
S-1

Supporting Information

Iterative Non-Negative Matrix Factorization Filter for

Blind Deconvolution in Photon/Ion Counting

Scott R. Griffin†, John A. Biechele-Speziale†, Casey J. Smith†, XimengYou-Dow‡, Julia K. White†,

Si-Wei Zhang‡, Julie Novak‡, Zhen Liu‡, Garth J.Simpson∗†

†Purdue University, West Lafayette, IN, USA 47906

‡Merck & Co., Inc., Kenilworth, NJ, USA 07033

E-mail: gsimpson@purdue.edu

S-2

Additional Information on the receiver-operator curve (ROC) Plots:

ROC plots were created using simulations with known ground truth outcomes. Simulated data were

generated by first creating a vector of photon positions, created by applying a Poisson distribution with

a constant value to the entire data trace (length of 500,000 data points), in which is the mean

number of expected events per time point. This vector of photon positions was then convolved with the

simulated IRF, given by an exponentially decaying comb with points every 10 data points. The length of

the IRF vector was 100 data points. The simulated data were 500,000 data points in length.

First simulated data set:

 = 0.01

True Number of photon events: 4972

Threshold was varied from 0.1 to 1 with a step size of 0.003

Figure S1: Instrument response function (IRF) used to generate the simulated data.

S-3

Figure S2: A) Entire simulated data trace with = 0.01. B) Zoomed in section to

show detail.

A.

B.

S-4

Second simulated data set:

 = 0.1

True Number of photon events: 47361

Threshold was varied from 0.1 to 1 with a step size of 0.001

Figure S3: A) Entire simulated data trace with = 0.1. B) Zoomed in section to show

detail.

A.

B.

S-5

MATLAB code:

tic
clear all
% close all

PerformAutocorrelation = 0;
Reducing = 0;
datatype = 1; %0 for .bin and 1 for xls
plot_irf = 0;
plot_events = 0;
%% Load data
if datatype == 0
 Filename = '\\10.164.16.153\Data\Scott

Griffin\deconvolution\DoxycyclineHyclate\08-Aug-

2017_16_12_28Channel_B_Raw_Data.bin';%'\\10.164.16.153\Data\Scott

Griffin\deconvolution\DoxycyclineHyclate\08-Aug-

2017_16_12_28Channel_B_Raw_Data.bin';
 fid = fopen(Filename);
 filter = 100;
 Range = 200; %input range for alazar card
 Buffers = 35; %amount of concatenated hits
 corrected_split_data = zeros(2450000,Buffers);
 reduction = 1;
 Data = fread(fid,'uint16');%dlmread(Filename,'\t');
 %% Convert into voltage and make positive
 Rescaled_Data = ((Data / 2^15) * -Range) + Range;%converts to voltage,

flips to positive for ease of visualization, and shifts baseline towards 0
 split_data = reshape(Rescaled_Data,[],Buffers); %splits up the data into

the individual impact events
 for i = 1:Buffers;
 baseline = mean(split_data(1:40000,i)); %finds the mean of the first

millisecond of data in each trace
 corrected_split_data(:,i) = (split_data(:,i)-baseline); %subtracts the

baseline mean from the corresponding trace and saves them
 end
end

if datatype == 1
 Filename = '\\10.164.16.153\Data\Scott Griffin\deconvolution\ROC

plot\TimeTraces&GroundTruth\TimeTrace9.csv';
 Rescaled_Data = csvread(Filename,0,0);
 Filename2 = '\\10.164.16.153\Data\Scott Griffin\deconvolution\ROC

plot\true_irf.csv';
 GroundTruthData = csvread(Filename2,0,0);
 filter = 100;
 reduction = 1;
 Buffers = 1;
 corrected_split_data = Rescaled_Data;
end
IRFs = xlsread('\\10.164.16.153\Data\Scott

Griffin\deconvolution\Gaus_IRF.xlsx');
%% This section cuts out the important part of the data for the smashing

event
for i = 1:Buffers

S-6

 maximums(:,i) = max(corrected_split_data(:,i)); % finds max values for

each hit
end

for i = 1:Buffers % This loop finds the beginning and end of each event
 temp3 = find(corrected_split_data(:,i) == maximums(i)); %pulls out the

correct max value for the impact event
 if size(temp3) > 1
 value1(i) = 0;
 value2(i) = 0;
 elseif size(temp3) == 1
 value1(i) = find(corrected_split_data(:,i) == maximums(i));
 value2(i) = find(corrected_split_data(:,i) == maximums(i));
 while corrected_split_data(value1(i),i) > 0
 if corrected_split_data(value1(i),i) > 0
 value1(i) = value1(i) - 1; % stored values for the beginning

of events
 end
 end
 while corrected_split_data(value2(i),i) > 0
 if corrected_split_data(value2(i),i) > 0
 value2(i) = value2(i) + 1; % stored values for the end of

events
 end
 end
 end
end
recovered_events = cell(1,Buffers);
recovered_irf = cell(1,Buffers);
for n = 1:Buffers
 if value1(n) == 0
 n = n + 1;
 end
 Reduced_Data = corrected_split_data;
%% Create baseline correcting high-pass filter and apply it
 x_hp = linspace(-3,3);
 pdf = normpdf(x_hp,0,1);
 pdf_normalized = -pdf/sum(pdf);
 impulse = zeros(1,100);
 for i = 1:length(x_hp)
 if i == 50
 impulse(1,i) = abs(sum(pdf_normalized));
 else
 impulse(1,i) = 0;
 end
 end
 final_filter = pdf_normalized + impulse;
 Reduced_Data = conv(final_filter,Reduced_Data); %applies the filter
 Reduced_Data = Reduced_Data(50:length(Reduced_Data)-50); %gets rid of the

extra points added by the convolution
 %% Fit
 filtersize = filter/reduction; %size of data transient
 irf_results = zeros(filtersize,1); %preallocate memory for speed
 delta = 0;
 how_many = 1; %how many different MuGuess values you want to use for the

IRF Guess. Not really needed.
 x = linspace(.1,5,filtersize);

S-7

 data_results = zeros(length(Reduced_Data),how_many);%preallocate memory

for speed
 MuGuess = 1.0; %where the guess starts

 for k = 1:how_many
 MuGuess = MuGuess + delta; %original guess value for the eponential

pdf
 comb =

[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0

,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]';
 decay_guess = comb .* exppdf(x,MuGuess)'; %original guess pdf
 keepgoing = 1; %the exit condition for the program
 condition1 = 1; %condition for X2(kinda) to be getting smaller
 condition2 = 1; %condition for the amount of recovered photon events

to be getting smaller
 counter = 0;%for how many times it needs to iterate between

recovering the irf and amplitudes
 counter2 = 0;
 while keepgoing == 1
 %% making the orignial P matrix
 data = Reduced_Data;
 L = filtersize;
 shift = 0;
 P_init = zeros(filtersize,filtersize); %change filtersize to L to

make it like original
 for c = 1:L
 for r = 1:length(decay_guess)
 if r+shift<L+1
 P_init(r+shift,c) = decay_guess(r);
 else
 P_init(r+shift-L,c) = 0;
 end
 end
 shift= shift+1;
 end
 P = P_init;
 Threshold = .8; %threshold for "non-negativity" or noise
 data_fit = zeros(length(data),1);
 %% Fit - recovering photon arrival times and amplitudes
 startpoint = 1;
 endpoint = filtersize;
 while startpoint <= length(data)
 if endpoint > length(data)
 endpoint = length(data);
 end
 data_prime = data(startpoint:endpoint,1); %subset of the data
 P_prime = P(1:length(data_prime),1:length(data_prime));

%subset of the E matrix
 More = 1;
 while More == 1
 C_prime = P_prime\data_prime; %finding the

'concentrations'
 Index = find(C_prime>Threshold); %keep above threshold

values
 NegIndex = find(C_prime<Threshold); %discard below the

threshold

S-8

 if isempty(NegIndex)
 More = 0;
 else
 P_prime = P_prime(:,Index);
 end
 end
 conc_prime = P_prime\data_prime;
 %% Puts the photon amplitudes together with the arrival times
 Ampl_prime = zeros(filtersize,1);
 for j = 1:size(P_prime,2)
 index = find(P_prime(:,j)==decay_guess(1));
 Ampl_prime(index)= conc_prime(j);
 end
 if isempty(P_prime)
 else
 data(startpoint:endpoint) = data(startpoint:endpoint) -

(P_prime(:,1)*Ampl_prime(1));
 end
 data_fit(startpoint,1) = Ampl_prime(1); %creates the final

array of recovered photon amplitudes and arrival times
 new_start = find(Ampl_prime ~= 0);
 new_start = new_start(new_start(:) >= 2);
 if isempty(new_start) == 1 || new_start(end) <= 1
 startpoint = startpoint + filtersize;
 endpoint = endpoint + filtersize;
 else
 startpoint = new_start(1) + startpoint - 1 ;
 endpoint = endpoint + new_start(1) - 1;
 end
 end

 I = eye(filtersize,filtersize); %identity matrix for calculating

the weighted convolution matrix
 M = conv2(data_fit,I); % new 'P' matrix for recovering the IRF
 M = M(1:length(M)-(length(I)-1),:); %needs to be cut down to be

the proper length
 %% calculates the irf and decides if the fit is good enough
 irf = M\Reduced_Data;
 irf = irf/sum(irf);
 if counter >= 1
 Past_Diff = Diff;
 Past_nonzero = nonzero;
 end
 Diff = norm(irf - decay_guess); %Euclidian distance between the

recovered IRF and the guess used for the convergence condition
 nonzero = length(find(data_fit>Threshold)); %count how many

photon events were recovered
 if counter >= 1
 comparison_Diff = Diff - Past_Diff;
 if comparison_Diff < 0
 condition1 = 1;
 else
 condition1 = 0;
 end
 end
 if condition1 == 1
 decay_guess = irf;

S-9

 else
 keepgoing = 0;
 final_Diff = Past_Diff;
 final_nonzero = Past_nonzero;
 [irf2,final_nonzero2,data_fit_final] =

NNMF_IRF_testing_part2(irf,Reduced_Data); %Sends the results to a final

iteration of the algorithm
 %% 'annealing' step where a non-converging result has noise

added to help it converge by moving it away from the local minima
% if final_nonzero2 < 1500 || sum(isnan(irf2)) > 0
% if sum(isnan(irf2)) > 0
% decay_guess = IRFs(k,:)'/5 + normrnd(0,1,100,1);
% keepgoing = 1;
% else
% keepgoing = 1;
% decay_guess = irf2/5 + normrnd(0,1,100,1);
% end
% else
% keepgoing = 0;
% end
 end
 counter = counter + 1
 end
 results(:,k) = vertcat(MuGuess,final_Diff,final_nonzero2);
 data_results(:,k) = data_fit_final;
 irf_results(:,k) = irf2;
 end
 minimums = min(results,[],2);
 location = find(results(2,:) == minimums(2));
 recovered_events{:,n} = data_results(:,location);
 recovered_irf{:,n} = irf_results(:,location);
end

%% autocorrelation or recovered data
if PerformAutocorrelation == 1
 FT1=fft(data_results(:,location)); %FT along vib mirror time axis
 FTFT1=gmultiply(FT1,conj(FT1)); %FTFT* = square mag FT
 clear FT1;
 AC1=real(ifft(FTFT1)); %iFT(FTFT*)=AC
 clear FTFT1;
 AC_deconvolved = AC1(1:floor(length(data)/2));

 figure3 = figure;
 plot(AC_deconvolved,'LineWidth',2);
 xlabel({'Data'},'FontSize',14);
 ylabel({'Autocorrelogram'},'FontSize',14);
 title({'Autocorrelogram of deconvolved data'},'FontSize',14);
end
toc

