Supporting Information ## Enhancement of Recyclable pH-Responsive Lignin Grafted Phosphobetaine on Enzymatic Hydrolysis of Lignocelluloses Feiyun Li † , Cheng Cai † , Hongming Lou * , Yuxia Pang † , Xinyi Liu † and Xueqing Qiu^{*} , † [†] School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, 510641, PR China [‡] State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, PR China ## **Corresponding Author** *E-mail: cehmlou@scut.edu.cn. Tel.: 86-20-87114722. Fax:+86-20-87114721. *E-mail: xueqingqiu66@163.com. Tel.: 86-20-87114722. Fax:+86-20-87114721. Supporting Information contains 3 pages, 2 figures The HRMS spectra of 3-chloro-2-hydroxypropyl(2-(trimethylammonio)ethyl) phosphate (Compound 3). Intermediate compound 3 was characterized by maxis impact ultra-high resolution time-of-flight mass spectrometry (MS) using a spectrometer in electrospray ionization mode (Bruker Daltonics, Germany). HRMS: m/z(ESI), calculated [M +Na]⁺: 298.0582, measured: 298.0582; calculated [M+Na+2]⁺: 300.0552, measured: 300.0554. **Figure S1.** The HRMS spectra of the reaction suspension of including **compound 3**. The ³¹PRMS spectra of EHLPB-210. The chemical structure of EHLPB-210 was recorded with a Bruker AV 400 spectrometer (Bruker, Germany) in phosphorus-31 nuclear magnetic resonance ³¹PNMR in dimethyl sulfoxide-d₆. The peak at δ 0.36 ppm was attributed to the P-O-C group of EHLPB-210. **Figure S2.** The ³¹PNMR spectra of EHLPB-210.