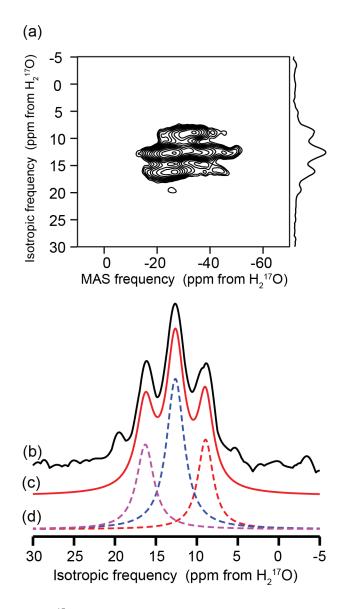
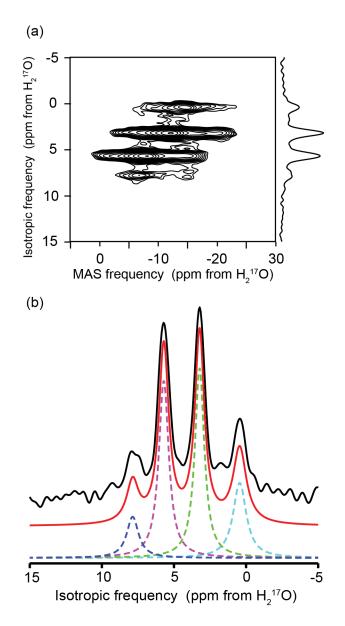
--- Supporting Information ---

High-Resolution of Structural Water by ¹⁷O NMR Spectroscopy

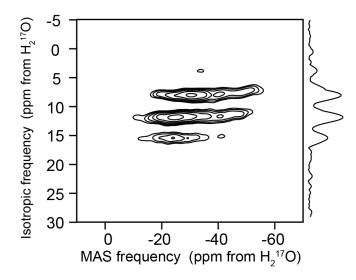
Eric G. Keeler,^{1,2,§} Vladimir K. Michaelis,^{1,2,†} Christopher B. Wilson,^{2,3,‡} Ivan Hung⁴,


Xiaoling Wang,^{4,‡} Zhehong Gan⁴, and Robert G. Griffin^{1,2*}

¹Department of Chemistry, ²Francis Bitter Magnet Laboratory, and ³Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA


⁴National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States

[§]Current Address: Department of Chemistry, Columbia University, New York, New York, 10027 USA
[†]Current Address: Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
[‡]Current Address: Department of Physics, University of California, Santa Barbara, Santa Barbara, California, 93160 USA


*Corresponding Author: Robert G. Griffin, rgg@mit.edu

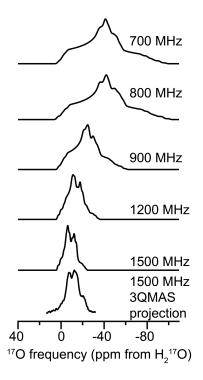

Figure S1: Experimental (a) ¹⁷O 2D MQMAS spectrum, and experimental (b) and fit (c,d) isotropic projections of the ¹⁷O 2D MQMAS spectrum at 21.1 T ($\omega_{0H}/2\pi = 900$ MHz). Three distinct water environments are resolved with isotropic frequencies of 8.9 ± 1 , 12.6 ± 1 , and 16.3 ± 1 ppm. The Gaussian fits of each environment (c,d) indicate a ratio of populations of 1:2:1.

Figure S2: Experimental (a) ¹⁷O 2D MQMAS spectrum, and experimental (b) and fit (c,d) isotropic projections of the ¹⁷O 2D MQMAS spectrum at 35.2 T ($\omega_{0H}/2\pi = 1500$ MHz). Four distinct water environments are resolved with isotropic frequencies of 0.7 ± 1 , 3.4 ± 1 , 5.9 ± 1 , and 8.1 ± 1 ppm.

Figure S3: Oxygen-17 2D MQMAS NMR spectrum at 21.1 T ($\omega_{0H}/2\pi = 900$ MHz) with $\gamma B_1/2\pi = 100$ kHz continuous-wave ¹H decoupling. Three distinct water environments are resolved.

Figure S4: Simulated ¹⁷O MAS NMR spectra at 16.4 to 35.2 T (700 to 1500 MHz, ¹H) and the projection of the direct 3QMAS dimension.