```
PERCEPTION
*Knowledge Base Name
                        :tautomerism.kbase
*Description
                       :A knowledge base to identify molecules that undergo
                        tautomerism and generate new tautomers.
*Created by
                        :A.K.T. Ting
*Date of creation
                        :16-7-1997
*Last modified
                         :9-2-99
*Version
                         :2.3
*****************
Information :
New CAESA Rule Base substitution types :
      add-taut-hydrogen
Tautomerism rules are labelled by number
Explanation gives the type of tautomerism the rule identifies
Diagrams above rules show an example of the application of that tautomerism
rule.
This knowledge base is not comprehensive but serves to illustrate the rules.
       0
                            OH
       C
                            С
                          //
   HN
                          N
  0=C
                       HO-C
      N atom1
                            N
      Η
CHEMICAL-LABEL <tautomerism rule 1>
...STARTP
\dotsN[HS>0]; [ARYL=YES] -C [ARYL=YES] (=0) -N [HS>0]; [ARYL=YES] -C [ARYL=YES] (=0)
RULE
EXPLANATION Extended Keto/Enol system.
```

IF tautomerism rule 1

END-THEN

THEN substitute-bond 1 with =

substitute-bond 2 with substitute-bond 4 with =
substitute-bond 5 with add-taut-hydrogen 3
add-taut-hydrogen 6

Enaminoketone/enolimine tautomerism

Imidazole

```
C-C
                  C=C
// \\
C N
                      NH
 \ /
         <--
  N atom5
                  N
Pyrazole
CHEMICAL-LABEL <tautomerism rule 4>
...N[HS=0]; [ARYL=YES]=C[ARYL=YES]-C[ARYL=YES]=C[ARYL=YES]-N[HS>0];
...[ARYL=YES]-@1
... ENDP
RULE
EXPLANATION Pyrazole ring.
IF tautomerism rule 4
THEN substitute-bond 1 with -
        substitute-bond 2 with =
        substitute-bond 3 with -
        substitute-bond 4 with =
        add-taut-hydrogen 1
```


2-amino-pyrrole

```
atom1
  Η
                        Η
  N
                        N
 / \ /
  C-NH2
                           C=NH
                    HN
\\ //
              < - -
C-C
                       C=C
5-amino-pyrazole
CHEMICAL-LABEL <tautomerism rule 6>
...C[ARYL=YES] (-N[HS>0]) = C[ARYL=YES] - C[ARYL=YES] = N[HS=0]; [SAMERING=6];
...[ARYL=YES]
...-N [SAMERING=5] -@1
...ENDP
RULE
EXPLANATION 5-amino-pyrazole.
IF tautomerism rule 6
THEN substitute-bond 1 with =
        substitute-bond 2 with -
        substitute-bond 3 with =
        substitute-bond 4 with -
        add-taut-hydrogen 5
END-THEN
```

N.B. SAMERING=atomnum : means in same ring as atomnum

...ENDP

2-pyrimidone tautomerism type 1

pyrimidine tautomerism type 1

2(1H)-pyrimidone

```
CHEMICAL-LABEL <tautomerism rule 10>
...STARTP
...N[HS>0]; [ARYL=YES] -C [ARYL=YES] (=0) -N [HS=0]; [ARYL=YES] =C [ARYL=YES]
...-C [ARYL=YES] =C [ARYL=YES] -@1
...ENDP
```

RULE

EXPLANATION Amide/hydroxyimine tautomerism in 2(1H)-pyrimidone.

4(3H)-pyrimidone

2(1H)-amino-pyrimidine

```
CHEMICAL-LABEL <tautomerism rule 12>
...STARTP
...C[HS=1]=N[HS=0]-C[ARYL=YES](-N[HS>0])=N[HS=0];[ARYL=YES]-C[HS=1]=C[HS=1]-@1
...ENDP

RULE
EXPLANATION 2(1H)-amino-pyrimidine tautomerism.
```

IF tautomerism rule 12
THEN substitute-bond 3 with =
substitute-bond 4 with add-taut-hydrogen 5

4(1H)-amino-pyrimidine

PERCEPTION

*Knowledge Base Name :charge.kbase

*Description :A knowledge base to assign protonation states

according to estimated pKa values.

*Created by :A.K.T. Ting
*Date of creation :28-8-97
*Last modified :8-2-99

Information :

~~~~~~~~~~~

New CAESA Rule Base substitution types : add-prot-hydrogen del-prot-hydrogen

Protonation behaviour is assigned by considering pKa value of compounds at pH7

- 1. pKa > 7 molecule will exist mainly in the protonated form at pH7
- 2. pKa < 7 molecule will exist mainly in the deprotonated form at pH7

Charges set in this kbase only represent the sign of the charge and not the magnitude.

Later rules override the effects of earlier ones.

This knowledge base is not comprehensive but serves to illustrate the rules.

## pKa Reference :

- (1) Joule, J. A.; Mills, K.; Smith, G.F. Heterocyclic Chemistry. London Chapman and Hall, 1994.
- (2) Physical Methods in Heterocyclic Chemistry}, Katritzky, A.R., Ed., Academic Press, 1963; Vol. I.
- (3) Physical Methods in Heterocyclic Chemistry}, Katritzky, A.R., Ed., Academic Press. 1971; Vol. III.
- (4) Davies, D. T. Aromatic Heterocyclic Chemistry}. Oxford Science Publications, 1992.
- (5) Comprehensive Heterocyclic Chemistry -- Part 2B: Six--membered Rings with Oxygen, Sulfur or Two or More Nitrogen Atoms}. Katritzky, A.R., Ed., Pergamin, 1984.

- (6) Comprehensive Heterocyclic Chemistry -- Part 4B: Five--membered Rings with Two or More Oxygen, Sulfur or Nitrogen Atoms}. Katritzky, A.R., Ed., Pergamin, 1984.
- (7) Handbook of Heterocyclic Chemistry }. Katritzky, A.R., Ed.; Pergamin, 1985.
- (8) Merck Index Budavari, S., Ed.; MERCK; Co., Inc, 1996.

### Sections:

~~~~~~

- 1. Simple functional groups
- 2. 6 membered aromatic heterocyclic compounds $\{1 \text{ or more heteroatom}(s)\}$
- 3. 5 membered aromatic heterocyclic compounds {2 or more heteroatoms}
- 4. Others

Simple functional groups

```
CHEMICAL-LABEL <Amine>
...STARTP
...C[ARYL=NO]-N[EPS=1];[SPCENTRE=3];[ARYL=NO]
...ENDP

RULE
EXPLANATION Amine protonated at pH 7.
IF Amine
THEN set-charge 2 to +1
    add-prot-hydrogen 2
END-THEN
```

ArNH2

Aromatic Amine

CHEMICAL-LABEL <Aromatic Amine>
...STARTP
...C[ARYL=YES]-N[HS>0];[ARYL=NO]
...ENDP

RULE
EXPLANATION Aromatic amine is not protonated at pH 7.
IF Aromatic Amine
THEN set-charge 2 to 0
END-THEN


```
Amide
CHEMICAL-LABEL <Amide>
...STARTP
...X-C(=0)-N[HS=0,1,2]
... ENDP
RULE
EXPLANATION Amide, the N has no charge.
IF Amide
THEN set-charge 4 to 0
END-THEN
CHEMICAL-LABEL < Carboxylic Acid>
...STARTP
...O[HS=1]; [HETS=0]-C[HS=0,1]; [RINGS=NO]=0
... ENDP
RULE
EXPLANATION Carboxylic Acid is not protonated at pH7 and the double bond
normalied between the O's hence both have -ve charge.
IF Carboxylic Acid
THEN set-charge 1 to -1
        set-charge 3 to -1
END-THEN
CHEMICAL-LABEL <Carboxylate>
...STARTP
...O[HS=0]; [HETS=0]; [CHARGE=ANION] -C[HS=0,1]; [RINGS=NO] =O
... ENDP
EXPLANATION In Carboxylate the double bond normalised between the Os
hence both have -ve charge.
IF Carboxylate
THEN set-charge 1 to -1
        set-charge 3 to -1
END-THEN
CHEMICAL-LABEL <Nitro>
...STARTP
...C-N[CHARGE=CATION] (=0) -O[CHARGE=ANION]
... ENDP
EXPLANATION Nitro group has +ve charge on N and the double bond normalised
between the Os hence both Os have -ve charge.
IF Nitro
THEN set-charge 2 to +1
        set-charge 3 to -1
        set-charge 4 to -1
```

```
o<sup>-</sup>
    +
 -C-S-C-
 sulfoxide
 CHEMICAL-LABEL <Sulphoxide>
 ...STARTP
 ...C(-S[CHARGE=NEUTRAL]; [CONNECTIONS=3]=O[CHARGE=NEUTRAL])-C
 ...ENDP
RULE
EXPLANATION Sulphoxide has +ve charge on S and -ve charge on O.
IF Sulphoxide
THEN set-charge 2 to +1
         set-charge 3 to -1
END-THEN
    Η
    N
     \prod
H2N-C-NH2
Guanidine
CHEMICAL-LABEL <Guanidine>
...N[HS=0,1]; [ARYL=NO]=C[ARYL=NO] (-N[HS=0,1,2]; [ARYL=NO])
\dots-N[HS=0,1,2];[ARYL=NO]
...ENDP
RULE
EXPLANATION Guanidine protonated at =N and cation is stabliized through
reasonance.
IF Guanidine
THEN set-charge 1 to +1
             set-charge 3 to +1
             set-charge 4 to +1
            add-prot-hydrogen 1
END-THEN
    Н
    N
H2N-C-C
```

Amidine

```
CHEMICAL-LABEL < Amidine>
 ...STARTP
 ...N[HS=0,1]; [ARYL=NO] = C[ARYL=NO] (-N[HS=0,1,2]; [ARYL=NO]) - C[ARYL=NO]
 ... ENDP
EXPLANATION Amidine protonated at =N and cation is stablized through
reasonance.
IF Amidine
THEN set-charge 1 to +1
                                set-charge 3 to +1
                                set-charge 4 to 0
                                add-prot-hydrogen 1
END-THEN
6 membered aromatic heterocyclic compounds
Pyridine
=======
Parent pyridine pKa = 5.12, therefore does not protonate at pH7.
Molecules substituted with amino gp and without chloro or nitro gp
present at the same time give pKa > 7
     С
  / \\
С
        C
11
       C-NH2
  \ //
     N
2-amino pyridine
CHEMICAL-LABEL <2-Amino Pyridine>
...STARTP
...N-, C(-N[HS>0]) = , C-, C=, C=, C=, C=, C=, C=
... ENDP
RULE
EXPLANATION 2-Amino Pyridine protonated at ring N.
IF 2-Amino Pyridine
THEN set-charge 1 to +1
                               add-prot-hydrogen 1
END-THEN
CHEMICAL-LABEL <4-Amino Pyridine>
...STARTP
...N-, C=, C-, C
... ENDP
```

```
RULE
 EXPLANATION 4-Amino Pyridine protonated at ring N.
  IF 4-Amino Pyridine
 THEN set-charge 1 to +1
                                  add-prot-hydrogen 1
 END-THEN
 CHEMICAL-LABEL <3-Nitro-Pyridine>
  ...STARTP
  ...N-, &C=, &C(-N(-O)=O)-, &C=, &C-, &C=, &@1
 RULE
 EXPLANATION 3-Nitro Pyridine is not protonated at pH7.
 IF 3-Nitro-Pyridine
 THEN set-charge 1 to 0
                                 set-charge 4 to 0
                                 del-prot-hydrogen 1
 END-THEN
 CHEMICAL-LABEL <2-Chloro-Pyridine>
 ...STARTP
 ...N-, C(-C1)=, C-, C=, C-, C=, C=, C=
 ... ENDP
RULE
EXPLANATION 2-Chloro Pyridine is not protonated at pH7.
IF 2-Chloro-Pyridine
THEN set-charge 1 to 0
                del-prot-hydrogen 1
END-THEN
CHEMICAL-LABEL <4-Chloro-Pyridine>
...STARTP
...N-, C=, C-, C-, C=, C
... ENDP
RULE
EXPLANATION 4-Chloro Pyridine is not protonated at pH7.
IF 4-Chloro-Pyridine
THEN set-charge 1 to 0
                del-prot-hydrogen 1
END-THEN
```

```
5 membered aromatic heterocyclic compounds
Imidazole
=======
 C-N3
// \\
C C
 \ /
  N1
  Η
imidazole
Parent imidazole pKa = 7.0
Molecules with amino gp substitutents also have pKa > 7,
in absence of 2- or 4- chloro or nitro gps.
CHEMICAL-LABEL < Imidazole>
...STARTP
\dots N[HS=1] -C=N-C=C-@1
... ENDP
RULE
EXPLANATION Imidazole protonated at pH7.
IF Imidazole
THEN set-charge 1 to 0
            set-charge 3 to +1
            add-prot-hydrogen 3
END-THEN
CHEMICAL-LABEL <2-Chloro Imidazole>
...STARTP
...N[HS=1]-C(-C1)=N-C=C-@1
... ENDP
RULE
EXPLANATION 2-Chloro Imidazole is not protonated at pH7.
IF 2-Chloro Imidazole
THEN set-charge 1 to 0
            set-charge 4 to 0
            del-prot-hydrogen 4
END-THEN
CHEMICAL-LABEL <4-Chloro Imidazole>
...STARTP
...N[HS=1]-C=N-C(-C1)=C-@1
... ENDP
```

```
EXPLANATION 4-Chloro Imidazole is not protonated at pH7.
IF 4-Chloro Imidazole
THEN set-charge 1 to 0
            set-charge 3 to 0
            del-prot-hydrogen 3
END-THEN
CHEMICAL-LABEL <5-Chloro Imidazole>
...STARTP
...N[HS=1]-C=N-C=C(-C1)-@1
...ENDP
RULE
EXPLANATION 5-Chloro Imidazole is not protonated at pH7.
IF 5-Chloro Imidazole
THEN set-charge 1 to 0
            set-charge 3 to 0
            del-prot-hydrogen 3
END-THEN
CHEMICAL-LABEL <2-Nitro Imidazole>
...STARTP
...N[HS=1]-C(-N[CHARGE=NEUTRAL, CATION](-O[CHARGE=NEUTRAL, ANION])=O)
...=N-C=C-@1
... ENDP
RULE
EXPLANATION 2-Nitro Imidazole is not protonated at pH7.
IF 2-Nitro Imidazole
THEN set-charge 1 to 0
      set-charge 6 to 0
            del-prot-hydrogen 6
END-THEN
CHEMICAL-LABEL <4-Nitro Imidazole>
...STARTP
...N[HS=1]-C=N-C(-N[CHARGE=NEUTRAL, CATION](-O[CHARGE=NEUTRAL, ANION])=O)
...=C-@1
... ENDP
RULE
EXPLANATION 4-Nitro Imidazole is not protonated at pH7.
IF 4-Nitro Imidazole
THEN set-charge 1 to 0
      set-charge 3 to 0
            del-prot-hydrogen 3
END-THEN
```

```
CHEMICAL-LABEL <5-Nitro Imidazole>
 ...STARTP
 ...N[HS=1]-C=N-C=C(-N[CHARGE=NEUTRAL,CATION](-O[CHARGE=NEUTRAL,ANION])=0)-@1
RULE
EXPLANATION 5-Nitro Imidazole is not protonated at pH7.
IF 5-Nitro Imidazole
THEN set-charge 1 to 0
      set-charge 3 to 0
            del-prot-hydrogen 3
END-THEN
Others
~~~~~
Piperidine
========
Parental piperidine has pKa > 7 and is cover by <Amine> rule
  С
   C-C, N, S=O
  N
  Η
2-substituted-piperidine with electron withdrawing group
CHEMICAL-LABEL <2-Substituted Piperidine>
...STARTP
...N[HS=1]-C(-C,N,S=0)-C-C-C-Q=1
... ENDP
RULE
EXPLANATION 2-Substituted Piperidine not protonated at pH7.
IF 2-Substituted Piperidine
THEN set-charge 1 to 0
     del-prot-hydrogen 1
END-THEN
```


N-substituted Piperidine with electron withdrawing group

CHEMICAL-LABEL <N-Substituted Piperidine>
...STARTP
...N[HS=0](-C-C,N,S#,=N,O)-C-C-C-C-@1
...ENDP

RULE
EXPLANATION N-Substituted Piperidine is not protonated at pH7.
IF N-Substituted Piperidine
THEN set-charge 1 to 0
del-prot-hydrogen 1
END-THEN

~~~~~~~~ PERCEPTION ~~~~~~~~~~

\*Knowledge Base Name :Hproperty.kbase

\*Description

:A simple knowledge base to identify HD and HA bonding

properties

\*Created by

:A.K.T. Ting

\*Date of creation

:13-5-1997

\*Last modified

:23-4-99

\*Version

:1.2

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Information:

~~~~~~~~~~~

New CAESA Rule Base substitution types : assign-atom

New atom assignment (assign-atom) allowed :

HACCEPTOR

HDONOR

HBOTH

HNEITHER

HDXORHA

New atom features added to the PATRAN language : HDONOR HACCEPTOR HBOTH HEITHER HNEITHER NOT_HDONOR NOT HACCEPTOR p.s. for more information about PATRAN see Reference Guide version 2.0.

Note:

- 1. The order of the rules in this kbase are ordered according to specifity. i.e. the more general rules come first and the more specific ones follow. e.g. Nitrogen with H rule will label all Nitrogens with H as both HA and HD and primary & secondary amide rule will change that to just HD.
- CONNECTIONS is defined as the number of non-hydrogen atom(s) connected to the target atom.

This knowledge base is not comprehensive but serves to illustrate the rules.

Sections:

~~~~~~~

- 1 Nitrogen
- 2 Oxygen
- 3 Halogens
- 4 Sulphur
- 5 Nitrogen groups
- 6 Oxygen groups
- 7 Sulphur groups
- 8 Phosphorus groups
- 9 Others

## Nitrogen

CHEMICAL-LABEL <Nitrogen without H>
...STARTP
...X&N[HS=0];[CHARGE=NEUTRAL]
...ENDP

#### RULE

EXPLANATION Nitrogen without H is HA. IF Nitrogen without H THEN assign-atom 2 as HACCEPTOR END-THEN

N.B. e.g. <Nitrogen without H> rule covers nitriles.

CHEMICAL-LABEL <Nitrogen with H>
...STARTP
...X&N[HS>0];[CHARGE=NEUTRAL]

...ENDP

#### RULE

EXPLANATION Nitrogen with H is both HA and HD. IF Nitrogen with H THEN assign-atom 2 as HBOTH END-THEN

## 0xygen

~~~~~

CHEMICAL-LABEL <Oxygen without H>

...STARTP

...X&O[HS=0]

...ENDP

RIII.E

EXPLANATION Oxygen without H is HA. IF Oxygen without H THEN assign-atom 2 as HACCEPTOR END-THEN

N.B.

e.g. <Oxygen without H> rule covers carbonyls.

2. Oxygen with H case will be cover as <Alcohol> rule.

Halogens

~~~~~~

#### CHEMICAL-LABEL <Fluoride>

...STARTP

...X-F

... ENDP

RULE
EXPLANATION Fluoride is a weak HA.
IF Fluoride
THEN assign-atom 2 as HACCEPTOR
END-THEN

N.B. Fluoride is a weak Hydrogen acceptor.

CHEMICAL-LABEL <Chloride>

- ...STARTP
- ...X-Cl
- ... ENDP

RULE

EXPLANATION Chloride is HA.

IF Chloride
THEN assign-atom 2 as HACCEPTOR
END-THEN

Sulphur

Note: The order of the rule: S without H & EPS
S with H
S with H & EPS

CHEMICAL-LABEL <Sulphur without H and EPS>

- ...STARTP
- ...C&S[HS=0];[EPS=0]
- ...ENDP

RULE

EXPLANATION Sulphur without H and EPS is neither HA nor HD. IF Sulphur without H and EPS THEN assign-atom 2 as HNEITHER END-THEN

CHEMICAL-LABEL <Sulphur with H>

- ...STARTP
- ...C&S-H
- ...ENDP

RULE

EXPLANATION Sulphur with H is HD. IF Sulphur with H THEN assign-atom 2 as HDONOR END-THEN

N.B. e.g. <Sulphur with H> covers thiols.

```
CHEMICAL-LABEL <Sulphur with H and EPS>
...STARTP
...C&S[HS>0]; [EPS>0]
... ENDP
RULE
EXPLANATION Sulphur with H and EPS is both HA and HD.
IF Sulphur with H and EPS
THEN assign-atom 2 as HBOTH
END-THEN
CHEMICAL-LABEL <Sulphur with EPS and no H>
...STARTP
...C&S[HS=0]; [EPS>0]
... ENDP
RULE
EXPLANATION Sulphur with EPS and no H is HA.
IF Sulphur with EPS and no H
THEN assign-atom 2 as HACCEPTOR
END-THEN
CHEMICAL-LABEL <Sulphur with H and no EPS>
...STARTP
...C&S[HS>0]; [EPS=0]
... ENDP
RULE
EXPLANATION Sulphur with H and no EPS is HD.
IF Sulphur with H and no EPS
THEN assign-atom 2 as HDONOR
END-THEN
Nitrogen groups
~~~~~~~~~~~~~~
-NH and -NH2 are donors only
Ref: Hydrogen bonding in biological structures by G A Jeffrey and W. Saenger.
CHEMICAL-LABEL <sp3 NH>
...STARTP
...X-N[HS=1,2]; [SPCENTRE=3]
...ENDP
RULE
EXPLANATION sp3 NH is HD.
IF sp3 NH
THEN assign-atom 2 as HDONOR
END-THEN
```

```
CHEMICAL-LABEL <aromatic NHs>
...STARTP
...X%N[HS>0]
... ENDP
RULE
EXPLANATION aromatic NHs is HD.
IF aromatic NHs
THEN assign-atom 2 as HDONOR
END-THEN
e.g. the aromatic N in Pyrrole.
cover cases : N+ -H
 NH4+
 RNH3+
 R2NH2+
 R3NH+
CHEMICAL-LABEL <N cation>
...STARTP
...N[HS>0]; [CHARGE=CATION]
...ENDP
RULE
EXPLANATION N cation is HD.
IF N cation
THEN assign-atom 1 as HDONOR
END-THEN
 0
 H
 || /
X-C -N .
 H/R
CHEMICAL-LABEL < Primary and Secondary Amide>
...STARTP
...X-C(=0)-N[HS=1,2]
...ENDP
RULE
EXPLANATION Primary and Secondary Amide, O is HA and N is HD.
IF Primary and Secondary Amide
THEN assign-atom 3 as HACCEPTOR
```

assign-atom 4 as HDONOR

```
O
||
=N-C -
```

CHEMICAL-LABEL <Tertiary Amide>

- ...STARTP
- $\dots X-C (=0) -N [HS=0]$
- ... ENDP

#### RULE

EXPLANATION Tertiary Amide, O is HA and N is neither HD nor HA. IF Tertiary Amide

THEN assign-atom 3 as HACCEPTOR

assign-atom 4 as HNEITHER

END-THEN

CHEMICAL-LABEL <Tertiary Amine with sp2 character>

- ...STARTP
- ...C[SPCENTRE=2]-N[HS=0];[SPCENTRE=3]
- ... ENDP

#### RULE

EXPLANATION Sp3 N next to sp2 centre, N assumed to be sp2 Tertiary Amine with sp2 character is neither HA nor HD because electron delocalised into the sp2 system.

IF Tertiary Amine with sp2 character
THEN assign-atom 2 as HNEITHER
END-THEN

CHEMICAL-LABEL <Nitro>

- ...STARTP
- ...C-N[CHARGE=CATION] (=O) -O[CHARGE=ANION]
- ... ENDP

#### RULE

EXPLANATION Nitro, N is neither HD nor HA, the two O are HAs due to normalisation.

IF Nitro

THEN assign-atom 2 as HNEITHER

assign-atom 3 as HACCEPTOR

assign-atom 4 as HACCEPTOR

```
Η
 N
 H2N-C-NH2
 CHEMICAL-LABEL <Unsubstituted guanidine>
 ...STARTP
 ...N[HS=1]; [ARYL=NO] = C[ARYL=NO] (-N[HS=1,2]; [ARYL=NO]) - N[HS=1,2]; [ARYL=NO]
 ... ENDP
RULE
EXPLANATION Unsubstituted guanidine, all Ns are HDs.
IF Unsubstituted guanidine
THEN assign-atom 1 as HDONOR
 assign-atom 3 as HDONOR
 assign-atom 4 as HDONOR
END-THEN
 Η
 N
 R2N-C-NH2
CHEMICAL-LABEL <1,1-Disubstituted guanidine>
...STARTP
...N[HS=1,2]=C[ARYL=NO](-N[HS=0];[ARYL=NO])-N[HS=1,2]
...ENDP
EXPLANATION 1,1-Disubstituted guanidine, N without H is neither HA nor HD and
other Ns are HDs.
IF 1,1-Disubstituted guanidine
THEN assign-atom 1 as HDONOR
 assign-atom 3 as HNEITHER
 assign-atom 4 as HDONOR
END-THEN
 Η
 N
 \Pi
R2N-C-NR2
CHEMICAL-LABEL <1,1,3,3,-tetrasubstituted guanidine>
\dots N [HS=1]; [ARYL=NO] = C [ARYL=NO] (-N [HS=0]; [ARYL=NO]) - N [HS=0]; [ARYL=NO]
... ENDP
RULE
EXPLANATION 1,1,3,3,-tetrasubstituted guanidine, only the NHs group is HD.
IF 1,1,3,3,-tetrasubstituted guanidine
THEN assign-atom 1 as HDONOR
 assign-atom 3 as HNEITHER
 assign-atom 4 as HNEITHER
END-THEN
```

```
CHEMICAL-LABEL <Amidine>
...STARTP
...C[ARYL=NO] (=N[HS=1]; [ARYL=NO]) -N[HS=1,2]; [ARYL=NO]
...ENDP
RULE
EXPLANATION Amidine, both Ns are HDs.
IF Amidine
THEN assign-atom 2 as HDONOR
 assign-atom 3 as HDONOR
END-THEN
Oxygen groups
~~~~~~~~~~~~
CHEMICAL-LABEL <Alcohol>
...STARTP
...X-0[HS=1]
... ENDP
RULE
EXPLANATION Alcohol is both HA and HD.
IF Alcohol
THEN assign-atom 2 as HBOTH
END-THEN
-C=0
 OH
CHEMICAL-LABEL < Non-normalised Carboxylic Acid>
...O[HS=1]; [HETS=0]-C[HS=0,1]; [RINGS=NO]=O[HETS=0]; [HS=0]
... ENDP
RULE
EXPLANATION Carboxylic Acid deprotonated at pH7 and the double bond is
normalised between the Os and hence both HAs.
IF Non-normalised Carboxylic Acid
THEN assign-atom 1 as HACCEPTOR
        assign-atom 3 as HACCEPTOR
END-THEN
CHEMICAL-LABEL < Deprotonated Carboxylic Acid>
...STARTP
...O[CHARGE=ANION]; [HETS=0]-C[HS=0,1]; [RINGS=NO]=O[CHARGE=ANION]; [HETS=0]
...ENDP
```

```
RULE
```

EXPLANATION Carboxylic Acid deprotonated at pH7 and the double bond is normalised between the Os and hence both HAs.

IF Deprotonated Carboxylic Acid

THEN assign-atom 1 as HACCEPTOR

assign-atom 3 as HACCEPTOR

END-THEN

N.B. Since after protonation perception, acid groups are deprotonated and both Os have negative charges, therefore Deprotonated Carboxylic Acid rule needed to correctly identify Hproperties.

```
Sulphur groups
 ~~~~~~~~~~~~~
 Sulfoxide :
 0
 11
 -C-S -C-
 sulfoxide 1
Ref : (O=S)gps is an acceptor gp according to Jeffrey Hydrogen bonding bk p.22
CHEMICAL-LABEL <Sulphoxide without charge>
 ...STARTP
 ...C(-S[CHARGE=NEUTRAL]=O[CHARGE=NEUTRAL])-C
 ... ENDP
RULE
EXPLANATION Sulphoxide without charge, both O and S are HAs.
IF Sulphoxide without charge
THEN assign-atom 2 as HACCEPTOR
 assign-atom 3 as HACCEPTOR
END-THEN
 0
 +
-C-S-C-
sulfoxide 2
CHEMICAL-LABEL <Sulphoxide with charge>
...STARTP
...C(-S[CHARGE=CATION]-O[CHARGE=ANION])-C
... ENDP
RULE
EXPLANATION Sulphoxide with charge, both O and S are HAs.
IF Sulphoxide with charge
THEN assign-atom 2 as HACCEPTOR
 assign-atom 3 as HACCEPTOR
END-THEN
Sulfonamide (R2N-SO2R') :
 0
 -N-S -
 H |
CHEMICAL-LABEL <Sulphonamide with acidic H>
...X&N[HS=1,2](-S[CONNECTIONS=4];[HS=0](=0)=0)
...ENDP
```

```
RULE
EXPLANATION Sulphonamide with acidic H, the N with acidic H is HD and both Os
are HA and S neither HA nor HD.
IF Sulphonamide with acidic H
THEN assign-atom 2 as HDONOR
 assign-atom 3 as HNEITHER
 assign-atom 4 as HACCEPTOR
 assign-atom 5 as HACCEPTOR
END-THEN
 0
 11
R2-N-S -
 (where R cannot be H)
 Н
 0
CHEMICAL-LABEL <Sulphonamide without acidic H>
...STARTP
\dotsX&N[HS=0](-S[CONNECTIONS=4];[HS=0](=0)=0)
... ENDP
RULE
EXPLANATION Sulphonamide without acidic H, both Os are HA, and N without acidic
H and S are neither HA nor HD.
IF Sulphonamide without acidic H
THEN assign-atom 2 as HNEITHER
 assign-atom 3 as HNEITHER
 assign-atom 4 as HACCEPTOR
 assign-atom 5 as HACCEPTOR
END-THEN
 0
 R-S=0
 OH
CHEMICAL-LABEL <Sulfonic acid>
...STARTP
\dots O[HS=1] -S[CONNECTIONS=4]; [RINGS=NO] (=0) =0
... ENDP
EXPLANATION Sulfonic Acid deprotonated in pH7 and the double bond is normalised
between the Os and hence both HAs.
IF Sulfonic acid
THEN assign-atom 1 as HACCEPTOR
 assign-atom 2 as HNEITHER
 assign-atom 3 as HACCEPTOR
 assign-atom 4 as HACCEPTOR
END-THEN
```

```
Phosphorus group
 0
 11
-N-P -
CHEMICAL-LABEL <Phosphoramide with fully substituted N>
...STARTP
...N[HS=0]-P=0
...ENDP
RULE
EXPLANATION Phosphoramide with N only, N is neither HD nor HA, and O is a HA.
IF Phosphoramide with fully substituted N
THEN assign-atom 1 as HNEITHER
 assign-atom 3 as HACCEPTOR
END-THEN
N.B. similar to sulphonamide case where N is never HA and O is a HA.
CHEMICAL-LABEL < Phosphoramide with NH>
...STARTP
...N[HS>0]-P=O
... ENDP
RULE
EXPLANATION Phosphoramide with NH, N is HD and O is a HA.
IF Phosphoramide with NH
THEN assign-atom 1 as HDONOR
 assign-atom 3 as HACCEPTOR
END-THEN
N.B. Other cases where O=P[HETS=0] will be cover by rule <O without H>
 OH
R-P=0
 OH
CHEMICAL-LABEL < Phosphonic acid>
...STARTP
... O[HS=1] - P[CONNECTIONS=4]; [RINGS=NO] (=0) - O[HS=1]
... ENDP
RULE
EXPLANATION Phosphonic Acids are strong acids and therefore deprotonated at
both OH gps at pH7 .
IF Phosphonic acid
THEN assign-atom 1 as HACCEPTOR
 assign-atom 3 as HACCEPTOR
 assign-atom 4 as HACCEPTOR
```

© 2000 American Chemical Society, J. Chem. Inf. Comput. Sci, Ting ci990106h Supporting Info Page 31

## Others

CHEMICAL-LABEL <Water>

- ...STARTP
- ...H-O-H
- ...ENDP

RULE

EXPLANATION water is both HA and HD. IF Water
THEN assign-atom 2 as HBOTH
END-THEN