Supporting Information

Investigation on the fluorescence intensity ratio sensing thermometry based on non-thermally coupled levels

Panpan Li, Mochen Jia, Guofeng Liu, Anqi Zhang, Zhen Sun, Zuoling Fu*

Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China, E-mail: zlfu@jlu.edu.cn

1. EXPERIMENTAL SECTION

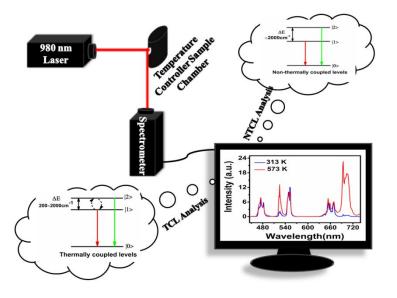
Synthesis of YbPO₄:Ln³⁺ (Ln³⁺=Tm³⁺, Er³⁺, Ho³⁺, Tm³⁺/Er³⁺, Tm³⁺/Ho³⁺)

The YbPO₄ was synthesized by the method of co-precipitation. The rare earth nitrate solutions were mixed according to the chemical formulas with stirring. After that, the mixed solution of nitrate was dropped into the water solution of diammonium phosphate slowly and stirred at 25 °C for 7 h. Then, the produces were separated through centrifugation and carefully washed two times with deionized water and ethyl alcohol respectively. Finally, the precipitates were dried at 60 °C for 12 h, and then calcined at 1200 °C for 2 h.

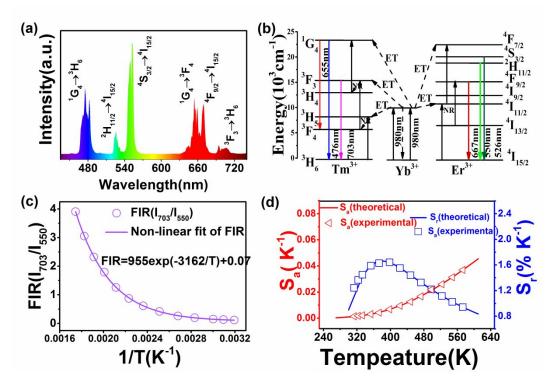
Synthesis of NaYb(MoO₄)₂:Ln³⁺ (Ln³⁺=Tm³⁺, Er³⁺, Ho³⁺, Tm³⁺/Er³⁺, Tm³⁺/Ho³⁺)

They were synthesized by hydrothermal method. Taking NaYb(MoO_4)₂ as an example: First, we mixed nitrate solutions. Then Na₂MoO₄ aqueous solution was added drop wise into the Ln(NO₃)₃ solutions and adjusted the pH value to 5 to form a white colloidal solution. After magnetic stirred for 1 h, the above solution was transferred to a Teflon bottle in a stainless steel autoclave, sealed and temperature kept in 180 °C for 24 h. After the autoclave was cooled to room temperature, the produces were separated through centrifugation and carefully washed two times with deionized water and ethyl alcohol, respectively. Finally, the precipitates were dried at 60 °C for 10 h, and then calcined at 600 °C for 6 h, finally naturally cooled to room temperature.

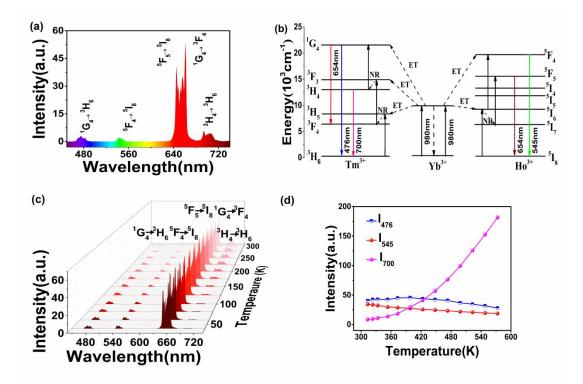
Synthesis of Y₂O₃:Yb₃₊,Ln₃₊ and LaAlO₃:Yb₃₊, Ln₃₊ (Ln³⁺=Tm³⁺, Er³⁺, Ho³⁺, Tm³⁺/Er³⁺, Tm³⁺/Ho³⁺)

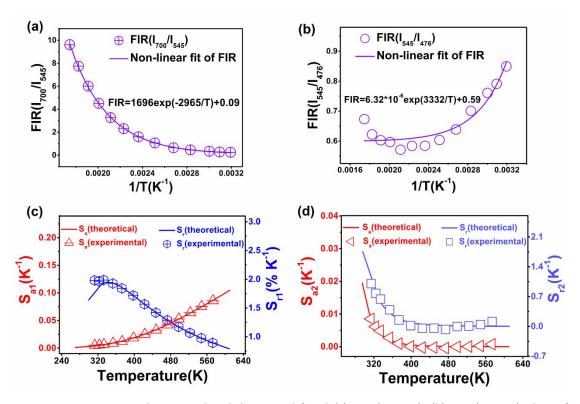

They were synthesized by sol-gel. Taking Y_2O_3 as an example: The rare earth nitrate solutions were mixed according to the chemical formulas with stirring. Next, the chelating agent $C_6H_8O_7 \cdot H_2O$ was added to above solution with molar ratio 2:1 of citric acid to total metal ions. The mixture was stirred until formed a highly transparent solution. Then, dried at 120 °C for 12 h, heated at 500 °C for 2 h. Finally, heated in air at 1200 °C for 4 h, after that ground in an agate mortar.

The synthesis of $LaAlO_3$ followed the similar procedure. The difference for $LaAlO_3$ is heated in air at 900 °C for 4 h. Detailed information can be found in Reference.


Synthesis of BaTiO₃:Yb³⁺, Ln³⁺ (Ln³⁺=Tm³⁺, Er³⁺, Ho³⁺, Tm³⁺/Er³⁺, Tm³⁺/Ho³⁺)

The BaTiO₃ was synthesized by the method of sol-gel. Suitable proportion of $Ba(CH_3COO)_2$ and $Ln(NO)_3$ were dissolved in deionized water (7.20 mL) in a beaker marked A, and the mixture was stirred to form a transparent solution. Ti(OC_4H_9)₄ (10 mmol), CH₃COOH (5.14 mL) and ethanol (3.33 mL) were mixed in another beaker marked B. A solution was dropped into B solution and stirred for 40 min at 50 °C. After being aged for 2 h at 50 °C, it turned into gels. The gels were dried for 10 min at 150 °C and then calcined at 900 °C for 2 h, after that ground in an agate mortar.


2. FIGURES


Figure S1. Schematic illustration of the fluorescence intensity ratio sensing thermometry based on non-thermally coupled levels.

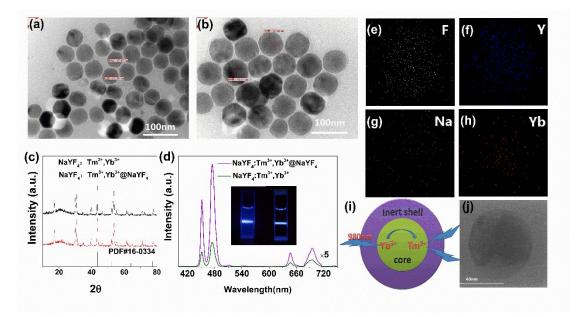

Figure S2. (a) The upconversion luminescence (UCL) spectrum of YbPO₄:Tm³⁺/Er³⁺ under excitation of 980 nm; (b) The energy level diagram; (c) Experimental measured and theoretical fitted FIR (I_{703}/I_{550}) plots of NTCLs based on YbPO₄: Tm³⁺/Er³⁺ versus temperature; (d) The corresponding S_a and S_r versus temperature.

Figure S3. (a) The upconversion luminescence (UCL) spectrum of $YbPO_4$: Tm^{3+}/Ho^{3+} under excitation of 980 nm; (b) The energy level diagram; (c) Temperature-dependent UCL spectra recorded from 313 to 573 K; (d) Polyline displaying the luminescence intensity of 476 nm, 545 nm and 700 nm at various temperatures.

Figure S4. Experimental measured and theoretical fitted (a) FIR (I_{700}/I_{545}), (b) FIR (I_{545}/I_{476}) plots of NTCLs based on YbPO₄: Tm³⁺/Ho³⁺ versus temperature, and the corresponding (c) S_a and (d) S_r versus temperature.

Figure S5. (a) TEM image of NaYF₄ core; (b) TEM image of NaYF₄:Tm³⁺,Yb³⁺@NaYF₄ core-shell; (c) XRD pattern and standard diffraction pattern; (d) Luminescence spectra of NaYF₄:Tm³⁺,Yb³⁺ core and NaYF₄:Tm³⁺,Yb³⁺@NaYF₄ core-shell nanoparticles dispersed in cyclohexane solutions, Insets: two typical photographs showing the luminescence of the core-shell (left) and core (right) nanocrystals; (e–h,j) Mapping images NaYF₄:Tm³⁺,Yb³⁺@NaYF₄; (i) Schematic illustration of the NaYF₄:Tm³⁺,Yb³⁺@ NaYF₄ core-shell structure.

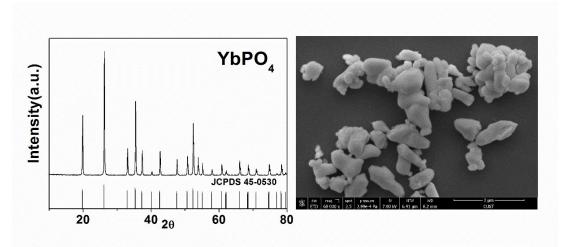
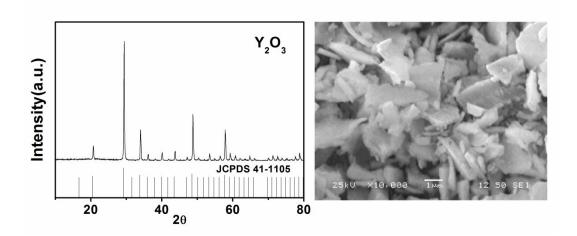



Figure S6. The XRD (left) and SEM image (right) of YbPO4.

Figure S7. The XRD (left) and SEM image (right) of Y2O3.

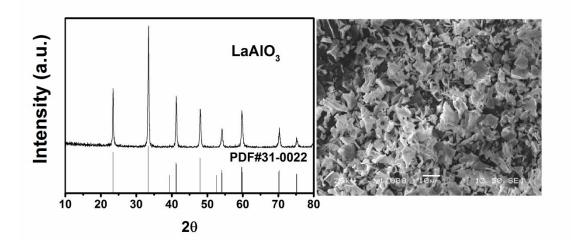


Figure S8. The XRD (left) and SEM image (right) of Y₂O₃.

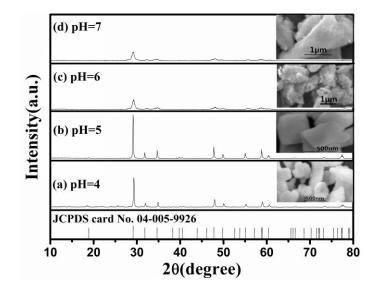


Figure S9. The XRD of NaYb(MoO₄)₂ samples prepared at the value of pH from 4 to

7. Insets show the SEM images of the corresponding samples.

3. TABLES

Max.S [%K ⁻¹]		YbPO ₄ : Tm ³⁺	NaYb(MoO ₄)2:Tm ³⁺	BaTiO ₃ : Tm ³⁺ ,Yb ³⁺	LaAlO ₃ : Tm ³⁺ ,Yb ³⁺	Y ₂ O ₃ : Tm ³⁺ ,Yb ³⁺
Sa	NTCL	44.90	38.80	25.12	4.10	6.66
	TCL	0.55	0.25	0.41	0.21	0.24
S _r	NTCL	1.85	2.83	2.12	1.38	1.05
	TCL	0.27	0.36	0.33	0.29	0.65

Table S1. The temperature sensitivity (S_a, S_r) comparison by using NTCL-FIR temperature sensing method and TCL-FIR method.

Table S2. The minimum temperature accuracy (δ T) comparison by using NTCL-FIR temperature sensing method and TCL-FIR method.

Min.δT		YbPO ₄ :	$NaYb(MoO_4)_2$	BaTiO ₃ :	LaAlO ₃ :	Y ₂ O ₃ :	
[K]		Tm ³⁺	:Tm ³⁺	Tm ³⁺ ,Yb ³⁺	Tm³+,Yb³+	Tm ³⁺ ,Yb ³⁺	
δΤ	NTCL	0.27	0.18	0.24	0.36	0.47	
	TCL	1.85	1.39	1.53	1.71	0.77	

Materials	Ions	Transitions	ΔΕ	Max.S _a	Max.S _r	δŢ	Ref.
			[cm-1]	[%K-1]	[%K-1]	[K]	
Y2O3	Er ^{3+,} Yb ³⁺	${}^{2}\mathrm{H}_{\mathfrak{l}\mathfrak{l}/2}/4\mathrm{S}_{\mathfrak{z}/2} \longrightarrow 4\mathrm{I}_{\mathfrak{l}\mathfrak{z}/2}$	791	886/T ²	0.44	1.32	41
Al2O3	Er ^{3+,} Yb ³⁺	${}^{2}\mathrm{H}_{\mathbf{11/2}}/{}^{4}\mathrm{S}_{\mathbf{3/2}} \rightarrow {}^{4}\mathrm{I}_{\mathbf{15/2}}$	791	964/T²	0.51	0.98	43
Y2O3	Tm ^{3+,} Yb ³⁺	${}^{1}G_{4(1)}/{}^{1}G_{4(2)} \rightarrow {}^{3}H_{6}$	184	452/T²	0.35	1.43	58
NaYbF4@SiO2	Tm ³⁺	${}^{3}F_{2,3}/{}^{3}H_{4} \rightarrow {}^{3}H_{6}$		2677/T ²	0.054	9.26	61
Y2O ₃ :	Ho ^{3+,} Yb ³⁺	⁵ F ₄ / ⁵ S ₂ → ⁵ I ₈ , ⁵ I ₇		241/T²	0.97	0.52	60
Ba _{0.77} Ca _{0.23} TiO ₃	Ho ³⁺ ,Yb ³⁺	${}^{5}\mathrm{F}_{4}/{}^{5}\mathrm{S}_{2} \rightarrow {}^{5}\mathrm{I}_{8}, {}^{5}\mathrm{I}_{7}$		182/T²	1.82	0.27	64

Table S3. Summary of some significant thermometry parameters (S_a, S_r, $\triangle E$, δT) of several representative luminescent materials.

Materials	I ₁ /I ₂	Transitions	ΔΕ	Max.S _a	Max.S _r
			[cm-1]	[%K-1]	[%K-1]
YbPO ₄ :	700/545	${}^{3}F_{3} \rightarrow {}^{3}H_{6} (Tm^{3+})/$	4102	8.58	1.99
Tm ³⁺ , Ho ³⁺		⁵ F ₄ → ⁵ I ₈ (Ho ³⁺)			
	545/476	⁵ F ₄ → ⁵ I ₈ (Ho ³⁺)/	2762	0.85	1.00
		¹ G ₄ →3H ₆ (Tm ³⁺)			
$NaYb(MoO_4)_2$:	696/545	${}^{3}F_{3} \rightarrow {}^{3}H_{6} (Tm^{3+})/$	4102	3.19	4.23
Tm ³⁺ , Ho ³⁺		⁵ F ₄ → ⁵ I ₈ (Ho ³⁺)			
	545/477	⁵ F ₄ → ⁵ I ₈ (Ho ³⁺)/	2762	1.95	1.40
		${}^{1}G_{4} \rightarrow {}^{3}H_{6} (Tm^{3+})$			
BaTiO ₃ :	574/478	⁵ F ₄ → ⁵ I ₈ (Ho ³⁺)/	2762	1.92	2.95
Yb ³⁺ ,Tm ³⁺ , Ho ³⁺		${}^{1}G_{4} \rightarrow {}^{3}H_{6}(Tm^{3+})$			
LaAlO ₃ :	545/477	⁵ F ₄ → ⁵ I ₈ (Ho ³⁺)/	2762	7.71	1.02
Yb ³⁺ ,Tm ³⁺ ,Ho ³⁺		${}^{1}G_{4} \rightarrow {}^{3}H_{6} (Tm^{3+})$			
Y ₂ O ₃ :	548/485	⁵ F ₄ → ⁵ I ₈ (Ho ³⁺)/	2762	26.99	0.65
Yb ³⁺ ,Tm ³⁺ , Ho ³⁺		${}^{1}G_{4} \rightarrow {}^{3}H_{6}(Tm^{3+})$			

Table S4. Summarized temperature sensing characteristics by using NTCL-FIR temperature sensing method based on Tm³⁺ /Ho³⁺ co-doped different materials in our work.

REFERENCES

- Du P.; Luo L. H.; Yue Q. Y.; Li W. P. The simultaneous realization of high- and low-temperature thermometry in Er³⁺/Yb³⁺-codoped Y₂O₃ nanoparticles. *Mater. Lett.* 2015, 143, 209–211.
- (2) Dong B.; Liu D. P.; Wang X. J.; Yang T.; Miao S. M.; Li C. R. Optical thermometry through infrared excited green upconversion emissions in Er³⁺-Yb³⁺ codoped Al₂O₃. *Appl. Phys. Lett.* **2007**, *90*, 181117.
- (3) Li D. Y.; Wang Y. X.; Zhang X. R.; Yang K.; Liu L.; Song Y. L. Optical temperature sensor through infrared excited blue upconversion emission in Tm³⁺/Yb³⁺ codoped Y₂O₃. Opt. Commun. 2012, 285, 1925–1928.
- (4) Wang X. F.; Zheng J.; Xuan Y.; Yan X. H. Optical temperature sensing of NaYbF₄: Tm³⁺@SiO₂ core-shell micro-particles induced by infrared excitation. *Opt. Express*, 2013, 21, 21596–21606.
- (5) Zheng K. Z.; Liu Z. Y.; Lv C. J.; Qin W. P. Temperature sensor based on the UV upconversion luminescence of Gd³⁺ in Yb³⁺-Tm³⁺-Gd³⁺ codoped NaLuF₄ microcrystals. *J. Mater. Chem. C*, **2013**, *1*, 5502–5507.
- (6) Du P.; Luo L. H.; Yu J. S. Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba_{0. 77}Ca_{0. 23}TiO₃ ceramics. *J. Alloys Compd.*, 2015, 632, 73–77.