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OLPP algorithm

Algorithm of OLPP consists of following essential steps as below [1].

Step 1: Establish the adjacency graph

Let G represent a graph with N nodes. Then, the adjacency graph is established via k-nearest

neighbor, which can be utilized to evaluate whether an edge should be put between two nodes [2].

Step 2: Calculate the weights S

S ∈ RN×N is a similarity matrix and obviously sparse, where Sij measures the similarity between

xi and xj.

Step 3: Calculate the orthogonal locality preserving projections

The orthogonal locality preserving projections are represented by {a1, · · · ,ak} and are calcu-

lated below.

A(k−1) = [a1, · · · ,ak] (S1)

B(k−1) =
[
A(k−1)

]T(
XDXT

)−1
A(k−1) (S2)

The vectors {a1, · · · ,ak} can be calculated iteratively thereinafter:

• Calculate a1 as the eigenvector of
(
XDXT

)−1
XLXT corresponding to the smallest eigen-

value.

• Calculate ak as the eigenvector of the following matrix

M (k) =
{
I −

(
XDXT

)−1
A(k−1)

[
B(k−1)

]−1 [
A(k−1)

]T} ·
(
XDXT

)−1
XLXT (S3)

corresponding to the smallest eigenvalue of M (k).

Step 4: Orthogonal locality preserving index embedding

Let WOLPI = [a1, · · · ,al], then data x can be mapped as

x → y = W T
OLPIx, (S4)

where y is an l-dimensional expression of raw x.

Relationship between OLPP and PCA [3]

According to He et al [3], XLXT can be regarded as covariance matrix if the Laplacian ma-

trix L = 1
N
I − 1

N211
T, where I is the identity matrix and 1 is a vector of all ones with proper

dimension. Under the circumstances, the weight matrix S has simple format, i.e., Sij = 1/N2, ∀i, j.
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Dii =
∑

i Sij = 1/N . Let m denote the sample mean, i.e., m = 1
N

∑
i xi. It can be proved as follows:

XLXT =
1

N
X

(
I − 1

N
11T

)
XT

=
1

N

∑
i

xix
T
i − 1

N2
(Nm) (Nm)T

=
1

N

∑
i

(xi −m) (xi −m)T +
1

N

∑
i

xim
T +

1

N

∑
i

mxT
i − 1

N

∑
i

mmT −mmT

= E
[
(x−m) (x−m)T

]
(S5)

where E
[
(x−m) (x−m)T

]
is exactly the covariance matrix of data points [3].

It is evidently observed that S is very significant for OLPP. When global geometric structure

is expected to be preserved, we just need to set k → ∞ and select eigenvectors corresponding to

largest eigenvalues. In this case, data points are projected along the directions of maximal variance,

which implies that OLPP is equivalent to PCA in a sense [3]. When we intend to preserve local geo-

metric information, we need to set k small enough and reserve eigenvectors associated with smallest

eigenvalues. Thus, data points are projected along the directions preserving locality. The latter one

is more popular and essentially the core of OLPP.
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