Supporting information In situ Investigation of Water Interaction with Lead- Free All Inorganic Perovskite (Cs₂SnI_xCl_{6-x}) Weiguang Zhu[†], Tiankai Yao[†], Junhua Shen[‡], Wenqian Xu[§], Bowen Gong[†], Yachun Wang[†], Jie Lian^{†,*} [†]Department of Mechanical, Aerospace and Nuclear Engineering and [‡]Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States §X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States **AUTHOR INFORMATION** **Corresponding Author** *Email: lianj@rpi.edu 1 **Figure S1.** Series of diffraction patterns of Cs₂SnI₆ recorded during in situ experiment with water addition at room temperature. **Figure S2.** In situ synchrotron diffraction patterns of Cs₂SnI₆ collected during the dehydration process. **Figure S3.** Synchrotron X-ray powder diffraction patterns of the dehydrated Cs₂SnI₆ sample obtained at various locations. CsI and SnI₄ can be identified, respectively. Figure S4. In situ synchrotron X-ray diffraction patterns of Cs₂SnCl₆ upon water addition. **Figure S5.** X-ray diffraction patterns mapping of the dried Cs₂SnCl₆ sample. From top to bottom the scans were taken at 1 mm interval along the tubing direction. **Figure S6.** Rietveld refined X-ray diffraction pattern of Cs₂SnI_{0.9}Cl_{5.1} in water for 5 mins. The composition changes to Cs₂SnI_{0.12}Cl_{5.88}. Black squares are the observed data, the red lines are the fittings, and the blue lines represent difference, and the corresponding Bragg diffractions are the purple sticks. **Figure S7.** EDX atomic percentages of all elements on (a) hexagonal crystals, and (b) dendrites from the post in situ Raman test.