Supporting Information

Enantioselective Construction of Octahydroquinolines via Trienamine-Mediated Diels-Alder Reactions

Taichi Inoshita, ${ }^{\dagger}$ Kei Goshi, ${ }^{\dagger}$ Yuka Morinaga, ${ }^{\dagger}$ Yuhei Umeda, ${ }^{\dagger}$ Hayato Ishikawa* ${ }^{*}+, \neq$
${ }^{\dagger}$ Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
${ }^{\ddagger}$ Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
h_ishikawa@kumamoto-u.ac.jp

General Remarks: All reactions were monitored by thin-layer chromatography using Merck 60 F254 precoated silica gel plates (0.25 mm thickness). Melting points were measured by Yanagimoto micromelting point apparatus. Specific optical rotations were measured using a JASCO P-1020 polarimeter. FT-IR spectra were recorded on a SHIMADZU IR Affinity-IS. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECX 500 FT-NMR spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ NMR, 125 MHz for ${ }^{13} \mathrm{C}$ NMR) instrument. Data for ${ }^{1} \mathrm{H}$ NMR are reported as chemical shift $(\delta \mathrm{ppm})$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doubledoublet, $\mathrm{ddd}=$ doubledoubledoublet, $\mathrm{dt}=$ doubletriplet, $\mathrm{q}=$ quartet, quint. = quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constant (Hz), integration, and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shift. X-ray crystallographic analysis: conducted on a Bruker smart APEX-II diffractometer with graphite-monochromated Mo Ka radiation. The high-resolution mass spectra were recorded on a BRUKER impact II. Preparative thin layer chromatography was performed using Wakogel B-5F purchased from Wako Pure Chemical Industries, Tokyo, Japan. Flash chromatography was performed using silica gel 60N of Kanto Chemical Co. Int., Tokyo, Japan and amino silica gel ($\mathrm{SiO}_{2}-\mathrm{NH}$) of Fuji Silysia Co. Int., Japan. HPLC analysis was performed on a SHIMADZU Prominence series, UV detection monitored at appropriate wavelength respectively, using DAICEL Chiralpak IC $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ or DAICEL Chiralcel OD-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$.

Figure S1: ORTEP view of compounds 4 and 5.

ORTEP view of 4

ORTEP view of 5

Table S1: Solvent screening of catalytic Diels-Alder reaction with 5-nitro-2,3-dihydro-4-pyridone and 5 -methyl-2,4-hexadienal in the presence of secondary amine organocatalyst. ${ }^{[a]}$

entry	solvent	time	yield (2 steps)	$\begin{aligned} & \mathrm{dr}^{[\mathrm{b}]} \\ & 4: 5 \end{aligned}$	$\begin{gathered} \text { ee of } \\ 4 \end{gathered}$	$\begin{gathered} \text { ee of } \\ 5 \end{gathered}$
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	27 h	66 \%	1:1	50\% ee	61\% ee
2	EtOAc	79 h	58 \%	$0.9: 1$	81\% ee	69\% ee
3	THF	173 h	51 \%	$0.9: 1$	74\% ee	61\% ee
4	DMF	173 h	n.d.	0.7 : 1	52\% ee	54\% ee
5	MeOH	164 h	n.d.	0.35: 1	76\% ee	64\% ee
6	MeCN	144 h	n.d.	0.7 : 1	49\% ee	63\% ee
7	toluene	19 h	61 \%	$1.2: 1$	87\% ee	41\% ee
$8{ }^{[c]}$	toluene	6.5 h	85 \%	1.6:1	87\% ee	40\% ee

n.d.; not determined
[a] Reaction conditions for Diels-Alder reaction: aldehyde 2 (0.15 mmol), 5-nitro-2,3-dihydro-4-pyridone 3 (0.1 mmol), catalyst B (0.02 $\mathrm{mmol})$, in toluene $(0.25 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ in open flask; Reaction condition for acetal protection reaction: p-toluenesulfonic acid (0.1 mmol) and ethylene glycol (1.5 mmol) at $23{ }^{\circ} \mathrm{C}$ for 5 h in one pot. [b] Diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$-NMR spectra of the crude mixture. [c] 2 equivalents of aldehyde 2 was employed.

Table S2: Acid screening of catalytic Diels-Alder reaction with 5-nitro-2,3-dihydro-4-pyridone and 5-methyl-2,4-hexadienal in the presence of secondary amine organocatalyst. ${ }^{[a]}$

		ditive e (0.4 M) time ylene glycol $\mathrm{H} \cdot \mathrm{H}_{2} \mathrm{O}$ to $\mathrm{rt}, 3 \mathrm{~h}$				
3	2 (2.0 equiv.)					
entry	adittive (pKa)	equiv. of additive	time	yield	dr ${ }^{[b]}$	ee of major isomer
1	o-nitorobenzoic acid (2.17)	$100 \mathrm{~mol} \%$	$>7 \mathrm{~h}$	29 \%	2.6 : 1	95\% ee
2	m-anisic acid (4.09)	$100 \mathrm{~mol} \%$	3 h	78 \%	4.6 : 1	95\% ee
3	benzoic acid (4.20)	$200 \mathrm{~mol} \%$	3 h	88 \%	4.0: 1	97\% ee
4	"	$100 \mathrm{~mol} \%$	2.5 h	96 \%	4.6 : 1	96\% ee
5	"	$50 \mathrm{~mol} \%$	3 h	83 \%	4.7 : 1	95\% ee
6	/	$20 \mathrm{~mol} \%$	3 h	71\%	3.7 : 1	95\% ee
7	acetic acid (4.76)	$100 \mathrm{~mol} \%$	4.5 h	79 \%	4.8 : 1	94\% ee

[a] Reaction conditions for Diels-Alder reaction: aldehyde 2 (0.2 mmol), 5 -nitro-2,3-dihydro-4-pyridone 3 (0.1 mmol), catalyst \mathbf{D} (0.02 $\mathrm{mmol})$, in toluene $(0.25 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ in open flask; Reaction condition for acetal protection reaction: p-toluenesulfonic acid (0.1 mmol) and ethylene glycol (1.5 mmol) at $23^{\circ} \mathrm{C}$ for 3 h in one pot. [b] Diastereomeric ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the crude mixture.

Synthesis of 5-nitro-2,3-dihydropyridone derivative 3

To a solution of N-(tert-butoxycarbonyl)- β-alanine ($3.0 \mathrm{~g}, 16 \mathrm{mmol}$) in dry THF (20 mL), 1,1 dicarbonyldiimidazole (CDI, $3.09 \mathrm{~g}, 19 \mathrm{mmol}$) was added at at room temperature under Ar atmosphere. The resulting mixture was stirred for 2 h . In another flask, to a solution of DBU ($3.70 \mathrm{~g}, 24 \mathrm{mmol}$) in dry THF (10 mL), nitromethane ($1.3 \mathrm{~mL}, 24 \mathrm{mmol}$) was slowly added at room temperature and stirred for 1 h . After 1 h stirred, the reaction mixture of starting material and CDI was slowly added to this activated nitromethane solution at room temperature. After 14 h stirred, the resulting mixture was quenched with 1 M aqueous HCl solution at $0^{\circ} \mathrm{C}$ and extracted three times with EtOAc. The combined organic phases were washed with brine and dried over MgSO_{4}, and concentrated under reduced pressure. The resulting white solids ($\mathbf{S} 1$) were directly used to next reaction.

The crude materials of $\mathbf{S} \mathbf{1}$ were dissolved in anhydrous THF (15 mL) and it was added to a solution of $N, N-$ dimethylformamide dimethyl acetal (DMFDMA, $2.5 \mathrm{~mL}, 19 \mathrm{mmol}$) at room temperature under Ar atmosphere. After 15 min stirred at ambient temperature, excess amount of trifluorocaetic acid (TFA, $12 \mathrm{~mL}, 160 \mathrm{mmol}$) was slowly added to reaction mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for additional 2 h at room temperature. The resulting mixture was concentrated under reduced pressure to remove TFA. The crude materials were directly purified by flash chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{Et}_{2} \mathrm{O} / n\right.$-hexane). Then, obtained solids were recrystallized with mixed solution of n-hexane and dichloromethane. As a result, 5 -nitro-2,3dihydropyridone derivative $\mathbf{3}$ was obtained as yellow crystal ($2.22 \mathrm{~g}, 58 \%$ over 2 pot operation).

5-Nitro-2,3-dihydropyridone derivative 3

Yellow crystals; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.56(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.2,149.2,148.6,127.7,86.9,42.4,35.3,27.6$; IR (neat) $v_{\text {max }}$ 1747, 1695, 1589, 1352, 1273, 1238, 1145, 1118, 1031, 839, 759, cm^{-1}; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{5}\right]^{+}: 265.0795$, found : 265.0783; mp 118-119 ${ }^{\circ} \mathrm{C}$.

Synthesis of cis-hydroxy proline derivative (catalyst D)

Synthesis of S2

To a solution of N -Cbz-cis-4-hydroxy-L-proline methyl ester ($5.72 \mathrm{~g}, 20.5 \mathrm{mmol}$) in DMF (20 mL), TBSCl $(4.63 \mathrm{~g}, 30.7 \mathrm{mmol})$ and imidazole $(4.88 \mathrm{~g}, 71.8 \mathrm{mmol})$ were added at room temperature under Ar atmosphere. After the reaction mixture was stirred for 1 h , the resulting mixture was quenched with brine. The aqueous layer was extracted three times with EtOAc. To the combined organic layer was washed with cold 2 M aqueous HCl solution, saturated brine, and concentrated under reduced pressure. The crude materials were purified by flash chromatography ($\mathrm{SiO}_{2}, 14 \% \mathrm{EtOAc} / n$-hexane) to provide N-Cbz-cis-4-[(tert-butyldimethylsilyl)oxy]-Lproline methyl ester $\mathbf{S} 2(6.26 \mathrm{~g}, 78 \%)$ as a colorless amorphous powder. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S} 2$ seems complex mixture, because it is observed as a rotamer mixture. Thus, the structure elucidation was carried out after conversion to $\mathbf{S 3}$.

Synthesis of S3

To a solution of N-Cbz-cis-4-[(tert-butyldimethylsilyl)oxy]-L-proline methyl ester $\mathbf{S} 2(1.15 \mathrm{~g}, 2.92 \mathrm{mmol})$ in THF (3 mL), 1M phenylmagnesium bromide in THF solution $(10 \mathrm{~mL}, 10 \mathrm{mmol})$ was slowly added at $0^{\circ} \mathrm{C}$ under Ar atmosphere. After the reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$, the resulting mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$ and filtrated with Celite pad. The aqueous layer was extracted three times with EtOAc. The combined organic layer was washed saturated brine and concentrated under reduced pressure. The crude materials were purified by flash chromatography ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} / n$-hexane $)$ to afford S3 ($0.66 \mathrm{~g}, 43 \%$) as a white solid.

Benzyl(2S,4S)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxydiphenylmethyl)pyrrolidine-1-carboxylate (S3)

White solid; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, ~ V T ~ 90{ }^{\circ} \mathrm{C}\right) \delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{q}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}$, $1 \mathrm{H}), 2.35(\mathrm{dt}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dt}, J=14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d $_{6}$, VT $90{ }^{\circ} \mathrm{C}$) $\delta 154.4,145.9,145.2,136.5,127.7-125.7(15 \mathrm{C})$, 79.7, 69.9, 63.7, CHCl_{3}); mp $103-106{ }^{\circ} \mathrm{C}$.

Synthesis of S4

To a solution of $\mathbf{S 3}(1.49 \mathrm{~g}, 2.88 \mathrm{mmol})$ in THF $(17 \mathrm{~mL})$, palladium hydroxide $(0.15 \mathrm{~g}, 10 \mathrm{w} / \mathrm{w} \%)$ was added at ambient temperature. After the reaction mixture was stirred for 3 h under H_{2} atmosphere, the resulting mixture was filtrated with Celite pad and amino silica gel pad. The resulting solution was concentrated under reduced pressure. The crude materials were purified by flash chromatography ($\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / n$-hexane) to provide $\mathbf{S} 4(0.83 \mathrm{~g}, 75 \%)$ as a white solid.
((2S,4S)-4-((tert-Butyldimethylsilyl)oxy)pyrrolidin-2-yl)diphenylmethanol (S4)
White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}$, $4 \mathrm{H}), 7.16$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71$ (br. s, 1H), $4.41(\mathrm{dd}, J=9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.30(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 1.65(\mathrm{dq}, J=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 146.9,146.6,128.2,128.0,126.4,126.3,126.2,125.6,77.6,72.5,64.1,55.8$, 36.7, 25.8, 18.1, -4.9; IR (neat) $v_{\max } 3356,1247,1110,1058,871,867,839,777 \mathrm{~cm}^{-1} ;$ HRMS (ESI) [M+Na] ${ }^{+}$ calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2} \mathrm{Si}^{+}\right.$: 406.2173 , found : $406.2155 ;[\alpha]^{28}{ }_{\mathrm{D}}-47\left(c 0.9, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 92-95{ }^{\circ} \mathrm{C}$.

Synthesis of catalyst D

To a solution of $\mathbf{S 4}(2.57 \mathrm{~g}, 6.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$, chloromethyldiphenylsilane $(1.4 \mathrm{~mL}, 6.7 \mathrm{mmol})$, ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}_{2}(2.3 \mathrm{~mL}, 13 \mathrm{mmol})$, and N, N-dimethyl-4-aminopyridine $(163 \mathrm{mg}, 1.34 \mathrm{mmol})$ were added at room temperature under Ar atmosphere. After the reaction mixture was stirred for 48 h , the resulting mixture was concentrated under reduced pressure. The crude materials were directly purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} / n\right.$-hexane) to afford catalyst $\mathbf{D}(2.32 \mathrm{~g}, 86 \%)$ as a colorless oil.
(2S,4S)-4-((tert-Butyldimethylsilyl)oxy)-2-(((methyldiphenylsilyl)oxy)diphenylmethyl)pyrrolidine (catalyst D)
Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.27-$ $7.32(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 6 \mathrm{H}), 4.17$ (br. t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{br} . \mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.82(\mathrm{~m}, 1 \mathrm{H})$, $2.41-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.74(\mathrm{~m}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 146.0,144.7,138.5,134.4,134.2,129.1,128.8,127.8,127.5,127.4,127.2,126.9,83.7,72.3,64.6,55.1$, $37.9,25.8,18.0,-1.0,-4.7,-4.8$; IR (neat) $v_{\max } 3066,1427,1251,1110,1068,835,775 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2} \mathrm{Si}_{2}\right]^{+}: 602.2881$, found : 602.2847; $[\alpha]^{28}{ }_{\mathrm{D}}-25\left(c 0.69, \mathrm{CHCl}_{3}\right)$.

General procedure of the Diels-Alder reaction using 5-nitro-2,3-dihydropyridone (Table 1, entry 6)

cis-Hydroxy proline derivative \mathbf{D} (catalyst $\mathbf{D}, 11.6 \mathrm{mg}, 0.020 \mathrm{mmol}$) was added to a solution of 5-nitro-2,3dihydropyridone $\mathbf{3}(24.2 \mathrm{mg}, 0.10 \mathrm{mmol})$, 5-methylhexa-2,4-dienal (2) ($22 \mathrm{mg}, 0.20 \mathrm{mmol}$) and benzoic acid $(12.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene $(250 \mu \mathrm{~L})$ at $23^{\circ} \mathrm{C}$ in open flask. The reaction mixture was stirred for 2.5 h . To the resulting mixture, ethylene glycol $(84 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(21 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for additional 3 h at room temperature. The resulting mixture was slowly quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with saturated aqueous NaHCO_{3}, dried over MgSO_{4}, and concentrated under reduced pressure. The crude materials were purified by flash chromatography $\left(\mathrm{SiO}_{2}, 12.5 \%\right.$ EtOAc / n-hexane) to provide major cycloadduct $4(31.0 \mathrm{mg}, 79 \%)$ as white solid, and minor cycloadduct 5 (6.7 $\mathrm{mg}, 17 \%$) as white solid (2 steps, total yield $96 \%, \mathrm{dr}=4.6: 1$). Recrystallization of $\mathbf{4}$ and $\mathbf{5}$ were performed with n-hexane and dichloromethane to provide colorless crystals. Enantiomeric excess of major cycloadduct 4 ($96 \% \mathrm{ee}$) and 5 ($40 \% \mathrm{ee}$) were determined by HPLC with ChiralPak IC column. For major isomer 4: 10\% iPrOH / n-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer: $t_{\mathrm{R}}=19.1 \mathrm{~min}$, minor enantiomer: $t_{\mathrm{R}}=25.3 \mathrm{~min}$. For minor isomer 5: $10 \% i-\mathrm{PrOH} / n$-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer: $t_{\mathrm{R}}=21.7 \mathrm{~min}$, minor enantiomer: $t_{\mathrm{R}}=20.2$ \min.
tert-Butyl(4a $R, 5 S, 8 \mathrm{a} R)$-5-((1,3-dioxolan-2-yl)methyl)-7-methyl-4a-nitro-4-oxo-3,4,4a,5,8,8a-hexahydroquinoline-1(2H)-carboxylate (4)

Colorless crystals; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$, VT $80{ }^{\circ} \mathrm{C}$) $\delta 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.69$ (br. t, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23 (t, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (br. s, 1H), 3.26 (td, $J=12.0,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{td}, J=12.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.89$ (m, 1H), 2.36 (br. d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (quint., $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (dt, $J=16.0 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.76 (br. dd, $J=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.67 (br. d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.57-1.63 (m, 1H), $1.04(\mathrm{~s}, 3 \mathrm{H}), 0.99$ (dd, $J=10.0$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}, \mathrm{VT} 80^{\circ} \mathrm{C}$) $\delta 196.1,153.1,130.2,121.4,101.8$, $96.5,80.0,64.2,64.9,55.6,38.8,38.1,36.9,33.3,30.2,27.5,21.4$; IR (neat) $v_{\max } 2976,1736,1697,1547$, 1406, 1159, $1115 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}: 419.1789$, found : 419.1763;
$[\alpha]^{24}{ }_{\mathrm{D}}-58\left(c \quad 0.51, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 113-117{ }^{\circ} \mathrm{C}$.
tert-Butyl(4aS,5S,8aS)-5-((1,3-dioxolan-2-yl)methyl)-7-methyl-4a-nitro-4-oxo-3,4,4a,5,8,8a-
hexahydroquinoline-1(2H)-carboxylate (5)
Colorless crystals; ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene-d ${ }_{6}$, VT $78{ }^{\circ} \mathrm{C}$) $\delta 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.81-4.84$ (m, $1 \mathrm{H}), 4.03$ (br. s, 1H), 3.73-3.77 (m, 1H), 3.39-3.45 (m, 2H), 3.27-3.33(m, 2H), 2.84-2.90(m, 1H), 2.29-2.36 $(\mathrm{m}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=18.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz, benzene-d ${ }_{6}$, VT $78{ }^{\circ} \mathrm{C}$) $\delta 194.2,154.3,129.6,122.9,102.7,97.4,80.8,65.0,64.8,51.9,39.1$, $37.3,36.9,35.4,31.1,28.4,22.2$; IR (neat) $v_{\max } 2976,1738,1697,1151,1395,1153,1033 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}: 419.1789$, found : 419.1770; $[\alpha]^{23}{ }_{\mathrm{D}}+40\left(c 0.75, \mathrm{CHCl}_{3}\right)$; mp 143$146^{\circ} \mathrm{C}$; Crystals of 5 were obtained as racemic mixture.

Gram-scale synthesis of 4 (Table 1, entry 8)

Benzoic acid ($378.1 \mathrm{mg}, 3.01 \mathrm{mmol}$) was added to a solution of 5-nitro-2,3-dihydropyridone $3(1.0 \mathrm{~g}, 4.13$ $\mathbf{m m o l}), 5$-methylhexa-2,4-dienal ($\mathbf{2}, 902 \mathrm{mg}, 8.24 \mathrm{mmol}$) and catalyst $\mathbf{D}(119 \mathrm{mg}, 0.21 \mathrm{mmol})$ in toluene (15 mL) at $23^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred for 15 h . To the resulting mixture, ethylene glycol ($3.46 \mathrm{~mL}, 61.8 \mathrm{mmol}$) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(864 \mathrm{mg}, 4.5 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for additional 5 h at $23^{\circ} \mathrm{C}$. The resulting mixture was slowly quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$. The aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with saturated aqueous NaHCO_{3}, dried over MgSO_{4}, and concentrated under reduced pressure. The crude materials were purified by flash chromatography $\left(\mathrm{SiO}_{2}, 12.5 \% \mathrm{EtOAc} / n\right.$-hexane gradient $)$ to provide major cycloadduct $4(1.18 \mathrm{~g}, 72 \%)$ and minor cycloadduct 5 ($266 \mathrm{mg}, 16 \%$). Enantiomeric excess of major cycloadduct 4 (96% ee) were determined by HPLC with ChiralPak IC column.

Substrate scope; Preparation of substituted 2,4-dienal.

Aldehydes as starting materials of compounds $\mathbf{2}, \mathbf{7}, \mathbf{8}, \mathbf{1 0}, 14$ were prepared by reported protocols ${ }^{\mathrm{S} 1), \mathrm{S} 2), \mathrm{S} 3), \mathrm{S} 4) \text {, }}$ S5).

General procedure of aldehydes as starting materials to prepare cycloadducts $\mathbf{9 , 1 1}$ and $\mathbf{1 2}$.

Horner-Wadsworth-Emmons (HWE) Reaction of ketones.

$\mathrm{NaH}(60 \%$ in mineral oil, 1.8 equiv.) was slowly added to solution of triethyl-4-phosphonocrotonate (1.2 equiv.) in THF $(0.125 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred for 30 min at room temperature. 4-Nitroacetophenone [or 3,5-bis-(trifluoromethyl)acetophenone or 3,5-dimethoxyacetophenone] (1.0 equiv.) was carefully added to the mixture at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 2 h at room temperature. The resulting mixture was quenched with water at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted three times with EtOAc. The combined organic layer was dried over MgSO_{4}, and concentrated under reduced pressure. The resulting mixture was passed through silica gel pad with CHCl_{3} and concentrated under reduced pressure. To synthesis of $\mathbf{S 5}$ and $\mathbf{S 7}$, the crude materials were not purified and directly used to next reduction. To synthesis of $\mathbf{S 1 0}$, the crude materials were purified by flash chromatography $\left(\mathrm{SiO}_{2}, 12.5 \% \mathrm{EtOAc} / n\right.$-hexane $)$ to provide $\alpha, \beta, \gamma, \delta$-unsaturated ethyl ester $\mathbf{S 9}$ (14 mmol scale, 33% as E / Z mixture).

Ethyl-5-(3,5-dimethoxyphenyl)hexa-2,4-dienoate (S9) (as E / Z mixture; see page S 29)
Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $) ~ \delta 7.71(\mathrm{dd}, J=15.0,12.0 \mathrm{~Hz}$), $7.37(\mathrm{dd}, J=15.0,12.0 \mathrm{~Hz}$), 6.60 (d, $J=2.5 \mathrm{~Hz}$), $6.54(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}), 6.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 6.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 5.97(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 5.83$ (d, $J=15.0 \mathrm{~Hz}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}), 4.13(\mathrm{q}, J=7.0 \mathrm{~Hz}), 3.79(\mathrm{~s}), 3.77(\mathrm{~s}), 2.25(\mathrm{~s}), 2.16(\mathrm{~s}), 1.30(\mathrm{t}, J=7.0$ Hz), $1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ 167.2, 167.1, 160.6, $160.5,148.2,145.2,144.1,142.2$, $141.9,140.3,125.3,124.8,121.4,120.2,106.2,104.5,104.3,100.0,99.7,60.2,59.9,55.2,25.8,16.6,14.2$, 14.1; IR (neat) $v_{\max } 2937,1705,1618,1585,1422,1267,1204,1153,1136,1043,977 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}\right]^{+}: 277.1434$, found : 277.1419.

DIBAL reduction.

DIBAL (1.03 M in hexane, 2.5 equiv.) was slowly added to solution of the crude materials [or purified $\mathbf{S 9}$] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred for 1.5 h . The resulting mixture was quenched with EtOAc at $-78^{\circ} \mathrm{C}$. After an addition of excess amount of 20% aqueous potassium sodium (+)-tartrate at room temperature, it was stirred for additional 1 h at ambient temperature. The aqueous layer was extracted three times with EtOAc. The combined organic layer was dried over MgSO_{4}, and concentrated under reduced pressure. The crude materials were purified by flash chromatography ($\mathrm{SiO}_{2}, 20 \%$ EtOAc/n-hexane) to provide desired allyl alcohols; $\mathbf{S 5}(18 \mathrm{mmol}$ scale, 2 steps 45% as E / Z mixture), and $\mathbf{S 1 0}$ (4.5 mmol scale, 98% as E / Z mixture mixture). $\mathbf{S 7}$ was through a silica gel pad, and it was employed as crude materials.

5-(4-Nitrophenyl)hexa-2,4-dien-1-ol (S5) (as E / Z mixture; see page S30)
Yellow solids; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 8.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 7.54-7.56(\mathrm{~m}), 6.66-$
$6.71(\mathrm{~m}), 6.57-6.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 6.22-6.25(\mathrm{~m}), 6.17-6.19(\mathrm{~m}), 6.06(\mathrm{dt}, J=15.0,6.0 \mathrm{~Hz}), 5.89(\mathrm{dt}, J=$ $15.0,6.0 \mathrm{~Hz}), 4.30(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 4.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 2.19(\mathrm{~s}), 2.13(\mathrm{~s}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.3$, $146.5,135.5,134.2,133.3,129.6,129.1,128.5,127.4,126.9,126.3,126.1,123.6,123.5,63.2,63.1,24.9,15.7$; IR (neat) $v_{\max } 3321,2998,1589,1512,1336,1089,1082,966 \mathrm{~cm}^{-1} ; H R M S(E S I)[M+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{3}\right]^{+}: 242.0788$, found : 242.0774; mp $56-59{ }^{\circ} \mathrm{C}$.

5-(3,5-Dimethoxyphenyl)hexa-2,4-dien-1-ol (S10) (as E / Z mixture; see page S31)
Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.61-6.66(\mathrm{~m}), 6.58(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 6.45(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 6.37-$ $6.38(\mathrm{~m}), 6.30-6.35(\mathrm{~m}), 6.09(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 5.93(\mathrm{dt}, J=15.0,6.0 \mathrm{~Hz}), 5.78(\mathrm{dt}, J=15.0,6.0 \mathrm{~Hz}), 4.23(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}$), $4.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 3.78(\mathrm{~s}), 3.76(\mathrm{~s}), 2.79(\mathrm{br} . \mathrm{s}), 2.12(\mathrm{~s}), 2.08(\mathrm{~s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 160.3,145.0,143.3,139.0,136.2,132.9,131.0,128.7,127.5,126.4,126.3,106.2,103.9,98.9,98.6,63.1$, 55.1, 25.2, 15.9; IR (neat) $v_{\max } 3350,2935,1585,1452,1421,1204,1151,1064,1045,966 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Na}_{1} \mathrm{O}_{3}\right]^{+}$: 257.1148, found : 257.1142.

Oxidation of allylic alcohol S5, S7, S10.

Manganese (IV) oxide (10 equiv.) was added to a solution of allyl alcohol $\mathbf{S 5}$ or $\mathbf{S 7}$ (crude materials) or $\mathbf{S 1 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under Ar atmosphere. The reaction mixture was stirred for 10 h at ambient temperature. The resulting mixture was filtrated with Celite pad and concentrated under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, 12.5 \% \mathrm{EtOAc} / n\right.$-hexane) provided $\alpha, \beta, \gamma, \delta$-unsaturated aldehyde $\mathbf{S 6}$ (6.4 mmol scale, 89%), or S8 (3.2 mmol scale, 29\% over three steps), or S11 (4.3 mmol scale, 99%).

5-(4-Nitrophenyl)hexa-2,4-dienal (S6)

Yellow crystals; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{dd}, J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=15.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{qd}, J=8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}) 2.38$ $(\mathrm{s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.4,147.8,146.4,144.9,133.5,129.0,127.7,126.9,126.9,123.8$, 16.7; IR (neat) $v_{\max } 1662,1614,1597,1506,1342,1118,974,850 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{3}\right]^{+}: 240.0631$, found : 240.0627; mp 129-131 ${ }^{\circ} \mathrm{C}$.

5-(3,5-Bis(trifluoromethyl)phenyl)hexa-2,4-dienal (S8)

Pale yellow crystals; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.70(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.55$ $(\mathrm{dd}, J=15.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $) \delta 193.4,146.1,143.9,143.7,133.6,132.0(\mathrm{q}, J=133.0 \mathrm{~Hz}$), 127.4, 126.1, 126.0, 124.2, 122.1, 16.7; IR (neat) $v_{\max } 1674,1616,1377,1271,1118,966,871,842 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{Na}_{1} \mathrm{O}_{1}\right]^{+}: 331.0528$, found : 331.0528; mp $110-113{ }^{\circ} \mathrm{C}$.

5-(3,5-Dimethoxyphenyl)hexa-2,4-dienal (S11)

White solids; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.70(\mathrm{~m}, 3 \mathrm{H})$, $6.47(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.7, $160.8,147.8,143.7,132.0,125.1,106.3,104.5,100.6,554,16.9$; IR (neat) $v_{\max } 1660,1589,1425,1205,1153$, $1157,1120,974,833 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}\right]^{+}: 233.1172$, found : 233.1162; mp $75-80^{\circ} \mathrm{C}$.

Synthesis of S16.

To a solution of (E)-4,4-dimethylpent-2-en-1-ol $(\mathbf{S 1 2}, 773.5 \mathrm{mg}, 6.03 \mathrm{mmol})^{\mathrm{S} 6)}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, manganese (IV) oxide $(5.2 \mathrm{~g}, 60.3 \mathrm{mmol})$ was added at room temperature. The reaction mixture was stirred for 12 h at room temperature under Ar atmosphere. The resulting mixture was filtrated with Celite pad and concentrated under reduced pressure. The obtained crude materials of S13 was directly employed to next Wittig reaction.

To a solution of the crude materials of $\mathbf{S 1 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, ethyl(triphenylphosphoranylidene)acetate (5.3 $\mathrm{g}, 15.1 \mathrm{mmol}$) was added at room temperature. The reaction mixture was stirred for 12 h under Ar atmosphere before removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reduced pressure. The resulting solid was suspended with n-hexane/ $\mathrm{Et}_{2} \mathrm{O}$ $(7 / 1)$, then it was filtrated with silica-gel pad eluted with n-hexane/ $\mathrm{Et}_{2} \mathrm{O}(7 / 1)$ to provide 1.23 g of crude materials of S14. The obtained crude materials of S14 was directly employed to next DIBAL-H reduction.

To a solution of the crude materials of $\mathbf{S 1 4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, DIBAL (1.03M in hexane, $15.1 \mathrm{~mL}, 15.1$ mmol) was added dropwise via syringe at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. The resulting mixture was quenched with EtOAc at $-78{ }^{\circ} \mathrm{C}$. After an addition of excess amount of 20% aqueous potassium sodium (+)-tartrate at room temperature, it was stirred for additional 1 h at ambient temperature. The aqueous layer was extracted three times with EtOAc. The combined organic layer was dried over MgSO_{4}, and concentrated under reduced pressure. The crude materials of S15 was directly employed to next oxidation.

To a solution of the crude materials of $\mathbf{S 1 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, manganese (IV) oxide ($5.2 \mathrm{~g}, 60.3 \mathrm{mmol}$) was
added at room temperature. The reaction mixture was stirred for 14 h at room temperature under Ar atmosphere. The resulting mixture was filtrated with Celite pad and concentrated under reduced pressure. The obtained crude materials were purified by flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc} / n\right.$-hexane $)$ to provide desired aldehyde $\mathrm{S} 16(643.5 \mathrm{mg}, 70 \%, 4$ steps $)$ as pale yellow oil.

5,6,6-Trimethylhepta-2,4-dienal (S16)

Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) 1.12(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.2,160.7,149.6,130.6,120.4,37.6,28.7,14.2$; IR (neat) $v_{\max } 2965,1678,1620,1169,1124,968,889$ cm^{-1}; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Na}_{1} \mathrm{O}_{1}\right]^{+}: 175.1093$, found : 175.1082.

General procedure for substrate scope

Hexa-2,4-dienal ($28.8 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added to a solution of 5-nitro-2,3-dihydropyridone 3 (24.2 mg , $0.10 \mathrm{mmol})$, benzoic acid ($12 \mathrm{mg}, 0.1 \mathrm{mmol}$) and catalyst $\mathbf{D}(11.6 \mathrm{mg}, 0.020 \mathrm{mmol})$ in toluene $(250 \mu \mathrm{~L})$ at $23{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred until consumption of 5-nitro-2,3dihydropyridone 3 monitored by TLC analysis. To the resulting mixture, ethylene glycol ($84 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(21 \mathrm{mg}, 0.11 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at $23^{\circ} \mathrm{C}$. The resulting mixture was slowly quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with saturated aqueous NaHCO_{3}, dried over MgSO_{4}, and concentrated under reduced pressure. The crude materials were purified by flash chromatography $\left(\mathrm{SiO}_{2}, 12.5 \% \mathrm{EtOAc} / n\right.$-hexane) to provide $6(23.7 \mathrm{mg}$ as separatable diastereomer mixture, $62 \%)$ as colorless amorphous powder.
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-4a-nitro-4-oxo-3,4,4a,5,8,8a-hexahydroquinoline$1(2 \mathrm{H})$-carboxylate (6)

In general procedure; 5 h , yield $62 \%(0.1 \mathrm{mmol}$ scale, 24 mg$), \mathrm{dr}=3: 1,91 \% e e$. Major diastereomer was separated by flash chromatography $\left(\mathrm{SiO}_{2}, 12 \% \mathrm{EtOAc} / n\right.$-hexane $)$. Enantiomeric excess was determined by HPLC with ChiralCel IC column. $10 \% i-\mathrm{PrOH} / n-$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=23.0 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=29.2 \mathrm{~min}$.
Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, VT $55^{\circ} \mathrm{C}$) $\delta 5.77(\mathrm{~d}, J=10.0 \mathrm{~Hz} 1 \mathrm{H}), 5.54$ (br. d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (br. s, 1H), $4.89(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.93(\mathrm{td}, J=12.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{td}, J=12.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.34(\mathrm{br} . \mathrm{s}, 9 \mathrm{H}), 2.99-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 1.85(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, VT $55^{\circ} \mathrm{C}$) δ 196.2, 153.9, 128.8, 121.8, 103.1, $97.5,81.4,65.1,64.9,56.4,39.4,39.1,38.0,33.5,28.3,26.0$; IR (neat) $v_{\max } 2978,1734,1697,1547,1406$,

1365, 1157, $1115 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}: 405.1632$, found : 405.1608; $[\alpha]^{27}{ }_{D}-42\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-4a-nitro-4-oxo-7-phenyl-3,4,4a,5,8,8a-
hexahydroquinoline-1(2H)-carboxylate (7)

5-Phenylhexa-2,4-dienal was used as diene in general procedure; reaction was performed at $0{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$, yield $74 \%(0.1 \mathrm{mmol}$ scale, 34 mg), $\mathrm{dr}=10: 1,95 \% \mathrm{ee}$. Major diastereomer was separated by flash chromatography $\left(\mathrm{SiO}_{2}, 11 \% \mathrm{EtOAc} / n\right.$-hexane). Enantiomeric excess was determined by HPLC with ChiralCel IC column. $10 \% i$ - PrOH / n-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=18.4 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=23.3 \mathrm{~min}$.

Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene-d d_{6}, VT $78{ }^{\circ} \mathrm{C}$) $\delta 7.08-7.12$ (m, 5 H), 6.18 (s, 1H), 5.79 (br. s, 1 H), $4.72-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.08$ (br. s, 1H), 3.39-3.48 (m, 2H), 3.24-3.32 (m, 3H), 2.93 (br. s, 1H), 262-2.75 (m, 3 H), 2.27 (br. t, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18 (dd, $J=15.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (br. d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.45 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}, VT $78{ }^{\circ} \mathrm{C}$) δ 196.0, 154.1, 140.1, 132.9, 128.7, 126.2, 126.2, 125.9, 103.5, $97.8,81.1,65.1,64.8,57.7,40.3,39.4,38.1,34.5,29.0,28.3$; IR (neat) $v_{\max } 2976,1734,1697,1549,1406$, $1366,1159,1117 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}: 481.1945$, found : 481.1931; $[\alpha]^{27}{ }_{D}-73\left(c 1.5, \mathrm{CHCl}_{3}\right)$.
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-(naphthalen-2-yl)-4a-nitro-4-oxo-3,4,4a,5,8,8a-hexahydroquinoline- $1(2 \mathrm{H})$-carboxylate (8)

5-(Naphthalen-2-yl)hexa-2,4-dienal was used as diene in general procedure; 5 h , yield 73% (0.1 mmol scale, 37 mg) , $\mathrm{dr}=7.8: 1,95 \%$ ee. Major diastereomer was separated by flash chromatography $\left(\mathrm{SiO}_{2}, 11 \% \mathrm{EtOAc} / n\right.$-hexane $)$. Enantiomeric excess was determined by HPLC with ChiralCel IC column. $10 \% i-\mathrm{PrOH} / n$-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=$ 24.0 min , minor enantiomer $t_{\mathrm{R}}=33.8 \mathrm{~min}$.

Colorless oil ; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, benzene-d d_{6}, VT $\left.78{ }^{\circ} \mathrm{C}\right) \delta 7.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.36$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.87($ br. s, 1 H$), 4.78(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (br. s, 1 H), $3.41-3.47(\mathrm{~m}, 3 \mathrm{H}), 3.28-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.97$ (br. t, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (br. d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69-2.78 $(\mathrm{m}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dt}, J=15.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}\right.$, benzene- d_{6}, VT $78{ }^{\circ} \mathrm{C}$) $\delta 196.0,154.1,137.3,134.1,133.6,132.8,128.5,127.0,126.9,126.5,126.3$, 124.7, 124.6, 124.3, 103.6, 97.9, 81.2, 65.1, 64.8, 57.3, 40.4, 39.4, 38.2, 34.5, 29.0, 28.4; IR (neat) $v_{\max } 2976$, 1734, 1697, 1558, 1549, 1406, 1363, 1219, $1159 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for
$\left[\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}: 531.2102$, found : 531.2079; $[\alpha]^{28}{ }_{\mathrm{D}}-92\left(c 0.4, \mathrm{CHCl}_{3}\right)$.
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-4a-nitro-7-(4-nitrophenyl)-4-oxo-3,4,4a,5,8,8a-hexahydroquinoline- $1(2 \mathrm{H})$-carboxylate (9)

5-(4-Nitrophenyl)hexa-2,4-dienal was used as diene in general procedure; 2.5 mL of toluene was employed. 18 h , yield 71% (0.1 mmol scale, 36 mg), $\mathrm{dr}=9.5: 1,97 \%$ ee. Major diastereomer was separated by flash chromatography ($\mathrm{SiO}_{2}, 12 \% \mathrm{EtOAc} / n-$ hexane). Enantiomeric excess was determined by HPLC with ChiralCel IC column. $40 \% i$ - PrOH / n-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=34.2 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=41.4 \mathrm{~min}$.
Colorless oil; ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}, VT $78^{\circ} \mathrm{C}$) $\delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.17 (s, 1H), 5.75 (br. s, 1H), $4.71(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (br. s, 1H), 3.42-3.49 (m, 2H), 3.27-3.34 (m, 3H), 2.95 (br. t, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.97-2.01(\mathrm{~m}, 1 \mathrm{H})$ 1.46 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}, VT $78{ }^{\circ} \mathrm{C}$) $\delta 196.0,154.0,147.8,145.3,131.1,129.9,126.1$, 123.7, 103.3, $97.6,81.5,65.2,64.9,56.9,40.1,39.5,38.1,34.1,28.3(2 C)$; IR (neat) $v_{\max } 2980,1734,1697$, $1595,1549,1516,1406,1341,1159,1111 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{9}\right]^{+}$: 526.1796, found : 526.1774; [$\alpha]^{28}{ }_{\mathrm{D}}-72\left(c 1.9, \mathrm{CHCl}_{3}\right)$.
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-(4-bromophenyl)-4a-nitro-4-oxo-3,4,4a,5,8,8a-hexahydroquinoline-1(2H)-carboxylate (10)

5-(4-Bromophenyl)hexa-2,4-dienal was used as diene in general procedure; 4 h , yield 84% (0.1 mmol scale, 45 mg), $\mathrm{dr}=4.6: 1,95 \%$ ee. Major diastereomer was separated by flash chromatography $\left(\mathrm{SiO}_{2}, 9 \% \mathrm{EtOAc} / n\right.$-hexane). Enantiomeric excess was determined by HPLC with ChiralCel IC column. $10 \% i-\mathrm{PrOH} / n$-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=21.9 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=27.4 \mathrm{~min}$.
Pale yellow oil ; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, benzene- d_{6}, VT $\left.78{ }^{\circ} \mathrm{C}\right) \delta 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.75($ br. s, 1 H$), 4.71-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.08($ br. s, 1 H$), 3.40-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.33(\mathrm{~m}, 3 \mathrm{H})$, 2.92 (br. t, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.00$ $(\mathrm{m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}, VT $78{ }^{\circ} \mathrm{C}$) $\delta 195.9,154.0,138.8,131.8,131.7,127.4$, $126.9,122.0,103.4,97.7,81.3,65.1,64.8,57.1,40.2,39.4,38.1,34.3,28.6,28.3$; IR (neat) $v_{\max } 2978,1734$, 1695, 1547, 1404, 1365, 1157, $1009 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{Br}_{1} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}$: 559.1050, found : 559.1034; [$\alpha]^{28}{ }_{\mathrm{D}}-73$ (c 1.4, CHCl_{3}).
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-(3,5-bis(trifluoromethyl)phenyl)-4a-nitro-4-oxo-3.4,4a,5,8,8a-hexahydroquinoline-1(2H)-carboxylate (11)

5-(3,5-Bis(trifluoromethyl)phenyl)hexa-2,4-dienal was used as diene in general procedure; 11 h , yield $68 \%(0.1 \mathrm{mmol}, 40 \mathrm{mg}), \mathrm{dr}=4.5: 1,91 \% \mathrm{ee}$. Major diastereomer was separated by flash chromatography $\left(\mathrm{SiO}_{2}, 12 \% \mathrm{EtOAc} / n\right.$-hexane). Enantiomeric excess was determined by HPLC with ChiralCel IC column. $2 \% i-\mathrm{PrOH} / n$-hexane, 0.2 $\mathrm{mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=23.4 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=25.8 \mathrm{~min}$.
Colorless oil ; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, benzene- d_{6}, VT $78{ }^{\circ} \mathrm{C}$) $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.77$ (br. $\mathrm{s}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.38-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.31(\mathrm{~m}, 3 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H})$, 2.67-2.74 (m, 1H), 2.53-2.58 (m,1H), 2.45 (br. d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.17$ (m, 2H), 1.92-1.97 (m, 1H), 1.45 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}, VT $78^{\circ} \mathrm{C}$) $\delta 196.0,153.9,142.3,132.4$ (q, $J=134.0 \mathrm{~Hz}$), 130.3, 125.7, 125.0, 122.8, 121.4, 103.2, $97.6,81.6,65.1,64.9,56.8,40.1,39.5,38.1,33.9,28.3,28.2$; IR (neat) $v_{\max }$ 2980, 1734, 1699, 1551, 1277, 1165, $1126 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}$: 617.1693, found : 617.1677; $[\alpha]^{24}{ }_{\mathrm{D}}-62\left(\mathrm{c} 0.33, \mathrm{CHCl}_{3}\right)$.
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-(3,5-dimethoxyphenyl)-4a-nitro-4-oxo-
3,4,4a,5,8,8a-hexahydroquinoline-1(2H)-carboxylate (12)

5-(3,5-Dimethoxyphenyl)hexa-2,4-dienal was used as diene in general procedure; 4 h , yield 78% (0.1 mmol scale, 36 mg), $\mathrm{dr}=5: 1,94 \% e e$. Major diastereomer was separated by flash chromatography ($\mathrm{SiO}_{2}, 3$ to $12 \% \mathrm{EtOAc} / n$-hexane gradient). Enantiomeric excess was determined by HPLC with ChiralCel IC column. 20\% iPrOH / n-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=23.4 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=28.5 \mathrm{~min}$.
Pale yellow oil,; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, VT $\left.55^{\circ} \mathrm{C}\right) \delta 6.46(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.58$ (br. s, 1 H), $4.95(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (br. s, 1 H), $3.95(\mathrm{td}, J=12.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.87(\mathrm{~m}, 8 \mathrm{H}), 3.40$ (br. s, 1 H), 3.21 (br. d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dt, $J=16.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (br. s, 1 H), $2.42-2.58$ (m, 3H), 1.93 (br. d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, VT $55^{\circ} \mathrm{C}$) $\delta 196.2,161.0,154.0,141.6,132.4$, $125.8,104.2,103.1,99.7,97.3,81.6,65.2,64.9,56.8,55.5,39.6,39.0,38.1,33.7,28.5,28.3$; IR (neat) $v_{\max }$ 2976, 1734, 1697, 1591, 1549, 1408, 1366, 1204, 1153, $1064 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{9}\right]^{+}: 541.2157$, found : 541.2124; $[\alpha]^{27}{ }_{\mathrm{D}}-64\left(c 0.61, \mathrm{CHCl}_{3}\right)$.
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-(tert-butyl)-4a-nitro-4-oxo-3,4,4a,5,8,8a-hexahydroquinoline-1(2H)-carboxylate (13)

5,6,6-Trimethylhepta-2,4-dienal was used as diene in general procedure; 32 h , yield 52% (0.1 mmol scale, 23 mg), $\mathrm{dr}=2.8: 1,92 \% e e$. Major diastereomer was separated by flash chromatography $\left(\mathrm{SiO}_{2}, 10\right.$ to $12 \% \mathrm{EtOAc} / n$-hexane gradient). Enantiomeric excess was determined by HPLC with ChiralCel IC column. $10 \% i-\mathrm{PrOH} / n$-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=$ 13.9 min , minor enantiomer $t_{\mathrm{R}}=20.2 \mathrm{~min}$.

Colorless oil ; ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- $\mathrm{d}_{6}, \mathrm{VT} 78{ }^{\circ} \mathrm{C}$) $\delta 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.43(\mathrm{td}, J=13.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-3.31(\mathrm{~m}, 3 \mathrm{H}), 3.00-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.72(\mathrm{~m}$, $1 \mathrm{H}), 2.56-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (br. d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.44$ $(\mathrm{s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, benzene-d ${ }_{6}$, VT $\left.78{ }^{\circ} \mathrm{C}\right) \delta 196.0,154.2,141.3,121.1,103.6,98.1$, $80.1,65.1,64.8,57.5,40.1,39.5,38.1,35.0,34.8,28.9,28.4,26.5$; IR (neat) $v_{\max } 2967,1736,1697,1546$, 1406, 1392, 1366, 1159, $983 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}: 461.2258$, found : 461.2229; $[\alpha]^{28}{ }_{\mathrm{D}}-33\left(c 0.50, \mathrm{CHCl}_{3}\right)$.

tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-6,7-dimethyl-4a-nitro-4-oxo-3,4,4a,5,8,8a-

hexahydroquinoline-1(2H)-carboxylate (14)

4,5-Dimethylhexa-2,4-dienal was used as diene in general procedure; 5 h , yield $71 \%(0.1$ $\mathrm{mmol}, 29 \mathrm{mg}$, $\mathrm{dr}=3.5: 1,90 \%$ ee. Major diastereomer was separated by flash chromatography $\left(\mathrm{SiO}_{2}, 1\right.$ to $13 \% \mathrm{EtOAc} / n$-hexane gradient). Enantiomeric excess was determined by HPLC with ChiralCel OD-H column. $10 \% i-\mathrm{PrOH} / n$-hexane, $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer t_{R} $=13.6 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=15.8 \mathrm{~min}$.

Colorless oil ; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, benzene- d_{6}, VT $\left.78{ }^{\circ} \mathrm{C}\right) \delta 5.46(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.05$ (br. s, 1H), 3.43-3.50 (m, 2H), 3.13-3.28 (m, 2H), 3.12 (br. s, 1H), 2.88-2.94 (m, 1H), 2.70-2.77 (m, 1H), $2.53(\mathrm{ddd}, J=16.0,7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dq}, J=16.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , benzene $\left.-\mathrm{d}_{6}, \mathrm{VT} 78{ }^{\circ} \mathrm{C}\right) \delta 196.5$ 154.1, 127.3, $122.9,103.8,99.4,80.8,65.0,64.9,56.7,42.9,38.0,33.4,32.5,28.4,28.3,19.2,16.1$; IR (neat) $v_{\max } 2978$, 2887, 1734, 1697, 1549, 1408, 1365, 1159, $1033 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}\right]^{+}: 433.1945$, found : 433.1924; $[\alpha]^{24}{ }_{\mathrm{D}}-82\left(c 0.3, \mathrm{CHCl}_{3}\right)$.

Derivatization of cycloadduct 4 toward total synthesis of Lycopodium alkaloids (Scheme 1).

Denitration of cycloadduct 4.
Tributyltin hydride ($429 \mu \mathrm{~L}, 0.42 \mathrm{mmol}$) was added to a solution of cycloadduct $4(161 \mathrm{mg}, 0.41 \mathrm{mmol})$ and azobisisobutyronitrile (AIBN, $20.2 \mathrm{mg}, 0.12 \mathrm{mmol}$) in benzene (4.06 mL) at room temperature under Ar atmosphere. The reaction mixture was stirred for 2 h at $80^{\circ} \mathrm{C}$ under Ar atmosphere. After cooling to room temperature, the resulting mixture was concentrated under reduced pressure. The crude materials was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / n\right.$-hexane) to provide compound 15 and 16 as diastereomer mixture (143 mg , quant., $\mathrm{dr}=3: 1$). These diastereomers could be partially separated by careful flash chromatography $\left(\mathrm{SiO}_{2}, 17 \% \mathrm{EtOAc} / n\right.$-hexane $)$.

Isomerization of from 15 to 16.

1,8-Diazabicyclo[5.4.0]undec-7-ene ($\mathrm{DBU}, 89 \mu \mathrm{~L}, 0.58 \mathrm{mmol}$) was added to a solution of the diastereomer mixture of $\mathbf{1 5}$ and $\mathbf{1 6}(102 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at room temperature under Ar atmosphere. The reaction mixture was stirred for 24 h at room temperature. The resulting mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted three times with EtOAc. The combined organic layer was dried over MgSO_{4}, and concentrated under reduced pressure. The crude mixture was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / n\right.$-hexane) to provide compound $\mathbf{1 5}$ and $\mathbf{1 6}$ as diastereomer mixture (102 mg, quant., $\mathrm{dr}=1: 5$).
tert-Butyl(4aS,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-methyl-4-oxo-3,4,4a,5,8,8a-hexahydroquinoline-

1(2H)-carboxylate (15)

Colorless oil, ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}, VT $78{ }^{\circ} \mathrm{C}$) $\delta 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.81(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.52-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (br. s, 1H), $2.35(\mathrm{ddd}, J=14.3,7.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=14.0,7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.95$ (dt, $J=14.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{br} . \mathrm{t}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}, VT $\left.78{ }^{\circ} \mathrm{C}\right) \delta 205.8,154.6,129.8,125.1,104.9,79.8,64.83,64.78,54.9,51.4,41.1(2 \mathrm{C}), 36.7,34.2,31.9,28.6$, 22.9; IR (neat) $v_{\max }$ 2972, 2886, 1721, 1688, 1393, 1364, $1157 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}\right]^{+}: 374.1938$, found : 374.1923; $[\alpha]^{27}{ }_{\mathrm{D}}-16\left(c 2.2, \mathrm{CHCl}_{3}\right)$.
tert-Butyl(4aR,5S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-methyl-4-oxo-3,4,4a,5,8,8a-hexahydroquinoline-

1(2H)-carboxylate (16)

Colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.35(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.40-$ $2.45(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dd}, J=16.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$) $\delta 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.05(\mathrm{~m}$, $2 \mathrm{H}), 2.87-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 1.63-1.67(\mathrm{~m}, 1 \mathrm{H})$, $1.44-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.36(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{dt}, J=13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.55-0.68(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.7,154.4,132.0,124.1,103.3,80.2,64.8,64.4,54.9,51.5,41.5,38.1,37.7$, $36.3,32.0,28.4,23.4$; IR (neat) $v_{\max } 2972,1722,1688,1404,1366,1169,1144 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}\right]^{+}: 374.1938$, found : 374.1925; $[\alpha]^{27}{ }_{\mathrm{D}}-105\left(c 0.38, \mathrm{CHCl}_{3}\right)$.

Stereoselective reduction of $\mathbf{1 5}$.

Crabtree's catalyst ($1.7 \mathrm{mg}, 0.002 \mathrm{mmol}$) was added to a solution of compound $\mathbf{1 5}(14 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.33 \mathrm{~mL})$ at room temperature under Ar atmosphere. The reaction mixture was stirred for 12 h under H_{2} atmosphere. The resulting mixture was directly concentrated under reduced pressure and purified by flash chromatography ($\mathrm{SiO}_{2}, 25 \% \mathrm{EtOAc} / n$-hexane) to afford compound $17(13 \mathrm{mg}, 91 \%)$ as colorless oil.
tert-Butyl(4aS,5R,7S,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-methyl-4-oxooctahydroquinoline-1(2H)carboxylate (17)
Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, benzene- d_{6}, VT $78{ }^{\circ} \mathrm{C}$) $\delta 4.70$ (br. s, 1 H), 4.80 (br. t, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (br. s, 1H), $3.50-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.10$ (br. t, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (br. s, 1H), 2.22-2.27 (m, $1 \mathrm{H}), 1.90-2.11(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.47(\mathrm{~m}, 11 \mathrm{H}), 1.29$ (br. d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , pyridine-d ${ }_{5}$, VT $95^{\circ} \mathrm{C}$) $\delta 4.89(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.13-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.81$ (m, 2H), 3.61-3.68 (m, 2H), 3.30-3.36(m, 1H), 3.02 (br. s, 1H), 2.39-2.45 (m, 1H), 2.17-2.23 (m, 1H), 2.13 (dt, $J=14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{td}, J=13.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.51(\mathrm{~m}, 11 \mathrm{H}), 1.31$ (br. d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , benzene-d d_{6}, VT $78{ }^{\circ} \mathrm{C}$) $\delta 207.7,154.5,104.8$, $79.6,64.9,64.8,53.0,52.7,41.7,40.5,38.1,33.4,30.3,28.7,28.6,28.2$; IR (neat) $v_{\max } 2922,2880,1715,1687$, 1393, 1364, 1159, $1122 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}\right]^{+}: 376.2094$, found :
$376.2078 ;[\alpha]^{28}{ }_{\mathrm{D}}+3.3\left(c\right.$ 1.3, $\left.\mathrm{CHCl}_{3}\right)$.

$\mathrm{Pd} / \mathrm{C}(2 \mathrm{mg}, 10 \mathrm{w} / \mathrm{w} \%)$ was added to a solution of compound $16(20 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{AcOEt}(1: 1$, 1.2 mL) at room temperature under Ar atmosphere. The reaction mixture was stirred for 6 h at room temperature under H_{2} atmosphere. The resulting mixture was filtrated with amino silica pad and concentrated under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / n\right.$-hexane) provided compound $\mathbf{1 8}$ (16 mg , 82%) as colorless crystals.
tert-Butyl(4a $R, 5 R, 7 S, 8 \mathrm{a} R)$-5-((1,3-dioxolan-2-yl)methyl)-7-methyl-4-oxooctahydroquinoline-1(2H)carboxylate (18)

Colorless crystals; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.98(\mathrm{dd}, J=6.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.29(\mathrm{dd}, J=14.0,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{td}, J=12.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{ddd}, J=14.0,12.0,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=18.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.04$ (br. d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=14.0,4.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.39-$ $1.46(\mathrm{~m}, 10 \mathrm{H}), 1.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,154.5,103.3,80.0,64.8,64.4$, $55.4,53.7,41.9,38.3,37.7,37.3,37.0,28.4,27.5,27.4,18.2$; IR (neat) $v_{\max } 2922,1707,1693,1396,1364$, $1168,1139 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}\right]^{+}: 376.2094$, found : 376.2084; $[\alpha]^{27}{ }_{\mathrm{D}}$ $-91\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} \mathrm{102-104}{ }^{\circ} \mathrm{C}$.

Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese (III) ($4.8 \mathrm{mg}, 0.006 \mathrm{mmol}$) was added to a solution of compound $16(20 \mathrm{mg}, 0.04 \mathrm{mmol})$, phenylsilane ($8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$) and TBHP (in decane solution, $15.6 \mu \mathrm{~L}$, $0.06 \mathrm{mmol})$ in ${ }^{i} \mathrm{PrOH}(284 \mu \mathrm{~L})$ which was carefully degassed by Ar bubbling, at room temperature under Ar atmosphere. The reaction mixture was stirred for 6 h at room temperature. The resulting mixture was filtrated with amino silica pad and concentrated under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, 17 \% \mathrm{EtOAc} / n-\right.$
hexane) provided compound 19 ($13 \mathrm{mg}, 64 \%$) as white solid.
tert-Butyl(4aR,5R,7R,8aR)-5-((1,3-dioxolan-2-yl)methyl)-7-methyl-4-oxooctahydroquinoline-1(2H)carboxylate (19)

White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.99(\mathrm{dd}, J=6.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.89-3.98 (m, 2H), 3.78-3.85 (m, 2H), 3.59 (ddd, $J=14.5,12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (td, $J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.57(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=18.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (br. d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82$ ($\mathrm{q}, ~ J=13.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.0,154.5,103.3,80.0,64.8,64.4,58.4,54.7,41.9$, $40.6,40.3,38.8,37.3,31.9,30.4,28.4$; IR (neat) $v_{\max } 2914,1709,1691,1396,11366,1151,1170,1120,1043$ cm^{-1}; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}\right]^{+}: 376.2094$, found : 376.2079; $[\alpha]^{27}{ }_{\mathrm{D}}-96(c 0.6$, CHCl_{3}) ; mp 79-84 ${ }^{\circ} \mathrm{C}$.

Stereochemistry determination of compounds 15-19

Coupling constants indicated that compound $\mathbf{1 5}$ is cis-fused ring system, and compound $\mathbf{1 6}$ is trans-fused ring system.
${ }^{1} \mathrm{H}$ NMR $\delta 2.90(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz})$ in benzene-d ${ }_{6}$, VT $78{ }^{\circ} \mathrm{C}$

15
Cis-fused

16
Trans-fused

NOEDF supported our proposed stereochemistry; see Page S57 to S62.
--- NOEDF

17

18

19

References
S1) Jia, Z.-J.; Zhou, Q.; Zhou, Q.-Q.; Chen, P.-Q.; Chen, Y.-C. Angew. Chem. Int. Ed. 2011, 50, 8638-8641.
S2) Kann, N.; Rein, T.; Akermark, B; Helquist, P. J. Org. Chem. 1990, 55, 5312-5323.
S3) Skrzyńska, A.; Drelich, P.; Frankoski, S.; Albrecht, Ł. Chem. Eur. J. 2018, 24, 16543-16547.
S4) Li, Y.; Barløse, C.; Jørgensen, J.; Carlsen, B. D.; Jørgensen, K. A. Chem. Eur. J. 2017, 23, 38-41.
S5) Li, Y.; López-Delgado, F. J.; Jørgensen, D. K. B.; Niesen, R. P.; Jiang, H.; Jørgensen, K. A. Chem. Commun. 2014, 50, 15689-15691.
S6) Lijun, X..; Zhubo, L.; Weipeng, D.; Jinyu, S.; Maozhong, M.; Jianfeng, X.; Hongjun, R. Org. Biomol. Chem. 2015, 13, 6333-6337.

$===$ Shimadzu LabSolutions Report $==$

Sample Name
Sample \mathbb{D}
Data Filename
Method Filename
Batch Filename
Vial\#
Injection Volume
Date Acquired
Date Processed
: CBA79 major
$:$ umeda
$:$ CBA 79 major.led
$: 10 \%$ iPrOH-Hex-floe 0.5 .1 cm
2000 uL
2016/12/08 13:45:26 Acquired by :2019/03/13 21:23:02 $\quad \begin{array}{ll}\text { Acquired by } \\ \text { Processed by }\end{array}$

Sample Type $\quad:-\phi$ 'm
: System Administrator System Administrator

<Chromatogram>
mAU

<Peak Table>

PDACh1 190 nm					
Peak\# Ret. Time Area Height Conc.	Name				
1	19.069	5948133	246730	97.943	
2	25.333	124949	4603	2.057	
\pm Ev		6073082	251333		

=== Shimadzu LabSolutions Report $==$

<Chromatogram>
mAU
: CBA79 minor $15 \mathrm{~mol} \%$
CBA79 minor $15 \mathrm{~mol} \%$. l d : 10% iPrOH-Hex-flow0.5.lem $: 1-1$
$: 2000 u L$ $: 2000 \mathrm{uL}$: 2016/12/13 16:30:05 Acquired by Sample Type : -8 'm : System Administrator : 2016/12/13 17:02:24 Processed by : System Administrator

<Peak Table>
PDACh1 242nm

Peak\#	Ret. Time	Area	Height	Conc.	Name
1	20.235	322838	13098	29.967	
2	21.662	754488	28098	70.033	
\pm Evv		1077325	41196		

$$
===\text { Shimadzu LabSolutions Report }==
$$

Sample Name
 Sample ID

Data Filename Method Filename Batch Filename
Injection Volume Date Acquired Date Acquired
Date Processed
: CBA87 20mol\% major right ${ }^{\prime}$
CBA87 $20 \mathrm{~mol} \%$ major right
CBA87 20mol\% major right" ${ }^{\text {.lc }}$
:10\%iPrOH-Hex-flow $0.5 . \mathrm{lcm}$
: 10% iPrOH-Hex-flow0.5.lc
$: \begin{aligned} & 1-1 \\ & : 2000 \mathrm{uL}\end{aligned}$
:2017/01/19 16:03:36 Acquired by : 2017/01/19 16:43:40 Processed by

Sample Type
: System Administrato System Administrator

6
<Chromatogram>
mAU

<Peak Table>

HMK30 ee fr14
: inoshita
10% iP
$: \begin{aligned} & 1-1 \\ & : 2000 \mathrm{uL}\end{aligned}$
: 2000 uL 2019/03/13 16:39:44

Acquired by
Sample Type : System Administrator System Administrator

<Chromatogram>
mAU

<Peak Table>
PDACh1 254 nm

Peak\#	Ret. Time	Area	Height	Conc.	
1	18.381	673004	22008	97.688	Name
2	23.285	15929	462	2.312	
ICEv		688933	22470		

mAU

<Peak Table>
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Conc.	Name
1	23.954	29999969	916988	97.472	
2	33.847	777959	18340	2.528	
\pm Ev		30777929	935327		

PDACh1 302nm

Peak\#	Ret. Time	Area	Height	Conc.	Name
1	34.199	422568	824	1.680	
2	41.377	24735839	356995	98.320	
$士$ 士Ev		25158407	365239		

$$
===\text { Shimadzu LabSolutions Report }==
$$

```
Sample Name
Sample ID
Data Filename
Method Filename
Match Filename
Match F
Injection Volume
Date Acquired
```

: hmk70 ee major
inmkshita major
hmk70 ee major.led
: hmk70 ee major.lod
$: 10 \%$ iPrOH-Hex-flow $0.5 . \mathrm{lcm}$
$: 1-1 \quad$ Sample Type :- $\mathbf{1}$ 'm
2000 uL
: 2019/03/13 23:20:41 $\quad \begin{array}{ll}\text { Acquired by } \\ \text { Processed by }\end{array}$

Sample Type : -8 'm : System Administrator
: Svstem Administrator
 : 2019/03/13 23:20:41 Processed by :System Administrator

10
<Chromatogram>
mAU

<Peak Table>
PDACh1 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Name
1	21.913	9391132	306629	97.296	
2	27.360	260957	7640	2.704	
\pm ©.		9652089	314269		

PDA Ch1 250 nm

Peak\#	Ret. Time	Area	Height	Conc.	
1	23.493	8798419	205986	95.528	
2	25.764	411904	10598	4.472	
+Ev		9210324	216584		

$$
===\text { Shimadzu LabSolutions Report }==
$$

<Chromatogram>
mAU

<Peak Table>

| PDACh1 225nm |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Peak\# Ret. Time Area Height Conc. Name
 1 23.406 5002570 143002 97.397
 2 28.479 133699 347 2.603
 \ddagger Ev 5136268 146476 |

mAU

Sample Name
Sample ID
Data Filename
Method Filename
Batch Filename
Viali
Injection Volume
Date Acquired
Date Processed

13
<Chromatogram>
maU

<Peak Table>
PDA Ch1 22nm

Peak\#	Ret. Time	Area	Height	Conc.	Name
1	13.937	2946738	152526	96.042	
2	20.241	121450	4663	3.958	
£Ev		3068189	157189		

$===$ Shimadzu LabSolutions Report $==$

Sample Name Sample ID
 Sample ID Data Filename M Method Filename Batch Filename Vialit Injection Volume Date Acquired Date Processed

hmk83 mouikkai ee major 3
inoshita
hmk83 mouikkai ee major OD-H.led
10\%iPrOH-Hex-flow0.5.lcm
$: \begin{aligned} & 1-1 \\ & : 20 \mathrm{uL}\end{aligned}$
2018/10/19 1:24:54
Acquired by Processed by
System Administrator System Administrator

<Chromatogram>
mAU

<Peak Table>
PDA Chl 226nm

Peak\#	Ret. Time	Area	Height	Conc.	
1	13.627	2310619	105867	94.815	
2	15.790	126348	4654	5.185	
\pm Ev		2436967	110521		

mAU

