Supporting Information

pH-Dependent morphology and photoresponse of azopyridine-terminated Poly(N-isopropylacrylamide) nanoparticles in water

Hao Ren, ^a Xing-Ping Qiu, ^b Yan Shi, ^c Peng Yang, ^a Françoise M. Winnik*^{d,e}

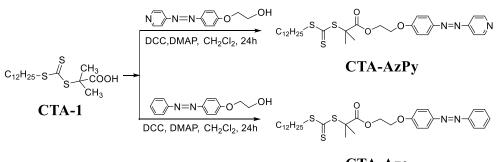
^a School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.

^b Department of Chemistry, University of Montreal, CP 6128 Succursale Centre Ville, Montreal, QC, H3C 3J7, Canada.

^c School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

^d Laboratory of Polymer Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland

^e International Center for Materials Nanoarchitectonics, National Institute for Materials Science,


1-1 Namiki, Tsukuba 305-0044, Japan

E-mail: francoise.winnik@helsinki.fi

Contents

1.	Synthesis and characterization of CTA-Azo and CTA-AzPy	. 3
2.	Characterization of end functional PNIPAMs	. 6
3.	Characterization of self-assembly structure	. 9
4.	Hydrolysis test	10
5.	UV-responsive properties	12

1. Synthesis and characterization of CTA-Azo and CTA-AzPy

CTA-Azo

Scheme S1. Synthesis route of RAFT agent CTA-Azo and CTA-AzPy.

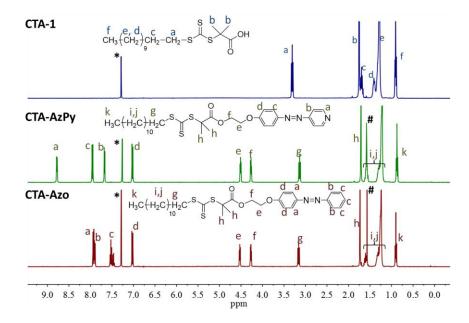


Figure S1.¹H NMR spectrum of CTA-1, CTA-Azo and CTA-AzPy, solvent CDCl₃.(* solvent

peak, # H₂O peak)

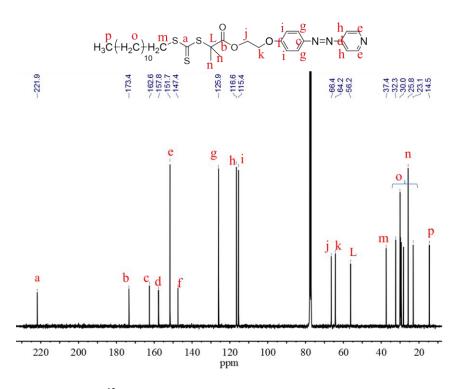


Figure S2. ¹³C NMR spectrum of CTA-AzPy, solvent CDCl₃.

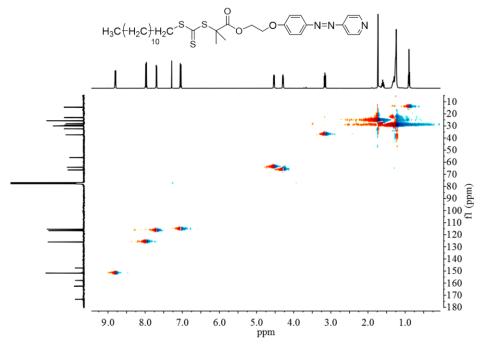


Figure S3. 2D-HMQC spectrum of CTA-AzPy, solvent CDCl₃.

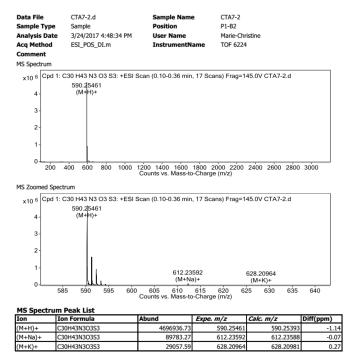
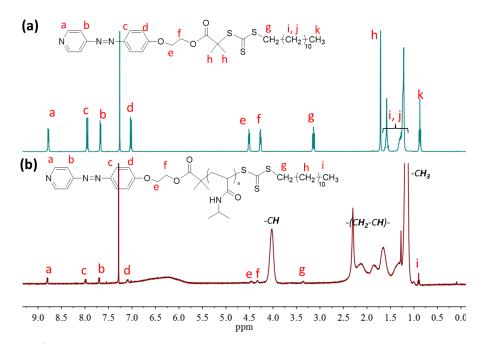



Figure S4. MS spectrum of CTA-AzPy

2. Characterization of end functional PNIPAMs

Figure S5. ¹H NMR spectrum and the peak assignment of (a), CTA-AzPy and C12-PN-AzPy 12K. (solvent CDCl₃)

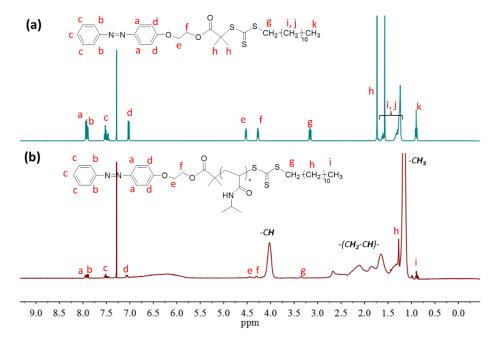


Figure S6 ¹H NMR spectrum and the peak assignment of (a), CTA-Azo and (b) C12-PN-Azo (solvent CDCl₃)

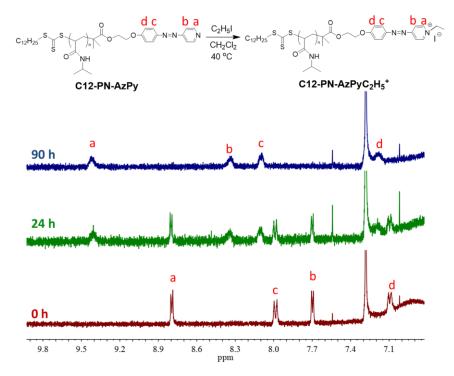


Figure S7 ¹H NMR spectrum and the peak assignment of C12-PN-AzPy 12K and C12-PN-AzPyC₂H₅⁺ (solvent CDCl₃)

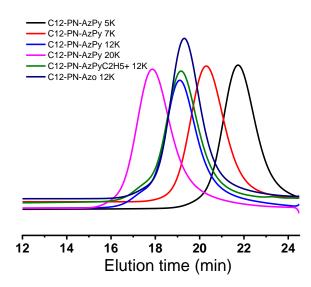


Figure S8. GPC analysis of C12-PN-AzPy, C12-PN-AzPyC $_2H_5^+$ and C12-PN-Azo. (DMF as eluent)

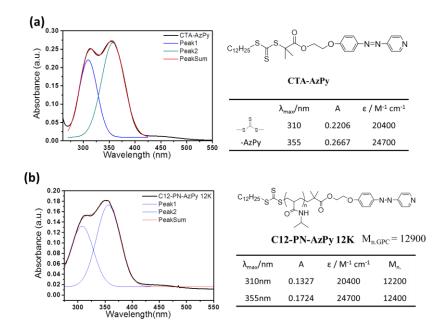


Figure S9. (a), UV-vis spectrum of CTA-AzPy and the determination of molar extinction coefficient (ε); (b), determination of molecular weight of C12-PN-AzPy 12K by UV-vis spectrum. (peak separation function, Gauss, fitting from 270nm to 450nm)

3. Characterization of self-assembly structure

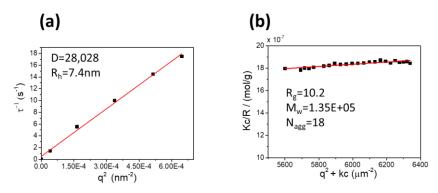
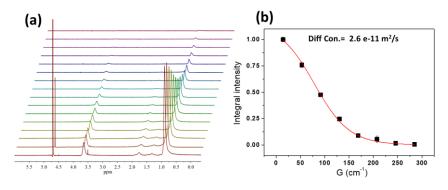



Figure S10. (a). Example of DLS plot and (b) Zimm plot of polymer micelles for C12-PN-AzPy 7K at 10 °C (k is constant for 5600 in this case.)

Figure S11. Diffusion NMR measurements of C12-PN-AzPy at 10 °C in D₂O. (a), Diffusion spectrum of C12-PN-AzPy 12K in D₂O.(b), Fitting curve of the diffusion constant (D) of C12-PN-AzPy 12K.

Sample name	M_n (g/mol)	D (m2/s)	R _h (nm)
C12-PNIPAM-AzPy 5K	5800	3.5e-11	5.9
C12-PNIPAM-AzPy 7K	7800	2.6e-11	7.9
C12-PNIPAM-AzPy 12K	12900	2.6e-11	8.0
C12-PNIPAM-AzPy 20K	19700	1.9e-11	10.9
C12-PNIPAM-AzPyC ₂ H ₅ ⁺ 12K	12900	2.4e-11	8.62

Table S1. Summary of the fitted diffusion constants and corresponding R_h values.

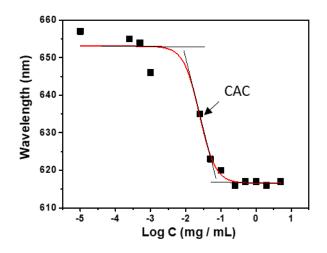
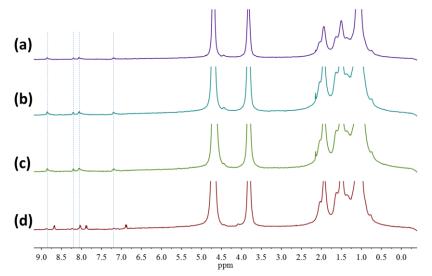
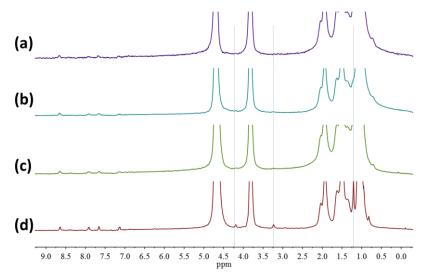




Figure S12. The plot of the maximum wavelength of the NR emission versus the C12-PN-AzPy 12K concentration.

4. Hydrolysis test

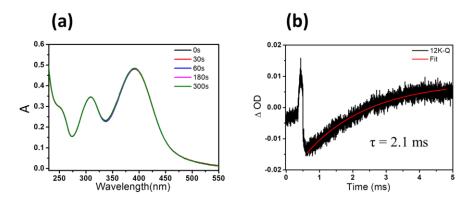


Figure. S13. Hydrolysis testing of C12-PN-AzPy 12K under acid condition (a), pH=3 after 25 hours; (b), pH=3 after 5 days; (c) pH=3 after 5 days and 24 hours under 70 °C; (d), pH=1 after 5 days. (Signal of ionized azopyridine at aromatic part shift to high field when hydrolysis occurs)

Figure. S14. Hydrolysis testing of C12-PN-AzPy 12K under base condition (a), pH=10 after 25 hours; (b), pH=10 after 5 days and 1.5 hours under 70 °C; (c) pH=10 after 5 days and 24 hours under 70 °C; (d), pH=14 after 5 days 24 hours and under 70 °C. (Signal of azopyridine at aromatic part, CH₂ groups on C12 and HO-C2-AzPy becomes sharper when hydrolysis occurs)

5. UV-responsive properties.

Figure S15. (a) UV-Vis spectra under different irradiation time (365 nm) and (b)Transient absorption spectra of C12-PN-AzPyC₂H₅⁺ 12K aqueous solution (0.5 mg/mL).

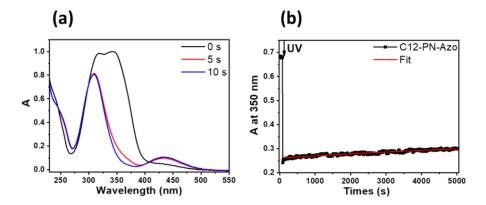


Figure S16. (a) UV-Vis spectra under different irradiation time (365 nm) and (b)Transient absorption spectra of C12-PN-Azo 12K aqueous solution (0.5 mg/mL, 10 °C).