
Supplementary Materials

1 Manufactured SIPs

A number of stable SIPs were manufactured using various PDMSs, stabilising agents, and
solvents. These are summarised in Table S1 below. Several emulsions were labelled as ‘low
viscosity’ - while the viscosity was not measured, these emulsions flowed freely with a viscosity
comparable to glycerol. The emulsions containing KE-103 was used for manufacturing particles.

SIP PDMS Aqueous Solvent Solvent wt% Stabilising Agent(wt% in Emulsion) Crosslinking Comments

SIP1 Semicosil 949 UV Water 50% 9011 (1%) UV Light
SIP2 Semicosil 949 UV 3wt% K2CO3 50% 9011 (1%) UV Light Optionally add 0.25g/L of

thymol
blue to the aqueous phase to
visualise CO2 uptake.

SIP3 Semicosil 949 UV 30wt% K2CO3 50% 9011 (1%) UV Light
SIP4 Semicosil 949 UV 30wt% K2CO3 40% Ethanol (2.5%) UV Light Small particle size and

low viscosity emulsion.
SIP5 KE-106 30wt% K2CO3 50% 9011 (1%) Heat
SIP6 KE-106 30wt% K2CO3 50% Ethanol (2.5%) Heat
SIP7 Sylgard 184 30wt% K2CO3 50% Ethanol (2.5%) Heat
SIP8 KE-103 3wt% K2CO3 25% Ethanol (1.25%) Heat Optionally add 0.25g/L of

thymol blue to the aqueous
phase to visualise CO2 up-
take.
Low viscosity emulsion.

SIP9 KE-103 30wt% K2CO3 25% Ethanol (1.25%) Heat Low viscosity emulsion.
SIP10 Semicosil 949 UV 10wt% K2CO3 50% 9011 (1%) UV Light
SIP11 50wt% SMS-042,

50wt% DMS-V31
0.1wt% DMPA Crosslinker

DMEDAH Formate 50% 5225C (1%) UV Light Solid DMPA was dissolved
in SMS-042 using a soni-
cator before polymers were
mixed.

Table S1: Summary of Manufactured solvent impregnated polymers.
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1.1 Internal Particle Size Distribution

The internal droplet size inside SIPs varied substantially depending on the PDMS, stabilising
agent and solvent used. In Figure S1 below, the microscopic structure of 2 stable SIPs with
particle size ranging from 1 µm to several 100 µm are compared; the SIP shown in Figure 2 of
the paper is also reproduced. The left-hand column shows images of the precursor emulsions,
while the right-hand column shows images of the crosslinked emulsions. The internal particle
size distribution for each of these materials was estimated using ImageJ, and is shown in Figure
S2.

Figure S1: (a)-(c) are microscopic images of precursor emulsions for SIP10, SIP4 and SIP8
in Table S1 respectively. (d)-(f) are images of crosslinked SIP gels for SIP10, SIP4 and SIP8
respectively.
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Figure S2: Volume averaged particle size distributions for (a) SIP10, (b) SIP4 and (c) SIP8
from Table S1, calculated via image analysis on photographs of emulsions using ImageJ.

1.2 SIP Particles

Figure S3 shows typical SIP particles, manufactured according to the methods discussed in the
Experimental section of the paper. Figure S4 shows the particle size distribution for a batch of
particles, calculated by estimating the diameter of several 1000 particles using ImageJ.

Figure S3: SIP particles composed of SIP8 in Table S1.
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Figure S4: Volume-weighted particle size distribution of particles composed of SIP8.

.
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Model Development

2 Model Derivation

2.1 Assumptions

• We ignore changes in density, temperature, gas solubility and diffusivity that may occur
during the absorption process.

• The diameter of solvent droplets are much less than the length scale over which macro-
scopic changes occur, so a continuum model is justified.

• The solvent reacts with the gas via a second order reaction - first order in both the active
species and in the absorbed gas.

• Interfacial mass transfer resistance at the polymer-liquid surface is ignored. Thus the
concentrations of gas at the interface are related by:

cs
Ss

=
cl
Sl

(1)

• The solvent is perfectly trapped inside the polymer matrix, and so no solvent escapes the
material or diffuses within it.

• Diffusional resistance inside the immobilised droplets is accounted for via an effectiveness
factor,

ξ =
φ′ cothφ′ − 1

φ′2/3
(2)

where φ′ = rdrop

√
k2w/Dl is the local Thiele modulus.1 The rate of reaction inside a

droplet is equal to the rate of reaction if the concentration profile were constant in space,
multiplied by the effectiveness factor. Because diffusional resistance inside the droplets is
considered significant, the concentration of gas inside the droplets is not constant in space,
and inside each droplet it is less than the concentration at the surface of the droplet, cl.

• Diffusional resistance inside the polymer is ignored, and so the concentration inside the
polymer is considered constant on a local scale, and is equal to cs. This is reasonable, as
the permeability in the polymer is typically much greater than the permeability in the
liquid. Furthermore, local diffusional resistance in the polymer is only significant when
the reaction is fast, and under these conditions the model will collapse to a moving front
model which is not controlled by the local diffusional or reaction resistance (see Ho et
al.2).

2.2 Mass Balance

Consider the thin linear slice of SIP shown in Figure S5. Assume it has unit cross-sectional
area. Then the rate of change of physical or free gas molecules (e.g. unreacted CO2 molecules)
in this slice is:

∆xε
∂cs
∂t

+ ∆xξ(1− ε)∂cl
∂t
. (3)
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Figure S5: A thin slice of SIP, indicating coordinate choice, volume fraction definition, and
direction of gas flux.

where ξ is given by Eq. (2) - this appears in Eq. (3) because the average concentration of
free gas molecules inside a droplet is reduced by a factor of ξ when there is local diffusional
resistance. This may be simplified to:(

ε
Ss
Sl

+ ξ(1− ε)
)
∂cl
∂t

∆x (4)

The net diffusive flow of free gas molecules into this slice is:

Dsε

(
−∂cs
∂x

∣∣∣∣∣
x

−

(
−∂cs
∂x

∣∣∣∣∣
x+∆x

))
+Dl(1− ε)

(
−∂cl
∂x

∣∣∣∣∣
x

−

(
−∂cl
∂x

∣∣∣∣∣
x+∆x

))
(5)

which may also be simplified to:(
Dsε
Ss
Sl

+Dl(1− ε)
)(
−∂cl
∂x

∣∣∣∣∣
x

−

(
−∂cl
∂x

∣∣∣∣∣
x+∆x

))
. (6)

This expression
The net rate of reaction of free gas molecules inside the slice is:

−k2ξwcl(1− ε)∆x (7)

where w is the concentration of the reactive species inside the liquid which reacts with the free
gas. This is typically a space- and time-dependent variable, and we will discuss it’s dynamics
later; for now note that the active species not diffuse, and also that the relation between the
rate of gas reaction and the depletion of reactive species can be complex, especially if other
reactions, such as buffers, occur simultaneously. Because the droplets are microscopic, w will be
assumed to be constant inside each droplet (this is equivalent to a pseudo-first order assumption
inside each droplet).
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Combining all these terms, and dropping the subscript of cl, the mass balance gives:(
ε
Ss
Sl

+ ξ(1− ε)
)
∂c

∂t
∆x =(

Dsε
Ss
Sl

+Dl(1− ε)
)(

∂c

∂x

∣∣∣∣∣
x+∆x

− ∂c

∂x

∣∣∣∣∣
x

)
− k2ξwc(1− ε)∆x (8)

Divide by ∆x and take ∆x→ 0, and we get(
ε
Ss
Sl

+ ξ(1− ε)
)
∂c

∂t
=

(
Dsε
Ss
Sl

+Dl(1− ε)
)
∇2c− k2ξwc(1− ε) (9)

Or, to clear up the mess,
∂c

∂t
= Deff∇2c− ξkeff

2 wc (10)

where

Deff =
DsεSsSl +Dl(1− ε)
εSsSl + ξ(1− ε)

(11)

and

keff
2 =

k2(1− ε)
εSsSl + ξ(1− ε)

(12)

Now w is the concentration of reactive species, and (as this has no spatial mobility within
the material) it may be modelled by:

∂w

∂t
= f(c, w, ξ). (13)

Note that w also changes in space, so ∂ is appropriate. An appropriate f(·) for the reaction of
CO2 with OH– in a K2CO3-KHCO3 buffer solution is derived below.

3 Numerical Solution

These equations were solved via a method of lines (MOL) approach using the DifferentialEqua-
tions.jl suite in Julia. The implementation was based on the excellent monograph of Hunds-
dorfer and Verwer3.

• To model absorption into a flat SIP inside a petri dish, we modelled the SIP surface via
a Dirichlet condition, and the bottom of the material via a Neumann condition.

• A second order spatial discretisation was used: these are commonplace for diffusion prob-
lems, and indeed almost identical systems have been modelled via exactly this approach
before (c.f. Hundsdorfer and Verwer3, particularly p. 64 and p. 206).

• The stiff CVODE BDF() solver inside DifferentialEquations.jl, which interfaces with the
popular backwards differentiation formulas in the CVODE solver.4 This was necessary, as
MOL discretisations of diffusion problems are often stiff (c.f. Hundsdorfer and Verwer3, p.
64). An alternative stiff solver, Rodas4(), which uses a 4th order stably-stiff Rosenbrock
method, was used in the dimensionless analysis below. Though it was substantially slower,
as a pure-Julia implementation it proved more stable when implementing a continuous
callback.
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The PDE’s were discretised on a vertex-centred grid with points labelled j = 1 · · ·m+ 1. The
Neumann condition held at the boundary at point 1, while the Dirichlet condition held at the
boundary at point m+1. The point spacing was h = L/m (where L was the material thickness).
For j = 2 . . .m− 1:

ċj(t) =
Deff

h2
(cj−1 − 2cj + cj+1)− keff

2 cjwj (14)

For the Neumann condition, we consider a ghost point at point j = 0 with concentration equal
to c2:

ċ1(t) =
Deff

h2
(2c2 − 2c1)− keff

2 c1w1 (15)

For the Dirichlet condition, note that cm+1 = Slp, where p is the gas partial pressure, so

ċm =
Deff

h2
(cm−1 − 2cm + Slp)− keff

2 cmwm (16)

And of course, for all j = 1 . . .m,
ẇj = f(cj, wj). (17)

We can approximate the gas flux into the material using a second-order one-sided finite differ-
ence approximation:

Jsurface =

( 3
2
Slp− 2cm + 1

2
cm−1

h

)(
Dsε
Ss
Sl

+Dl(1− ε)
)

(18)

Integrating Jsurface from time t = 0 with no gas in the material to saturation (with all physical
properties set to 1 and f = −cw), the relative error in total gas absorption (compared to that
predicted by the changes in concentration inside the material) is less than 10−3 for m = 100.
In general m was chosen so that halving the grid-size had negligible effect on the solution.

4 Dimensional Analysis

As discussed in the paper, the SIP motif represents a tradeoff between improved gas flux
increasing mass transfer, and decreased gas flux due to the presence of a saturated-zone building
from the material surface (in the limit in which diffusional resistance through the saturated-
zone dominates, the model collapses to the moving front model considered by Ho et al.2). To
quantify these effects, the above model was put into dimensionless form, and was compared
with a similar, dimensionless model for absorption into a static liquid. For a fair comparison,
we compare a thin SIP layer with a liquid with identical surface area, and with volume chosen
such that the total gas capacity of each are the same. We then calculate the time, tγ, to reach
some arbitrary degree of saturation γ (with 0 ≤ γ ≤ 1), and we find the properties of each
system that determine the ratio of these absorption times. We then apply these predictions to
several hypothetical SIP materials. In what follows, we consider the simplest SIP chemistry:
the gas reacts with 1-1 stoichiometry in a 2nd order reaction with the active species, w. The
initial concentration of active species is w0, and it is depleted over time as the reaction continues
(i.e. it is not replaced by a buffer reaction.) We wil show below that the dimensionless analysis
is also valid for a simple system in which the actives species is continually resupplied by other
reactions.

4.1 Material Geometry

If the static liquid has thickness L, then a SIP material with the same gas capacity will have
height:

LSIP = L

(
(1− ε) + ε

c∗/w0

c∗/w0 + 1

Ss
Sl

)−1

(19)

8



4.2 Transport Equations

In general, absorption into a SIP can be modelled via:

∂c

∂t
= Deff∇2c− keff

2 ξwc (20)

∂w

∂t
= f(c, w, ξ). (21)

For this analysis we consider the simplest scenario, in which we start with a fixed quantity of
reactive species, which is consumed as it reacts with the gas with 1 : 1 stoichiometry. Then

∂w

∂t
= −k2ξwc (22)

Assuming we start with no gas absorbed, the initial and boundary conditions are:

c|t=0 = 0; w|t=0 = w0; cx|x=0 = 0; c|x=LSIP
= c∗. (23)

The pde’s describing absorption of gas into a static fluid are similar; for the absorbing gas,
we have:

∂c

∂t
= Dl

∂2c

∂x2
− k2cw. (24)

We make the same assumptions about the solvent chemistry as before: the only difference is
that in this case the reactive species is free to diffuse inside the liquid. In many systems of
industrial interest we can make a pseudo-first order assumption: we suppose w changes slowly
enough for spatial inhomogenieties in w to be smoothed out. For the second-order system under
consideration, this will occur whenever w0 � c∗, in other words when chemical solubility is much
greater than physical solubility: a very common situation. (More rigorously, in an infinitely
deep liquid the pseudo-first order assumption is valid whenever

√
πk2tw0/4� w0/c

∗.5 Because
of the different scaling of w0 on either side of the inequality, this is equivalent to w0 � c∗

provided the material is not too thick.) Under this regime, w only depends on time, and varies
according to:

dw

dt
= −k2w

1

L

∫ L

0

c(x)dx. (25)

The boundary and initial conditions are

c|t=0 = 0; cx|x=0 = 0; c|x=L = c∗; w|t=0 = w0. (26)

4.3 Dimensionless Form of Transport Equations

We now transform each equation into a dimensionless form. The dimensionless variables for
the static liquid are defined as follows:

c = c∗c̄; w = w0w̄; t = (k2c
∗)−1t̄; x = Lx̄. (27)

With these definitions, equations (24)-(26) become:

α
∂c̄

∂t̄
=

1

φ2
∇̄2c̄− c̄w̄ (28)

∂w̄

∂t̄
= −w̄

∫ 1

0

c̄dx̄ (29)

c̄|t̄=0 = 0; c̄x̄|x̄=0 = 0; c̄|x̄=1 = 1; w̄|t̄=0 = 1. (30)
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where

α ≡ c∗

w0

(31)

and

φ ≡

√
k2w0L2

Dl
(32)

is the Theile Modulus, which represents the relative significance of diffusion and reaction resis-
tance.

We choose the following dimensionless variables for the SIP material:

c = c∗c̄; w = w0w̄; t = (k2c
∗)−1t̄; x = LSIPx̄. (33)

The only difference is the change in the length scaling; we intentionally keep the time scaling
consistent with the pure liquid case, in order to simplify the comparison of the absorption rates
of the systems. With these dimensionless variables, equations (20), (22) and (23) become:

αβ
∂c̄

∂t̄
=

1

φ̄2
∇̄2c̄− ξc̄w̄ (34)

∂w̄

∂t̄
= −ξc̄w̄. (35)

c̄|t̄=0 = 0; c̄x̄|x̄=0 = 0; c̄|x̄=1 = 1; w̄|t̄=0 = 1. (36)

where α is as above,

β =
k2

keff
2

(37)

and

φ̄ =

√
keff

2 w0L2
SIP

Deff
(38)

is again the Thiele modulus of the material. The effectiveness factor is not a constant, as w
may vary in space and time. Instead, it is given by:

ξ =
φ′ cothφ′ − 1

φ′2/3
(39)

where

φ′ = rdroplet

√
k2w

Dl
=
(rdroplet

L

)
φ
√
w̄ (40)

where
rdroplet
L

is a new dimensionless parameter, which quantifies the degree of separation be-
tween the microscopic and macroscopic scales. Overall, the dimensionless parameters describing
absorption into the liquid are α and φ, and the parameters describing absorption into the SIP
are α, β, φ, φ̄ and rdroplet/L.

4.4 Comparison of Saturation Times

We are interested in the ratio of the times, tγ, required for each system to reach some arbitrary
degree of saturation, γ:

Ψ ≡
tliqγ
tSIP
γ

. (41)
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This ratio will determine which material absorbs gas fastest: it may also be thought of as the
ratio of the mean gas fluxes over the course of the gas absorption process. Because we have
chosen the same dimensionless time scaling for each of our systems:

Ψ =
t̄liqγ
t̄SIP
γ

. (42)

Now, as can be seen from the non-dimensionalised equations, each of these t̄γ values depends
upon several dimensionless parameters:

Ψ =
t̄liqγ (γ, α, φ)

t̄SIP
γ (γ, α, β, φ, φ̄, rdroplet/L)

(43)

We can eliminate γ immediately by simply stipulating a reasonable value, such as 80% satuation
(γ = 0.8). This still leaves α, β, the two Thiele moduli and rdroplet/L. The Thiele moduli may
be related by:

φ̄2 =
keff

2 w0L
2
SIP

Deff
=

(
k2w0L

2

Dl

)(
1− ε

εPs

Pl
+ (1− ε)

)(
(1− ε) + ε

α

α + 1

Ss
Sl

)−2

(44)

However, for this practical chemical system, α� 1, and so

φ̄2 ≈ φ2

(
1

εPs

Pl
+ (1− ε)

)
1

(1− ε)
(45)

or, more abstractly,
φ̄ ≈ φ̄ (ε, φ,Ps/Pl) (46)

Overall then,
Ψ = Ψ(α, β, ε, φ,Ps/Pl, rdroplet/L). (47)

However, consider the role of α and β in equations (34) and (28). In each case they are
multipliers of the ∂c/∂t term. However, for systems with first-order reaction with diffusion, the
concentration profile quickly asymptotes towards a stable quasi-steady state where ∂c/∂t ≈ 0,
so that φ̄−2∇̄2c̄ ≈ c̄w̄. Given that α� 1 and β = O(1), this asymptotic adjustment will happen
extremely quickly (much faster than any changes in w) and the only effect of changing α or β
will be to slightly increase or decrease the already very small time in which the concentration
profile, c, takes to respond to changes in w. This will have negligible influence on the evolution
of the concentration profiles and the gas uptake rate over time.

Numerical experiments confirmed this physical reasoning: starting from α = 10−2, β = 1,
changing the value of either α or β by an order of magnitude only changed Ψ0.8 by ±1%.

Given this, it is clear that for a wide range of systems of practical interest:

Ψ = Ψ(ε, φ,Ps/Pl, rdroplet/L). (48)

The relationship between Ψ and ε is not particularly interesting (ε is constrained for practical
reasons) and so we hold ε = 0.5. In this case,

Ψ = Ψ(φ,Ps/Pl, rdroplet/L). (49)

Numerical experiments sugest that Ψ is not sensitive to changes rdroplet/L for the large majority
of SIPs. In particular, provided the internal droplets inside the SIP are ∼ 20 times smaller
than the macroscopic thickness of the SIP itself, then variations in Ψ do not significantly change
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the absorption rate. This is unsurprising, as mass transfer in SIPs is typically controlled by
macroscopic diffusion through the saturated zone shown in Fig 5a in the paper, rather than
by microscopic diffusion inside the reaction zone. Hence Ho et al.2, when modelling a similar
system, ignored local reaction and diffusional resistances all together; the more complex model
developed here collapses to their simpler model for a wide range of SIPs.

Hence, under most circumstances, Ψ = Ψ(φ,Ps/Pl). This is a very interesting result. It
suggests that the improvement a SIP could provide over a static liquid depends upon only two
factors: the relative permeability of the solid compared to the liquid (presumably the larger
this is, the better for the SIP) and the Thiele modulus (which will capture the significance of
the presence of the dead-zone, and also the case of φ� 1, where reducing diffusional resistance
is meaningless.)

The dimensionless equations for the SIP derived above were solved using the same discreti-
sation scheme previously described, with the coefficients in the PDE and the initial conditions
replaced by the relevant dimensionless numbers. The discretisation of the dimensionless equa-
tion for the static liquid was similar, except the ẇi terms were replaced by the single term:

ẇ = −w
m

(
1

2
(c1 + cm+1) +

m∑
i=2

ci

)
. (50)

4.5 General Nondimensionalisation of Transport Equations.

For more complicated chemistries, the relationship between ∂w/∂t and c, w and the initial
conditions may be much more complicated. In such cases, a dimensionless analysis can be
simplified by considering the gas loading, λ, rather than the active species concentration. The
gas loading is simply the amount of gas absorbed in the liquid, divided by the total chemical
capacity of the gas. For chemical solvents, the physical solubility of the gas is typically ignored
when calculating the loading. For a second order reaction, no matter how complicated the
chemistry, the change in loading can always be expressed as:

∂λ

∂t
=
k2ξcw

N
(51)

where N is the total amount of gas that can be chemically absorbed into the material per unit
volume. If the reactive species concentration, w, is expressed in terms of the loading, then the
differential equations for the SIP become:

∂c

∂t
= Deff∇2c− keff

2 ξw(λ)c (52)

∂λ

∂t
=
k2ξcw(λ)

N
. (53)

with initial conditions,

c|t=0 = 0; λ|t=0 = λ0; cx|x=0 = 0; c|x=LSIP
= c∗. (54)

For the liquid,
∂c

∂t
= Dl

∂2c

∂x2
− k2cw(λ). (55)

dλ

dt
=
k2w(λ)

N

1

L

∫ L

0

c(x)dx. (56)

The boundary and initial conditions are

c|t=0 = 0; cx|x=0 = 0; c|x=L = c∗; λ|t=0 = λ0. (57)
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For the SIP, the following dimensionless variables are defined:

t =

(
k2c
∗w0

N

)−1

t̄; c = c∗c̄; x = LSIPx̄ (58)

where w0 is a ‘typical’ reactive species concentration, which will be defined below. Then the
differential equations become:

αβ
∂c̄

∂t̄
=

1

φ̄2

∂2c̄

∂x̄2
− ξc̄w̄(λ) (59)

∂λ

∂t̄
= ξc̄w̄(λ) (60)

c̄|t̄=0 = 0; c̄x̄|x̄=0 = 0; c̄|x̄=1 = 1; λ|t̄=0 = λ0. (61)

where w̄ ≡ w/w0, α ≡ c∗/N , and otherwise all other variables are the same as above:

β =
k2

keff
2

(62)

and

φ̄ =

√
keff

2 w0L2
SIP

Deff
(63)

For the liquid, the dimensionless variables are

t =

(
k2c
∗w0

N

)−1

t̄; c = c∗c̄; x = Lx̄ (64)

giving the following dimensionless equations,

α
∂c̄

∂t̄
=

1

φ2

∂2c̄

∂x̄2
− c̄w̄(λ) (65)

∂λ

∂t̄
= w̄(λ)

∫ 1

0

c̄dx̄ (66)

c̄|t̄=0 = 0; c̄x̄|x̄=0 = 0; c̄|x̄=1 = 1; λ|t̄=0 = λ0. (67)

where everything is the same as in the SIP, and

φ =

√
k2w0L2

Dl
(68)

As before, α = c∗/N can be expected to be much less than unity for most practical chemical sol-
vents. This means the analysis above is completely applicable, and Ψγ = Ψγ(ε,Ps/Pl, φ, rdroplet/L).
Apart from ε,Ps/Pl, ξ and φ, the relative flux into the liquid and into the SIP depends only
upon what may be called the ‘chemistry’ of the solvent: the function w(λ). Physically, this rep-
resents the relationship between the solvent loading, λ, and the reactive species concentration
in the solvent, w. However, it turns out that Ψ is relatively independent of w(λ) if the quanitity
w0 is chosen appropriately. To demonstrate this, we consider 8 hypothetical ‘chemistries’ (i.e.
w(λ) functions):

• Direct consumption of active species: w(λ) = 1− λ

• K2CO3 Solutions: w(λ) = Keq
1−λ
2λ

• Buffer of form w ↔ 2B: w(λ) = (1− λ)2
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• w(λ) = 1− λ+ sin(πλ)

• w(λ) = 1− λ+ sin(5πλ)

• w(λ) = 1− λ2

• w(λ) = 1−
√
λ

• w(λ) = 1− λ0.1

Normalised versions of these are plotted in Figure S6. Some of these correspond to physical
chemistries, while others are hypothetical relationships, chosen to capture as wide a range
of relationships between the solvent loading and the active species concentration as possible
(though all were required to satisfy w(λ = 1) = 0.) For each of these chemistries, and for each
value of φ and Ps/Pl in the phase diagram, the equations (59)-(66) were solved numerically
using the methods described above. A continuous callback was built into the DE solver in order
to find the exact time at which ξ = 0.8, and Ψ was recorded for each run. As discussed above,
the plot was insenstive to the specific choice of α and β, and values of 0.01 and 1 were used. λ0

was set equal to 0.1, primarily to avoid divide-by-zero errors in some w(λ) functions. w0 was
set to the mean value of w(λ) on the interval λ ∈ [0.1, 1.0]

w0 =

∫ 1

0.1

w(λ)dλ (69)

This choice was made so that the Theile modulus, φ =
√
k2w0L2/Dl would most accurately

reflect the dynamics inside the reaction zone in the liquid. With this choice of w0, the value of
Ψ was found to be largely independent of the shape of w(λ), and near-identical phase diagrams
were created for the wide range of chemistries plotted in Fig ES6. Without this adjustment
(e.g. setting w0 = w(λ0)) the different chemistries do not converge to the same phase diagram.

5 Absorption of Carbon Dioxide into Carbonate Solu-

tions.

Absorption of CO2 into K2CO3-KHCO3 buffer solutions is governed by the following chemistry:5

CO2 + OH−
k2−−→ HCO3

− (70)

CO3
2− + H2O −−⇀↽−− HCO3

− + OH− (71)

The second buffer reaction is considered to be instantaneous, and so the overall reaction is:

CO2 + CO3
2− + H2O −−→ 2 HCO3

− (72)

with reaction rate given by:
r = −k2[CO2][OH−]. (73)

This chemistry is slightly more complicated than that discussed above. Our first task is to
derive the function f(·, ·), giving the rate of change of reactive species,

∂[OH−]

∂t
= f([CO2], [OH−]). (74)
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Figure S6: 8 chemistries used to create phase diagram in paper.

We first define the loading of carbon dioxide in the solvent:

λ ≡ 0.5[HCO3
−]

0.5[HCO3
−] + [CO3

2−]
=

[HCO3
−]

[HCO3
−] + 2[CO3

2−]
=

[HCO3
−]

2[CO3
2−]0

(75)

where [CO3
2−]0 is the equivalent carbonate concentration (i.e. the concentration of carbonate

if all CO2 were removed and all HCO3
– were converted back to CO3

2– . For example, if a 3 M
solution of K2CO3 were created, then [CO3

2−]0 would be 3 M, irrespective of the progression of
(72).) The loading measures the overall progression of (72), and the rate of change of loading
is given by:

∂λ

∂t
=

1

2[CO3
2−]0

∂[HCO3
−]

∂t
=
k2[CO2][OH−]

[CO3
2−]0

(76)

Furthermore, for the fast equilibrium reaction,

Keq =
[OH−][HCO3

−]

[CO3
2−]

. (77)

This may be written
[CO3

2−]

[HCO3
−]

=
[OH−]

Keq

(78)

while (75) may be rearranged to give:

[CO3
2−]

[HCO3
−]

=
1− λ

2λ
(79)

and so overall

[OH−] = Keq
1− λ

2λ
(80)
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This is the function w(λ) considered in the dimensionall analysis above. If we rearrange (80),
we get

λ =
Keq

2[OH−] +Keq

. (81)

Taking the derivative of this last equation,

∂λ

∂t
=
∂[OH−]

∂t

(
−2Keq

(2[OH−] +Keq)2

)
(82)

and comparing this with (76) gives:

f(c, w) =
∂[OH−]

∂t
= −

(
k2(2[OH−] +Keq)

2

2Keq[CO3
2−]0

)
[CO2][OH−] = −

(
k2(2w +Keq)

2

2Keq[CO3
2−]0

)
cw (83)

This is our expression for f(c, w), assuming that ξ ≈ 1. If local diffusional resistance is signifi-
cant, f(·) becomes

f(c, w, ξ) = −ξ
(
k2(2w +Keq)

2

2Keq[CO3
2−]0

)
cw (84)

5.1 Properties of K2CO3 Solutions.

5.1.1 Second-order Reaction Rate Constant kOH in K2CO3 Solutions

Carbon dioxide reacts with hydroxide ions in the K2CO3 solution according to the following
reaction:

CO2 + OH− → HCO3
−

The second order rate constant for this reaction, kOH− , is, according to Astarita et al.6, given
by

kOH− = 1013.635−2895/T+0.08I

where T is the temperature in Kelvin, I the ionic strength in mol L−1, and kOH− has units of
L mol−1 s−1.

5.1.2 Density of K2CO3 Solutions

Novotny and Sohnel7 provide functions for the density of salt solutions at various temperatures
and concentrations:

ρ(t, c) = ρw(t) + (A+Bt+ Ct2)c+ (D + Et+ Ft2)c3/2

where t is the temperature in Celsius, c is the concentration in mol L−1, ρw is the density of
pure water (in kg m−3, and A,B, . . . , F are constants. For the density of water, the function of
Kell (1975) was used:

ρ(kg/m3) =
999.83952 + 16.945176t− 7.9870401× 10−3t2 − 46.170461× 10−6t3

1 + 16.897850× 10−3t

+
105.56302× 10−9t4 − 280.5423× 10−12t5

1 + 16.897850× 10−3t
(85)

where t is again in degrees Celsius.
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5.1.3 Viscosity of K2CO3 Solutions

The viscosity of potassium carbonate solutions was calculated using the correlation of Correia
et al.:8

µ(t,m) = µ(t, 0)

(
1 +

2∑
i=0

2∑
j=0

fijt
imj+1

)
Note that fij is a matrix of constants, t is temperature in degrees Celsius and their concentration
unit, m, is molality, in mol/kg, see p. 203 of their paper. This calculation required a correlation
for the viscosity of pure water as a function of temperature, and this is provided by Kestin,
Sokolov and Wakeham:9

log

(
µ(t)

µ(20oC)

)
=

20− t
t+ 96

(1.2378−1.303×10−3(20−t)+3.06×10−6(20−t)2+2.55×10−8(20−t)3)

where once again, t is the temperature in Celsius.

5.1.4 Diffusivity of CO2 in K2CO3 Solutions

The diffusivity of carbon dioxide in potassium carbonate solutions is calculated from the diffu-
sivity of CO2 in pure water as measured by Versteeg and Van Swaalj:10

DCO2 = 2.35× 10−6 exp(−2119/T )

where T is the temperature in Kelvin. This is modified for potassium carbonate solutions using
the Stokes-Einstein relation, which simply states that D ∝ 1/µ

5.1.5 Solubility of CO2 in K2CO3 Solutions

We use the model of Weisenberger and Shumpe11 to predict the solubility of CO2 into dilute
K2CO3 solutions. For more concentrated solutions, the parameters of Knuutila12 are more
appropriate.

The solubility, Sl, in units mol Pa−1 L−1, are given by

Sl = Swater10
∑

(hi+hG)ci

where Swater is the solubility of the gas in pure water, hi are the ion specific coefficients, ci are
the molar concentrations of the dissolved ions, and

hG = hG,0 + (T − 298.15K)hT

is the temperature-dependent parameter for the gas. For CO2 dissolving in K2CO3, Weisen-
berger and Shumpe11 give

• hi,K = 0.0922 mol/L

• hi,CO3 = 0.1423 mol/L

• hG0 = −0.172 mol/L

• hT = −0.338× 10−3 mol/L.K

while Knuutila12 gave parameters:

• hi,K = 0.0971 L/mol
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• hi,CO3 = 0.1423 L/mol

• hG0,N2O = −0.0085 L/mol

• hT,N2O = −0.01809× 10−3 L/mol.K

Note that Knuutila’s parameters are for N2O, but they can be adjusted to CO2 using the
N2O-analogy, which states that

SCO2 In Salt Soln.

SN2O In Salt Soln.
=

SCO2In Water

SN2O In Water

Finally, we need an expression for the solubility of CO2 in water. The solubility, x2, in units
of mole fraction per atm, of CO2 in water is given by Wilhelm et al.:13

R lnx2 = A+B/T + C ln(T ) +DT

where, for CO2,

• A = −317.658 cal/K.mol

• B = 17371.2 cal/mol

• C = 43.0607 cal/K.mol

• D = −0.00219107 cal/K2.mol

• R = 1.987 cal/K.mol

This gives almost identical results to the expression of Versteeg and Van Swaalj.10

5.1.6 Equilibrium Constant

The equilibrium constant

Keq =
[OH−][HCO−3 ]

[CO2−
3 ]

is given, at infinite dilution, by Hikita et al:14

K∞eq = 10−1568.9/T+2.5866+6.737×10−3T

Where K∞eq has units mol m−3. It is common practice to describe VLE in these systems in
terms of activity coefficient models such as the eNRTL model. However, the thermodynamic
non-ideality can be corrected for by modifying the concentration-based equilibrium constant
according to (Cents et al.15):

log10

K∞eq
Keq

=
1.01
√
cK+

1 + 1.49
√
cK+

+ 6.1× 10−2cK+

where cK+ is the concentration of potassium ions in mol/L.
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5.2 Absorption into a SIP Containing a Dilute K2CO3 Solution in
a Closed Vessel

The model above must be slightly modified for mass transfer in a closed vessel, as which the
partial pressure of the gas drops in proportion to how much gas has been absorbed:

p = p0 −
nabsRT

Vvessel
(86)

Our model already tracks the total amount of gas absorbed, nabs, and so this is a simple
adjustment.

The function f(c, w, ξ) was derived in (83), and is of the form:

f(c, w, ξ) = −ξ
(
k2(2w +Keq)

2

2KeqcK2CO3

)
wc (87)

where k2 is kOH , Keq is as defined in (77), and cK2CO3 is the concentration of the initial K2CO3

solution. An internal droplet size of rdrop = 15 × 10−6 m was used to calculate ξ via Eq. (2),
though, as noted above, the model is quite insensitive to the exact value of ξ.

The following volumes were measured for the fixed volume vessel and it’s buffer tank. Each
measurement was made 6 times, with an overall coefficient of variation of 0.35%.

• The Volume of the Reaction Vessel in which the SIP was placed was 0.3396 L. The volume
of the SIP material was ignored.

• The Volume of the Buffer Tank from which CO2 was supplied was 0.1803 L.

The values from the digital pressure gauge were also corrected using a recently callibrated
gauge. The error was linear (R2 = 0.9998) and so a simple linear correction was sufficient.

5.3 Justification of Statements from Paper.

We have the following statement from the ‘Introduction’ of the paper:

For example, the permeability of CO2 inside a 40wt% K2CO3 solution is about
8× 10−15 mol Pa−1 m−1 s−1, while in the PDMS it is approximately 1× 10−12 mol Pa−1 m−1 s−1,
two orders of magnitude larger.

The value of 1× 10−12 mol Pa−1 m−1 s−1 for the permeability of PDMS in CO2 is widely cited -
see the reference given in the paper. It is also consistent with our measured value for CO2 into
Semicosil in a 1 atm N2 environment: we found a CO2 diffusivity of 9.72× 10−10 m2 s−1, and a
solubility of 0.000 78 mol Pa−1 m−3, giving a permeability of 7.6× 10−13 mol Pa−1 m−1 s−1.

Before calculating the value of the permeability of CO2 inside a 40wt% K2CO3 solution, we
will also mention the following statement from the paper:

For example, for a PDMS-based SIP containing 3wt% K2CO3, Ps/Pl is only ap-
proximately 2, and so immobilisation is unlikely to increase the mean gas flux (see
Supplementary Materials, section 5.3). On the other hand, for a PDMS-based
SIP containing a 40wt% K2CO3 solution, Ps/Pl ≈ 120, and solvent immobilisation
could increase the gas flux by up to a factor of four, provided that φ ≈ 10, which
corresponds to a thickness of ∼150 microns for this solvent (c.f. Fig 5e)
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For both these statements, we must estimate the solubility of CO2 in concentrated K2CO3

solutions. For such solutions, the parameters of Weisenberger and Shumpe11 are inappropriate,
and instead use the parameters of Knuutila et al.12 We also calculate various values of kw0

D
for

Figure 5e using the correlations above. Finally, we use the values of kw0

D
and the value φ ≈ 10

to calculate the thickness of the SIP, LSIP. Using these correlations, we get the following values:

• The permeabilty of CO2 inside 3wt% K2CO3 is 5.14e-13 mol/Pa.m.s

• The permeabilty of CO2 inside 30wt% K2CO3 is 3.25e-14 mol/Pa.m.s

• The permeabilty of CO2 inside 40wt% K2CO3 is 7.89e-15 mol/Pa.m.s

• Taking the permeability of CO2 inside PDMS to be 1e-12 mol/Pa.m.s, Ps/Pl for

3wt% K2CO3 equals 1.94

• Taking the permeability of CO2 inside PDMS to be 1e-12 mol/Pa.m.s, Ps/Pl for

30wt% K2CO3 equals 30.68

• Taking the permeability of CO2 inside PDMS to be 1e-12 mol/Pa.m.s, Ps/Pl for

40wt% K2CO3 equals 126.64

• For 30 and 40wt% K2CO3 Solutions, the values of sqrt(D/kw0) are 1.696e-5 and

9.25e-6

• For 30 and 40wt% K2CO3 Solutions, the break-even thicknesses are 0.0006109,

and 0.001479 m

• For 30 and 40wt% K2CO3 Solutions, the optimal thicknesses are 0.0001459, and

0.0001516 m
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