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Experimental Details

Materials: Particle brush synthesis was performed using surface-initiated atom transfer

radical polymerization following a procedure described previously.1 The final molar ratios

of reaction components in a typical reaction were approximately [Styrene]0 : [SiO2 − Br]0 :

[CuBr]0 : [CuBr2]0 : [PMDETA]0 of 2000 : 1 : 2.5 : 0.25 : 2.75 with a volume fraction

of non-reactive solvents of 5.4% dimethylformamide and 40% anisole in a 100 mL flask.

The polymerization was stopped by exposing the catalyst to oxygenated tetrahydrofuran

after cooling under continuous stirring at approximately 1000 rpm. The final product was

dialyzed against tetrahydrofuran and methanol until the copper (II) catalyst was removed

as evidenced by disappearance of its characteristic color.

Styrene (St, Aldrich, 99%) was purified by passing through a basic alumina column be-

fore use. Copper (I) bromide was prepared by reduction of an aqueous solution of CuBr2

with an aqueous solution of ascorbic acid. Copper (I) chloride was prepared by reduc-

tion of CuCl2 aqueous solution using an aqueous solution of sodium sulfite. Both copper

(I) halides were then sequentially filtered, washed with methanol, dried and stored under

vacuum before use. Silica nanoparticles (SiO2 NP), 30% solution in isopropanol, effective

diameter, dTEM ≈ 113 nm, were donated by Nissan Chemical Corporation and used as re-

ceived. 5−Hexen−1−ol (98%), α−bromoisobutyryl bromide (98%), triethoxysilane (95%),

ethyl 2−bromoisobutyrate (EBiB, 98%), 4, 4′-Dinonyl−2, 2′-bipyridine (dNbpy, 99%), N ,

N , N ′, N ′′, N ′′-pentamethyldiethylenetriamine (PMDETA, 99%), and anisole (99%) were

purchased from Aldrich and used as received. All other chemicals and solvents were supplied

by Aldrich and Acros Organics.

Table S1 gives an overview of the polystyrene (PS)-tethered silica materials used in the

experiments.

Brillouin Light Scattering (BLS): Utilizing the photoelastic interactions between

incident light and thermally activated phonons, BLS3 records the spectra of inelastically
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Table S1: Parameters of the PS-tethered silica particles. The volume fraction of PS (φ
PS

)
is determined by using different methods.2 The mass density (ρ) is determined by using the
relation ρ = ρPSφPS + ρsilica(1− φPS), where ρPS = 1.05 g/cm3 and ρsilica = 1.85 g/cm3.

Sample ID σ [nm−2]
Degree of

polymerization
φPS ρ (g/cm3)

DP100 0.61 130 0.48±0.04 1.47
DP1170 0.08 1170 0.50±0.02 1.45
DP530 0.30 530 0.56±0.02 1.40
DP1300 0.53 1300 0.86±0.04 1.16
DP400 0.61 400 0.70±0.03 1.29
DP600 0.56 630 0.78±0.03 1.23
DP1000 0.48 980 0.82±0.02 1.19
DP2480 0.39 2480 0.93±0.03 1.11

scattered light by phonons with wave vector k equal to scattering wave vector q. The

q = ki−ks along a specific direction could be selected by scattering geometry, with ki and ks

being the wave vector of incident and scattering light respectively. For the periodic structure,

the spectrum consists of a single doublet with a Doppler shift of 2πf = ±cl(t)q in the low q

regime, where cl(t) is the effective medium sound velocity of longitudinal (transverse) phonons

selected by input polarizer V(V) and output analyzer V(H). Therefore, the transmission

geometry is employed in this work that allows q = 4π
λ

sin (θ/2) varying at low values for which

the systems appears homogeneous, where θ is the scattering angle and λ = 532 nm is the

wavelength of input light. The longitudinal (shear) modulus is computed as M(G) = ρc2l(t)

with ρ being the density of self-assembled films.

Simulation Model and Methods

Simulation Model Nanoparticles (NPs) are modeled as spherical clusters of Lennard-Jones

(LJ) particles. Each LJ particle has unit diameter a and unit mass m. The NPs are consid-

ered as uniform spheres of unit reduced density. The resulting interaction between two NPs
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at distance r is given by the Hamaker potential4,5

UNN(r) =


−ANN

6

[
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]
for r ≤ rc,NN

0 for r > rc,NN

(1)

where R is the radius of the NP, rc,NN is the cut-off distance of the potential, and ANN is

the Hamaker constant which controls the strength of the potential. The grafted polymer

chains are represented by the bead-spring Kremer-Grest model, where two monomers are

interacting via the LJ potential6

Umm(r) =


ε
[(

a
r

)12 − (a
r

)6]
for r ≤ rc,mm

0 for r > rc,mm

(2)

where r is the distance between two monomers, rc,mm = 3a is the cut-off distance of the

potential, and ε is the strength of the potential. The monomers are bonded via the finitely

extensible nonlinear elastic (FENE) potential7,8

UFENE(r) = −1

2
κr20 ln

[
1−

(
r

r0

)2
]
. (3)

Here, r0 is the maximum bond extension which is set to r0 = 1.5 a, and κ is the spring

constant which is set to κ = 30ε/a2. These values prevent unphysical bond crossing.

The polymers are grafted to the NPs by rigidly attaching the first polymer bead to the

NP surface. These grafting points are randomly distributed on the NP surface. Then the

remainder of the chains is fastened to those grafting beads (see the schematic representation

given in Fig. S1). The interaction between a monomer and an NP at a distance r apart is
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Figure S1: Schematic of (a) an NP with all the grafting beads, (b) a free polymer chain that
will be grafted to the NP, and (c) the resulting NP with one grafted chain.

also described via the Hamaker potential5

UNm(r) =


−2

9
R3a3ANm

(R2−r2)3

[
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15(R2−r2)6

]
for r ≤ rc,Nm

0 for r > rc,Nm

(4)

where rc,Nm is the cut-off distance of the potential, and ANm is the Hamaker constant between

an NP and a monomer.

The experimental systems are mapped to our MD simulations in the following way. First,

we calculate for all experimental systems the volume of an NP (VNP) as well as the total

volume of PS (VPS) attached to it. To calculate VPS we have used the mass density of

PS (ρPS = 1.05 g/cm3) and the molar mass of a styrene monomer (104.1 g/mol).9 Then,

we have determined the volume ratio W = VPS/VNP for all the experimental systems. In

our simulations, the radius of the NPs is set to R = 10 a and we tuned the degree of

polymerization in such a way that provides the same value of W as in the experiment.

The number of grafting points on the NPs is chosen to match the grafting density of the

experimental samples. In all our simulations, the cut-off distances are rc,NN = 35 a and

rc,Nm = 15 a. The value of the Hamaker constants for silica-silica and PS-PS interactions are

6.5 × 10−20 J and 7.25 × 10−20 J, respectively.10 We determined the Hamaker constant for

the silica-PS interaction from the geometric mean which gives 6.9 × 10−20 J. We converted

these numbers to reduced units using a conversion factor kBT (where T = 298K is the

room temperature and kB is Boltzmann’s constant) which leads to ANN = 15.8 kBT and

ANm = 16.7 kBT . Additional details about the simulation systems are given in Table S2.

All our MD simulations are performed in the NV T ensemble using the HOOMD-blue
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Table S2: Information about the simulation systems.

Sample
ID

Grafting
density
[a−2]

Number of
grafting
points at
R = 10a

Number
of NPs

Number of
monomers
per chain

Total number
of particles in

the system

Box length
[a]

DP100 0.61 766 100 7 536300 102.42
DP1170 0.08 100 100 61 610100 104.32
DP530 0.30 376 50 28 526450 93.72
DP1300 0.53 666 20 68 905780 104.37

software package.11–13 Periodic boundary conditions are applied along the x, y and z direc-

tions. The temperature of the system is kept constant at T = 1.0ε/kB using a Langevin

thermostat. We set the simulation time step to ∆t = 0.002τ , where τ =
√
ma2/(kBT )

is the unit of time. Initially, all grafted NPs are placed randomly in a cubic box that

is sufficiently large to avoid any overlap between grafted chains of different NPs. At this

stage, the monomer-monomer interactions are set to purely repulsive by truncating Umm at

rc,mm = 21/6a. Then the simulation box is gradually shrunken over 5 × 106 MD steps until

the desired monomer density ρ is reached. The system is then simulated for another 5× 106

MD steps. Finally, the attractive contribution of Umm is turned on by setting rc,mm = 3a,

and the system is evolved for 2× 107 time steps. Measurements were taken during the last

4×106 steps of this period. Figure S2 shows the pressure, P , the potential energy, E, and the

polymer radius of gyration, Rg, during this time. The data have been normalized by their

mean values during this period. It clearly visible that all quantities have leveled off, which

indicates that equilibrium has been reached. We repeated this procedure for selected state

points using different starting configurations and did not observe any significant impact on

the final structures and properties.

The bulk modulus is computed using the relation

K = −V dP

dV
. (5)

In order to determine the slope dP/dV , we ran multiple simulations where we isotropically
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Figure S2: Plot of the normalized (with respect to their mean value) (a) potential energy, E,
(b) pressure, P , and (c) radius of gyration, Rg as a function of MD steps. The flat plateaus
indicate that all systems have reached equilibrium.

increased and decreased the volume of the simulation box up to 1%. In Fig. S3, we have

plotted P versus V . The slope dP/dV is shown by the solid lines, which indicate that the

systems still are in the linear response regime. All simulation results presented in the main
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manuscript have been obtained at (reduced) monomer density ρ = 0.86, where the systems

are still in the liquid regime.14 The individual contributions from core-core (Kc−c), core-

polymer (Kc−p), and polymer-polymer (Kp−p) interactions have been obtained by computing

the corresponding contributions to the pressure P and computing its derivative with respect

to the system volume V . We validated the self consistency of this approach by verifying the

expected equality K = Kc−c +Kc−p +Kp−p.

1.0 1.1 1.2
0.5

1.0

1.5

P

V ( ×10
6

)

DP100

DP1170

Figure S3: Plot of P versus V at different monomer densities, ρ, for DP100 and DP1170.

Quantification of Brush Overlap: The overlap between the grafted polymers belong-

ing to the same NP and the other NPs is quantified by δ, defined as15

δ =
4π
[∫∞

0
drr2ρs(r)ρo(r)

]2∫∞
0

drr4ρ2s (r)ρ
2
o(r)

(6)

where ρs is the monomer density of grafted polymers belonging to the same NP and ρo is

the monomer density of polymers belonging to other NPs.

Identification of Single and Double Kinks using Z1 Algorithm: Fig. S4 shows

a schematic of different types of kinks formed by the grafted chains which are obtained by

using the Z1 algorithm.16–18 Here, point A represents a single kink, and points B and C
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represent double kinks. The double kink at point B is formed by the chains belong to the

same NP (measure of 〈Zs〉), whereas point C demonstrates a double kink formed by the

chains coming from two different NPs (measure of 〈Zo〉).

A

B

C

Figure S4: Schematic representation of single and double kinks.

Additional Experimental Results

Figure S5: Heat flow of DP530 (PS-grafted SiO2, N = 530 and σ = 0.27 nm−2) on the first
and second heating. All heating rates were 10 K/min.) Both DSC traces show only a glass
transition implying an amorphous PS matrix.
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Figure S6: Longitudinal, M , (circles) and shear, G, (squares) elastic moduli for various PS
tethered silica films with different PS-volume fraction for densely (solid circles and squares)
and sparsely (open circles and squares in the shaded areas) grafted particle systems. The
representation by the modified effective medium theory is shown by the solid lines.19
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Additional Simulation Results

Bond autocorrelation function: To quantify the dynamics of the grafted chains we

computed the bond autocorrelation function A(∆t) = 〈b(t)b(t0)〉, with translated time

∆t = t−t0. The data for the NP systems as well as for the bulk polymer systems is presented

in Fig. S7 as a function of ∆t. For the pure polymer systems, A(∆t) decays quickly to zero,

with a slower decay for the longer chains, as expected. For the grafted systems, however,

the bond autocorrelation function exhibits a much slower decay and a non-monotonic chain

length dependence. This slowing down originates from the constrained degrees of freedom

of the grafted chains, which disallow free rotation of the bonds near the NP core. This effect

becomes less pronounced for longer polymers, since a smaller fraction of bonds is at the core

surface. Another reason for the slower decay of A(∆t) is the chain stretching occurring at

high grafting densities, which further reduces the monomer mobility: for example, A(∆t) for

DP530 (intermediate grafting density) decays slower than A(∆t) for DP1170 (low grafting

density), although the grafted chains of DP530 are considerably shorter than of DP1170.

Figure S7: Plot of the bond autocorrelation function, A(∆t), as a function of the translated
time ∆t, on a log-log scale. Solid symbols show results for grafted systems, while open
symbols with the same color represent their corresponding bulk systems.
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Persistence length: The persistence length `p is calculated using the relation

`p = − b

ln〈cosΘijk〉
(7)

where b is the average bond length and Θijk is the angle between two consecutive bond

vectors bij and bjk connecting monomers i, j and j, k, respectively. The monomers (and

bonds) are numbered in an ascending order starting from the grafting point.

Figure S8: Plot of persistence length, `p, normalized by the persistence length in the pure
melt `melt

p as a function of bond number from the surface of the NP.

Coarse-Grained Model and its Treatment based on Integral Equation Theory:

The high-frequency shear modulus is computed using the Zwanzig-Mountain relation20

G∞ =
KBT

R3

(
3φc

4π
+

3φ2
c

40π

∫ ∞
0

g(r)

[
kBTr

4dU(r)

dr

]
dr

)
(8)

where φc = 1 − φPS is the effective packing fraction of the hard NP core, U(r) is the

effective potential between brush-coated spherical NPs, and g(r) is the corresponding radial

distribution function. In this work, we employed the model developed by Rabani et al.,21,22

where the NP consists of a rigid core with radius R surrounded by a spherical polymer shell

of thickness h (see Fig. S9). The effective interaction potential between NPs, U(r), can be

estimated assuming uniform filling of the polymer shell with monomers of the grafted chains,
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which interact via the LJ potential.21,22 The corresponding g(r) can be calculated from the

non-local integral equation theory with hypernetted-chain closure.21,22 Taking the values for

φc, h, and d from experiments, we can use eq. (8) to compute G∞.

R

R+h

Figure S9: Schematic representation of the model of Rabani et al. The red region represents
the hard core of the NP and the cyan area represents the soft polymer corona.
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