

15 35 40 10 100 0 10 -50 -10

15 30 20 35 100 -10 -30 0 -10

10 70 10 10 100 60 -60 -60 -15

20 10 6 64 100 -40 -48 68 -5


