Supporting Information

Dual Role of Doubly Reduced Arylboranes as Dihydrogen- and Hydride-Transfer Catalysts

Esther von Grotthuss, Sven E. Prey, Michael Bolte, Hans-Wolfram Lerner, and Matthias Wagner*

Table of contents:

1. Experimental details and characterization data S1
1.1 Synthesis of the DBA derivatives S2
1.2 Spectroscopic data for the DBA derivatives S5
2. Additional data regarding the isomerization of DBA derivatives of
the type $\mathrm{M}_{2}\left[\mathbf{A}-\mathrm{H}_{2}\right]$
3. Hydrogenation reactions using $[\mathbf{A}]^{2-}$ derivatives S16
3.1 General procedures and characterization data S16
3.2 Additional experimental data regarding the hydrogenation reactions S18
4. Hydride transfer reactions with $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ S23
4.1 Reaction of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ with 1 equiv of $\mathrm{Et}_{3} \mathrm{SiCl} \quad \mathrm{S} 23$
4.2 Reaction of $\mathrm{Na}_{2}\left[\mathbf{4}-\mathrm{H}_{2}\right]$ with 2 equiv of $\mathrm{Et}_{3} \mathrm{SiCl}$;
perspectives for a catalytic cycle
4.3 Reaction between $\mathrm{Et}_{3} \mathrm{SiCl}$ and $\mathrm{Na}_{2}[4] \quad$ S27
4.4 Reaction between $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2} \quad$ S29
4.5 Substrate scope of the hydride-transfer reaction S31
5. Cyclic voltammetry measurements S34
6. Computational details S37
7. Plots of the NMR spectra S46
8. X-ray crystal structure analyses S93
9. References S109

1. Experimental details and characterization data

General considerations. All reactions, manipulations, and analyses were carried out in an argon-filled glovebox or by applying standard Schlenk techniques under a nitrogen atmosphere. Toluene, $\mathrm{Et}_{2} \mathrm{O}$, and THF were dried over $\mathrm{Na} /$ benzophenone; THF- d_{8} was dried over $\mathrm{Na}-\mathrm{K}$ alloy without benzophenone. Prior to use, the solvents were distilled from the drying agent; THF and THF- d_{8} were degassed by applying three freeze-pump-thaw cycles.

NMR spectra were recorded at 298 K using the following spectrometers: Bruker DPX-250, Avance300, Avance-400, or Avance-500.

Chemical shifts are referenced to (residual) solvent signals $\left({ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$; THF- d_{8} : $\delta=3.58 / 67.21$ $\left.\mathrm{ppm}^{1}\right)$ or external $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left({ }^{11} \mathrm{~B} ;{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}\right)$. Abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sept $=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, n.o. $=$ not observed, n.r. $=$ not resolved.

Numbering schemes for symmetrically substituted (left) and unsymmetrically substituted (right) DBA cores are as follows:

The compounds 9,10-dibromo-DBA, ${ }^{2} \mathbf{1},{ }^{3} \mathbf{2},{ }^{4} \mathbf{3},{ }^{3} \mathbf{4},{ }^{6,7}{ }^{9},{ }^{5} \mathrm{Li}_{2}[\mathbf{1}],{ }^{4,8} \mathrm{Li}_{2}[\mathbf{2}],{ }^{4} \mathrm{~K}_{2}[\mathbf{1}],{ }^{4} \mathrm{Li}_{2}[\mathbf{4}],{ }^{7} \mathrm{Na}_{2}[\mathbf{4}],{ }^{7}$ $\mathrm{Li}_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right],{ }^{4} \mathrm{Li}_{2}\left[\mathbf{2}-\mathrm{H}_{2}\right],{ }^{4}$ and $\mathrm{K}_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right]^{4}$ were synthesized according to literature procedures.
Cyclic voltammetry (CV) measurements were performed in a glovebox at room temperature in a onechamber, three-electrode cell using an EG\&G Princeton Applied Research 263A potentiostat. A platinum disk electrode (2.00 mm diameter) was used as the working electrode with a platinum wire counter electrode and a silver wire reference electrode, which was coated with AgCl by immersion into $\mathrm{HCl} / \mathrm{HNO}_{3}$ (3:1). Prior to measurements, the solvent THF was dried with $\mathrm{Na}-\mathrm{K}$ alloy. $\left[n \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ was employed as the supporting electrolyte $\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)$. All potential values were referenced against the $\mathrm{FcH} / \mathrm{FcH}^{+}$redox couple ($\mathrm{FcH}=$ ferrocene; $E_{1 / 2}=0 \mathrm{~V}$). Scan rates were varied between 100 and $400 \mathrm{mV} \mathrm{s}^{-1}$.
High-resolution mass spectra were measured in positive mode using a Thermo Fisher Scientific MALDI LTQ Orbitrap XL and α-cyano-4-hydroxycinnamic acid or 4-chloro- α-cyanocinnamic acid as the matrix. Exact masses were calculated based on the predominant combination of natural isotopes.

1.1 Synthesis of the DBA derivatives

General procedure for the synthesis of symmetrically substituted DBA-derivatives:

The freshly prepared Grignard reagent aryl -MgBr or alkyl $-\mathrm{MgBr}\left(1.888 \mathrm{mmol}, 2.1\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ was added dropwise with stirring over 15 min to a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of 9,10 -dibromoDBA ($300 \mathrm{mg}, 0.899 \mathrm{mmol}, 1.0$ equiv) in toluene $(25 \mathrm{~mL})$. The reaction mixture was slowly allowed to warm to room temperature and stirred overnight. All volatiles were removed under reduced pressure, the residue was extracted with toluene $(3 \times 10 \mathrm{~mL})$ and the combined extracts were filtered over a glass frit (G4) covered with Celite (1 cm ; pre-dried at $120{ }^{\circ} \mathrm{C}$ for several days). After the removal of all volatiles in a dynamic vacuum, the symmetrically substituted DBA derivatives were obtained as pale yellow to ocher solids. See Table S1 for the obtained yields.

The ethyl derivative 5 was sufficiently volatile to grow X-ray quality crystals by sublimation $\left(110^{\circ} \mathrm{C} / 10^{-3} \mathrm{mbar}\right)$. X-ray quality crystals of $\mathbf{8}$ were obtained by gas-phase diffusion of n-hexane into its toluene solution.

Table S1. Overview of the DBA derivatives obtained via the described method. (*) Yield not determined because compound was not pure.

DBA derivative	reagent		yield	
		mL	mg	$\%$
$\mathbf{5}$	1-bromoethane	0.14	150	72
$\mathbf{6}$	2-bromopropane	0.18	-	$(*)$
$\mathbf{7}$	4-bromotoluene	0.22	246	77
$\mathbf{8}$	5-bromo- m-xylene	0.26	224	65

General procedure for DBA reduction with lithium granules:

In a glovebox, lithium granules $(10 \mathrm{mg}, 1.44 \mathrm{mmol})$ were added at room temperature to a stirred solution of the respective neutral DBA (1-5 and 7-9; 0.050 mmol) in THF- $d_{8}(0.5 \mathrm{~mL})$, whereupon the reaction mixture immediately adopted a red color. After 30 min , the solution was separated from residual lithium metal with a syringe and used without further treatment. NMR analysis revealed a quantitative conversion to the respective dianion in all cases.
X-ray quality crystals of $\left[\mathrm{Li}(\mathrm{thf})_{2}\right]_{2}[7]$ were grown by slow evaporation of its THF- d_{8} solution.

General procedure for DBA reduction with elemental sodium:

In a glovebox, sodium metal $(10 \mathrm{mg}, 0.435 \mathrm{mmol})$ was added at room temperature to a stirred solution of the respective neutral DBA (1, 2, 4, and 7; 0.050 mmol) in THF- $d_{8}(0.5 \mathrm{~mL})$, whereupon the reaction mixture immediately adopted a pink color and turned dark green within 30 min . After 60 min , the solution was separated from residual sodium metal with a syringe and used without further treatment. NMR analysis revealed a quantitative conversion to the respective dianion in all cases. X-ray quality crystals of $\left[\mathrm{Na}_{2}(\text { thf })_{3}\right][\mathbf{1}]$ were grown by slow evaporation of its THF- d_{8} solution.

General procedure for DBA reduction with KC_{8} :

In a glovebox, $\mathrm{KC}_{8}(27 \mathrm{mg}, 0.200 \mathrm{mmol})$ was added at room temperature to a stirred solution of the respective neutral DBA ($\mathbf{1}$ and $\mathbf{4 - 8} ; 0.050 \mathrm{mmol}$) in THF (1 mL), whereupon the reaction mixture immediately adopted a pink color and turned dark green within 30 min . After 60 min , the solution was separated from residual KC_{8} and graphite by filtration (G 4 glass frit), the solvent was removed from the filtrate under reduced pressure, and the residue dissolved in THF- d_{8}. NMR analysis showed exclusively the resonances of the respective dianion in all cases.

Red X-ray quality crystals of $\left[\mathrm{K}_{2}(\mathrm{thf})_{4}\right][\mathbf{1}]$ and $[\mathrm{K}(\mathrm{thf})]_{2}[7]$ were grown by slow evaporation of their THF solutions.

Note: The compound $\mathrm{K}_{2}[4]$ was previously prepared by Siebert et al., who observed a red color, both for the solid material and its THF solutions. However, they also mentioned broad and purely resolved NMR spectra containing more resonances than expected. ${ }^{9}$

General procedure for the measurement of $\mathbf{H}_{\mathbf{2}}$-addition kinetics:

H_{2} activation reactions were carried out in flame-sealed NMR tubes. The experimental setup was as follows: An NMR tube connected to a Schlenk line was charged with a THF- d_{8} solution $(0.5 \mathrm{~mL})$ of the respective doubly reduced 9,10-dihydro-9,10-diboraanthracene (approx. $0.050 \mathrm{mmol}[\mathbf{A}]^{2-}$; preparation as described above). The solution was frozen with liquid nitrogen, the system was evacuated, and then H_{2} (purity grade 5.0) was filled in through a condensation trap cooled with liquid nitrogen (to remove traces of $\mathrm{H}_{2} \mathrm{O}$). The content of the NMR tube was allowed to unfreeze whereby H_{2} dissolved in the THF- $d_{8}{ }^{10}$ During the entire process, the system remained connected to the H_{2} cylinder and a mercury bubbler to release the overpressure.
The mixture was frozen again, the partial pressure of H_{2} was adjusted such that it remained slightly below 1 atm , and the NMR tube was flame-sealed. CAUTION: Care must be taken not to generate a leak in the glass wall. However, given the small amount of H_{2} present in the NMR tube, we found that the hazard of an oxyhydrogen explosion was low even in the event of a leakage.
The sealed NMR samples were kept at either 50 or $100{ }^{\circ} \mathrm{C}\left(c f\right.$. Table S2) and the progress of the $\mathrm{H}_{2}-$ activation reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy in regular steps ($c f$. Figure 1). The spectra were recorded at ambient temperature, at which the activation reaction does not proceed further. ${ }^{4}$ The conversion rates of H_{2}-addition in dependence of the boron-bonded substituent and the counter cation are summarized in Table S2 and Figures 1 and 4.

Table S2. Time (in hours) required until the individual H_{2}-addition reactions reached a dynamic equilibrium or were completed (see also Figures 1 and 4).

$[\mathbf{A}]^{2-}$ derivative	$\mathrm{M}=\mathrm{Li}$ $T=100^{\circ} \mathrm{C}$	$\mathrm{M}=\mathrm{Na}$ $T=100^{\circ} \mathrm{C}$	$\mathrm{M}=\mathrm{Na}$ $T=50^{\circ} \mathrm{C}$	$\mathrm{M}=\mathrm{K}$ $T=50^{\circ} \mathrm{C}$
$[\mathbf{1}]^{2-}$	86	21	183	12
$[\mathbf{2}]^{-}$	48	93	-	-
$[4]^{-}$	264	14	76	3
$[5]^{-}$	480	-	-	8
$[7]^{-}$	640	21	129	13
$[\mathbf{8}]^{-2}$	480	-	-	11

X-ray quality crystals of $[\mathrm{Na}]\left[\mathrm{Na}(\mathrm{thf})_{2}(18-\mathrm{c}-6)\right]\left[\mathrm{Na}(\mathrm{thf})_{2}\right]_{2}(n$-hexane $)\left[7-\mathrm{H}_{2}\right]_{2},[\mathrm{~K}(18-\mathrm{c}-6)]_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right]$, and $[\mathrm{K}]_{2}[\mathrm{~K}(18-\mathrm{c}-6)]\left[\mathrm{K}(18-\mathrm{c}-6)(\text { thf })_{2}\right]\left[7-\mathrm{H}_{2}\right]_{2}$ were obtained by gas-phase diffusion of n-hexane into their THF- d_{8} /18-crown-6 (18-c-6) solutions.
X-ray quality crystals of $[\mathrm{K}][\mathrm{K}(\mathrm{thf})]_{3}\left[4-\mathrm{H}_{2}\right]_{2}$ were obtained by gas-phase diffusion of n-hexane into its THF- d_{8} solution.

1.2 Spectroscopic data for the DBA derivatives

NMR data in THF- \boldsymbol{d}_{8} for the neutral DBA derivatives:

5

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.88-7.86(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.33-7.31(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 1.54\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})\right.$ $\left.=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.69\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR ($\left.160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=40.3\left(h_{1 / 2}=500 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=151.4(\mathrm{BC}), 133.5(\mathrm{C}-\mathrm{a}), 129.0(\mathrm{C}-\mathrm{b}), 14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 10.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR data in $\mathrm{C}_{6} \mathrm{D}_{6}$ are in accordance with the literature. ${ }^{11}$
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=8.04-8.02\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.36-7.34\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 1.92\left(\mathrm{q},{ }^{3} J(\mathrm{H}, \mathrm{H})\right.$ $\left.=8.3 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.10\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

6

${ }^{1} \mathrm{H}$ NMR ($250.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=8.02-7.99\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.31-7.27\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.46$ (sept, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 12 \mathrm{H} ; \mathrm{CH}\left(\mathrm{C}_{3}\right)_{2}\right)$.

Note: The compound could not be purified. Further NMR data were therefore not recorded.

7

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.65-7.63(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.35\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H}\right.$; Tol-Ho), 7.25-7.23 (m, 4H; H-b), 7.13 (d, ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H}$; Tol-H-m), $2.34\left(\mathrm{~s}, 6 \mathrm{H}\right.$; Tol- $\left.\mathrm{CH}_{3}-p\right)$.
${ }^{11} \mathrm{~B}$ NMR ($160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=36.3\left(h_{1 / 2}=670 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=152.4(\mathrm{BC}), 145.4$ (Tol-C-i), 137.3 (C-a), 136.5 (Tol-C-p), 134.0 (Tol-C-o), 129.3 (C-b), 128.6 (Tol-C-m), $21.0\left(\mathrm{Tol}^{\left.-\mathrm{CH}_{3}-p\right) .}\right.$

8

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.64-7.62(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.25-7.23(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 7.07(\mathrm{~s}, 4 \mathrm{H}$; Xyl-H-o), 6.90 ($\mathrm{s}, 2 \mathrm{H}$; Xyl-H-p), 2.30 (s, 12H; Xyl-CH3-m).
${ }^{11} \mathrm{~B}$ NMR ($160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=38.1\left(h_{1 / 2}=830 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=151.7$ (BC), 148.3 (Xyl-C-i), 137.2 (C-a), 136.2 (Xyl-C-m), 131.0 (Xyl-C-o), 129.1 (C-b), 128.5 (Xyl-C-p), 21.6 ($\mathrm{Xyl}^{2}-\mathrm{CH}_{3}-m$).

NMR data in THF- $\boldsymbol{d}_{\mathbf{8}}$ for $\mathrm{Li}_{\mathbf{2}}[\mathrm{A}]$ salts:

$\mathbf{L i}_{2}$ [3]

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.45-8.43(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.10-7.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=18.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$; $\mathrm{CH}=\mathrm{CH}), 6.66-6.64(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 6.11-6.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=18.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}=\mathrm{CH}\right), 1.24\left(\mathrm{~s}, 18 \mathrm{H} ; \mathrm{CH}_{3}\right)$ ${ }^{11} \mathrm{~B}$ NMR ($160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=21.6\left(h_{1 / 2}=390 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- $\left.d_{8}\right): \delta=148.4(\mathrm{CH}=\mathrm{CH}), 136.4(\mathrm{C}-\mathrm{a}), 131.9(\mathrm{br} ; \mathrm{CH}=\mathrm{CH}), 118.4(\mathrm{C}-$ b), $34.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 30.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \text {; n.o. (BC). }}^{\text {. }}\right.$

$\mathbf{L i}_{2}[5]$

${ }^{1} \mathrm{H}$ NMR ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=8.29-8.27(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.67-6.65(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 1.98\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})\right.$ $\left.=7.9 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.32\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR ($\left.160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=25.7\left(h_{1 / 2}=420 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=135.3$ (C-a), 134.1 (BC), $117.8(\mathrm{C}-\mathrm{b}), 16.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

$\mathbf{L i}_{2}$ [7]

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.12-8.10(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.58\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$; Tol-H$o), 7.14\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$; Tol-H-m), 6.59-6.57(m, 4H; H-b), $2.40\left(\mathrm{~s}, 6 \mathrm{H}\right.$; Tol- $\left.\mathrm{CH}_{3}-p\right)$.
${ }^{11} \mathrm{~B}$ NMR ($\left.160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=26.8\left(h_{1 / 2}=570 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=149.8$ (Tol-C-i), 137.2 (Tol-C-o), 136.9 (C-a), 134.8 (BC), 132.7 (Tol-C-p), 128.3 (Tol-C-m), 118.8 (C-b), 21.1 ($\mathrm{Tol}^{\left.-\mathrm{CH}_{3}-p\right) .}$

Li_{2} [8]

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.10-8.08(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.30(\mathrm{~s}, 4 \mathrm{H} ;$ Xyl-H-o), 6.79 (s, 2H; Xyl-H-p), 6.58-6.56 (m, 4H; H-b), 2.35 ($\mathrm{s}, 12 \mathrm{H}$; Xyl- $\mathrm{CH}_{3}-m$).
${ }^{11} \mathrm{~B}$ NMR ($\left.160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=26.0\left(h_{1 / 2}=540 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=153.4$ (Xyl-C-i), 137.0 (C-a), 135.6 (Xyl-C-m), 135.2 (Xyl-C-o), 134.7 (BC), 125.9 (Xyl-C-p), 118.7 (C-b), $21.6\left(\mathrm{Xyl}^{\left.-\mathrm{CH}_{3}-m\right) .}\right.$

NMR data in THF- $\boldsymbol{d}_{\mathbf{8}}$ for $\mathbf{N a}_{2}[\mathrm{~A}]$ salts:

Na_{2} [1]

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (300.0 MHz, THF- d_{8}): $\delta=8.07-8.04(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.47-6.44(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 5.47$ (br, 2 H ; BH).
${ }^{11} \mathrm{~B}$ NMR (96.3 MHz, THF- $\left.d_{8}\right): \delta=20.3\left(h_{1 / 2}=510 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.4 MHz, THF- d_{8}): $\delta=143.0(\mathrm{BC}), 139.8$ (C-a), 115.9 (C-b).

$\mathrm{Na}_{2}[2]$

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.50-8.48(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.60-6.58(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 1.40(\mathrm{~s}, 18 \mathrm{H}$; CH_{3}).
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- $\left.d_{8}\right): \delta=16.6\left(h_{1 / 2}=410 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR (125.8 MHz, THF- d_{8}): $\delta=141.2$ (BC), 137.1 (C-a), 116.5 (C-b), 114.4 $\left(\mathrm{C} \equiv \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}\right), 95.8\left(\mathrm{C} \equiv \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

$\mathbf{N a}_{2}$ [7]

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.29-8.27(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$; Tol-H$o), 7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$; Tol-H-m $), 6.49-6.47(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 2.36(\mathrm{~s}, 6 \mathrm{H} ;$ Tol-CH3$-p)$.
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- d_{8}): $\delta=27.8\left(h_{1 / 2}=620 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=151.7$ (Tol-C-i), 137.4 (Tol-C-o), 136.6 (C-a), 136.2 (BC), 130.7 (Tol-C-p), 127.2 (Tol-C-m), 116.2 (C-b), $21.4\left(\mathrm{Tol}^{\left.-\mathrm{CH}_{3}-p\right) .}\right.$

NMR data in THF- $\boldsymbol{d}_{\mathbf{8}}$ for $\mathrm{K}_{\mathbf{2}}[\mathrm{A}]$ salts:

K_{2} [4]

${ }^{1} \mathrm{H}$ NMR (300.0 MHz, THF- d_{8}): $\delta=8.22-8.19(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.47-6.44(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 1.22(\mathrm{~s}, 6 \mathrm{H}$; CH_{3}).
${ }^{11} \mathrm{~B}$ NMR (96.3 MHz, THF- d_{8}): $\delta=23.6\left(h_{1 / 2}=550 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.4 MHz, THF- d_{8}): $\delta=139.2(\mathrm{BC}), 135.1(\mathrm{C}-\mathrm{a}), 113.9(\mathrm{C}-\mathrm{b}),-0.1\left(\mathrm{CH}_{3}\right)$.

K_{2} [5]

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.28-8.26(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.47-6.45(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 1.96\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})\right.$ $\left.=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.22\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- d_{8}): $\delta=27.0\left(h_{1 / 2}=450 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=138.8(\mathrm{BC}), 135.2(\mathrm{C}-\mathrm{a}), 114.6(\mathrm{C}-\mathrm{b}), 16.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 9.5$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

$\mathbf{K}_{2}[7]$

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.20-8.18(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$; Tol-Ho), $7.04\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$; Tol-H-m), 6.43-6.41(m, 4H; H-b), $2.35\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{Tol}^{2}-\mathrm{CH}_{3}-p\right)$.
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- $\left.d_{8}\right): \delta=27.7\left(h_{1 / 2}=400 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=153.3$ (Tol-C-i), 139.0 (BC), 137.4 (Tol-C-o), 136.5 (C-a), 130.8 (Tol-C-p), 127.6 (Tol-C-m), 115.8 (C-b), $21.2\left(\mathrm{Tol}^{2} \mathrm{CH}_{3}-p\right.$).

K_{2} [8]

${ }^{1} \mathrm{H}$ NMR (400.1 MHz, THF- d_{8}): $\delta=8.19-8.17$ (m, 4H; H-a), 7.30 (s, 4H; Xyl-H-o), 6.66 (s, 2H; Xyl-H-p), 6.43-6.40 (m, 4H; H-b), 2.32 (s, 12H; Xyl-CH3-m).
${ }^{11} \mathrm{~B}$ NMR (128.4 MHz, THF- d_{8}): $\delta=28.8\left(h_{1 / 2}=630 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.6 MHz, THF- d_{8}): $\delta=156.2^{*}$ (Xyl-C-i), 138.5* (BC), 136.2 (C-a), 135.0 (Xyl-C$o), 134.2$ (Xyl-C-m), 124.0 (Xyl-C-p), 115.4 (C-b), $22.0\left(\mathrm{Xyl}^{(\mathrm{CH}} \mathrm{CH}_{3}-m\right) . *$ detectable only in the ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HMBC spectrum

NMR data in THF- $\boldsymbol{d}_{\mathbf{8}}$ for $\mathrm{Li}_{\mathbf{2}}\left[\mathrm{A}-\mathrm{H}_{\mathbf{2}}\right]$ salts:

$\mathrm{Li}_{2}\left[4-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}$ NMR (300.0 MHz, THF- d_{8}): $\delta=7.36-7.33$ (m, 4H; H-a), 6.64-6.61 (m, 4H; H-b), 1.74 (n.r., 2H; $\mathrm{BH}), 0.21\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR (96.3 MHz, THF- $\left.d_{8}\right): \delta=-20.0\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=59.1 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- $\left.d_{8}\right): \delta=164.6(\mathrm{BC}), 130.0(\mathrm{C}-\mathrm{a}), 121.4(\mathrm{C}-\mathrm{b}), 5.1\left(\mathrm{CH}_{3}\right)$.

$\mathbf{L i}_{2}\left[5-\mathbf{H}_{2}\right]$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (300.0 MHz, THF- d_{8}): $\delta=7.39-7.36(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.63-6.60(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 1.61$ (s, $2 \mathrm{H} ; \mathrm{BH}), 1.04-0.94\left(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR (96.3 MHz, THF- $\left.d_{8}\right): \delta=-17.9\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=57.1 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.4 MHz, THF- $\left.d_{8}\right): \delta=163.9^{*}(\mathrm{BC}), 130.8(\mathrm{C}-\mathrm{a}), 121.5(\mathrm{C}-\mathrm{b}), 14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
$11.7^{* *}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. *detectable only in the ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HMBC spectrum, ${ }^{* *}$ detectable only in the ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HSQC spectrum

$\mathbf{L i}_{2}\left[7-\mathbf{H}_{2}\right]$

${ }^{1} \mathrm{H}$ NMR (400.1 MHz, THF- d_{8}): $\delta=7.33\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 4 \mathrm{H}\right.$; Tol-H-o), 6.87-6.84 (m, 8 H ; Tol-H-m, H-a), 6.46-6.44 (m, 4H; H-b), 2.61 (n.r., 2H; BH), 2.28 (s, 6H; Tol-CH3-p).
${ }^{11} \mathrm{~B}$ NMR (128.4 MHz, THF- $\left.d_{8}\right): \delta=-9.9\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=60.1 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.6 MHz, THF- d_{8}): $\delta=138.3$ (Tol-C-o), 133.3 (C-a), 130.1 (Tol-C-p), 127.2 (Tol-$\mathrm{C}-m), 121.7$ (C-b), $21.2\left(\mathrm{Tol}^{\left.-\mathrm{CH}_{3}-p\right) ; ~ n . o . ~(B C, ~ T o l-C-i) . ~}\right.$

$\mathbf{L i}_{2}\left[8-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.08(\mathrm{~s}, 4 \mathrm{H} ; \mathrm{Xyl}-\mathrm{H}-o), 6.88-6.86(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.52(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{Xyl}-$ H-p), 6.46-6.44 (m, 4H; H-b), 2.61 (n.r., 2H; BH), 2.21 (s, 12H; Xyl-CH3-m).
${ }^{11} \mathrm{~B}$ NMR ($\left.160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=-12.3\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=58.8 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=165.8$ (Xyl-C-i), 162.6 (BC), 136.4 (Xyl-C-o), 133.8 (Xyl-C-m), 133.6 (C-a), 124.1 (Xyl-C-p), 121.6 (C-b), $21.7\left(\mathrm{Xyl}^{2} \mathrm{CH}_{3}-m\right)$.

NMR data in THF- d_{8} for $\mathrm{Na}_{2}\left[\mathrm{~A}-\mathrm{H}_{2}\right]$ salts:

A color code is used in order to distinguish the NMR resonances of the cis (red) and trans (blue) stereoisomers of the respective H_{2} addition product. A black color is used if cis/trans-signals are overlapping.

$\mathrm{Na}_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.35$ (n.r., $\left.4 \mathrm{H} ; \mathrm{H}-\mathrm{a}\right), 6.68-6.66(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 2.5\left(\mathrm{q},{ }^{1} J(\mathrm{~B}, \mathrm{H})=\right.$ $77.3 \mathrm{~Hz}, 4 \mathrm{H}$; BH).
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- $\left.d_{8}\right): \delta=-19.8\left(\mathrm{t},{ }^{1} J(\mathrm{~B}, \mathrm{H})=77.3 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=161.5(\mathrm{BC}), 135.1(\mathrm{C}-\mathrm{a}), 122.6$ (C-b).

$\mathrm{Na}_{2}\left[\mathbf{2}-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.82-7.80(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.79-6.77(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 2.17\left(\mathrm{q},{ }^{1} \mathrm{~J}(\mathrm{~B}, \mathrm{H})\right.$ $=72.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{BH}), 1.33\left(\mathrm{~s}, 18 \mathrm{H} ; \mathrm{CH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR (96.3 MHz, THF- $\left.d_{8}\right): \delta=-23.6\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=72.4 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- $\left.d_{8}\right): \delta=159.9(\mathrm{BC}), 131.1(\mathrm{C}-\mathrm{a}), 122.6(\mathrm{C}-\mathrm{b}), 33.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.9$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right) ;$ n.o. $C \equiv C$.

$\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.49-7.47$ (m, 4H; H-a), 7.45-7.43 (m, 4H; H-a), 6.78-6.75 (m, 4H; H-b/4H; H-b), 2.52 (br, 2H; BH), 1.91 (br, 2H; B), 0.24 (br, 6H; CH3 $), 0.05\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right)$. ${ }^{11}$ B NMR ($\left.160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=-18.5\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=70.8 \mathrm{~Hz}\right),-19.8\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=69.0 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=165.6$ (BC), 163.0* (BC), 135.1 (C-a), 130.9 (C-a), 123.2 (C-b), 122.7 (C-b), $11.5\left(\mathrm{CH}_{3}\right), 4.8\left(\mathrm{CH}_{3}\right)$. *detectable only in the ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H} \mathrm{HMBC}$ spectrum Note: The cis:trans integral ratio was approx. 4:1.

$\mathrm{Na}_{2}\left[7-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.36-7.35(\mathrm{~m}, 4 \mathrm{H} ;$ Tol-H-o), 7.31-7.29 (m, 4H; H-a), 7.23-7.21 (m, 4H; Tol-H-o), 7.03-7.01 (m, 4H; H-a), 6.94-6.93 (m, 4H; Tol-H-m), 6.80-6.78 (m, 4H; Tol-H-m), 6.75-6.73 (m, 4H; H-b), 6.61-6.59 (m, 4H; H-b), 3.09 (s, 1.5H; BH), 2.69 ($\mathrm{s}, 2 \mathrm{H} ; \mathrm{BH}$), 2.30 ($\mathrm{s}, 6 \mathrm{H}$; Tol- $\mathrm{CH}_{3}-p$), 2.19 ($\mathrm{s}, 4.5 \mathrm{H}$; Tol- $\mathrm{CH}_{3}-p$).
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- $\left.d_{8}\right): \delta=-11.2\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=67.4 \mathrm{~Hz}\right),-11.6\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=69.1 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=164.4$ (BC), 162.9 (BC), 161.4 (Tol-C-i), 138.0 (Tol-C-o), 136.2 (Tol-C-o), 135.2 (C-a), 133.2 (C-a), 131.0 (Tol-C-p), 130.8 (Tol-C-p), 127.8 (Tol-C-m), 123.2 (C-b), 122.2 (C-b), $21.1\left(\mathrm{Tol}-\mathrm{CH}_{3}-p\right), 20.9\left(\mathrm{Tol}-\mathrm{CH}_{3}-p\right)$.

Note: The cis:trans integral ratio was approx. 4:3.

NMR data in THF- d_{8} for $\mathrm{Na}_{2}\left[\mathrm{~A}-\mathrm{H}_{2}\right]$ salts:

A color code is used in order to distinguish the NMR resonances of the cis (red) and trans (blue) stereoisomers of the respective H_{2} addition product. A black color is used if cis/trans-signals are overlapping.

$\mathrm{K}_{2}\left[4-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.39-7.38(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.35-7.33$ (m, 4H; H-a), 6.72-6.68 (m, 4H; H-b/4H; H-b), 2.57 (s, 2H; BH), $1.88(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{BH}), 0.12\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right), 0.02\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR ($\left.160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=-16.4\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=71.3 \mathrm{~Hz}\right),-17.9\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=69.0 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=167.0(\mathrm{BC}), 165.1$ (BC), 133.8 (C-a), 129.8 (C-a), 122.3 (Cb), $122.2(\mathrm{C}-\mathrm{b}), 10.2\left(\mathrm{CH}_{3}\right), 4.8\left(\mathrm{CH}_{3}\right)$.

Note: The cis:trans integral ratio was approx. 8:1.

$\mathrm{K}_{2}\left[\mathbf{5}-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.41-7.38(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a} / 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.74-6.72(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b})$, 6.71-6.69 (m, 4H; H-b), 2.32 (br, 2H; BH), 1.82 (br, 2H; B), $1.05\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 0.92-0.85 (m, 4H; $\mathrm{CH}_{2} \mathrm{CH}_{3} / 6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.60-0.54\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR $\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=-12.7\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=71.1 \mathrm{~Hz}\right),-14.5\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=66.7 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=167.5$ (BC), 133.1 (C-a), 130.8 (C-a), 122.4 (C-b), 122.3 (Cb), $16.9 *\left(\mathrm{CH}_{2} \mathrm{CH}\right), 14.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 12.8 *\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; n.o. (BC). *detectable only in the ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HSQC spectrum
Note: The cis:trans integral ratio was approx. 2:1.

$\mathrm{K}_{2}\left[7-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.37-7.35(\mathrm{~m}, 4 \mathrm{H}$; Tol-H-o), 7.25-7.24 (m, 4H; H-a), 7.23-7.21 (m, 4H; Tol-H-o), 7.10-7.08 (m, 4H; H-a), 6.91-6.89 (m, 4H; Tol-H-m), 6.78-6.76 (m, 4H; Tol-H-m), 6.70-6.68 (m, 4H; H-b), 6.61-6.59 (m, 4H; H-b), 3.22 (br, 2H; BH), 3.00 (br, 2H; BH), 2.26 ($\mathrm{s}, 6 \mathrm{H}$; Tol- $\mathrm{CH}_{3}-p$), 2.18 ($\mathrm{s}, 6 \mathrm{H}$; Tol- $\mathrm{CH}_{3}-p$).
${ }^{11} \mathrm{~B}$ NMR $\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=-11.5\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=81.2 \mathrm{~Hz}\right),-12.0\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=77.9 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=162.8^{*}(\mathrm{Ph}-\mathrm{C}-i), 162.6^{*}(\mathrm{Ph}-\mathrm{C}-i), 165.9^{*}(\mathrm{BC}), 165.2^{*}$ (BC), 137.5 (Tol-C-o), 136.7 (Tol-C-o), 134.1 (C-a), 133.6 (C-a), 130.7 (Tol-C-p), 130.4 (Tol-C-p), 127.9 (Tol-C-m), 127.6 (Tol-C-m), 122.8 (C-b), 122.5 (C-b), $21.1\left(\mathrm{Tol}^{\left.-\mathrm{CH}_{3}-p\right), 20.9\left(\mathrm{Tol}^{2} \mathrm{CH}_{3}-p\right) . ~}\right.$ *detectable only in the ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HMBC spectrum
Note: The cis:trans integral ratio was approx. 2:1.

$\mathrm{K}_{2}\left[8-\mathrm{H}_{2}\right]$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.26-7.25(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.18-7.16(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 7.10(\mathrm{~s}$, 4H; Xyl-H-o), 6.97 (s, 4H; Xyl-H-o), 6.71-6.69 (m, 4H; H-b), 6.65-6.63 (m, 4H; H-b), 6.51 (s, 2H; Xyl-H-p), 6.44 (s, 2H; Xyl-H-p), 3.20 (br, 2H; BH), 3.01 (br, 2H; BH), 2.19 (s, 12H; Xyl-CH ${ }_{3}-m$), 2.13 (s, 12H; Xyl-CH3-m).
${ }^{11} \mathrm{~B}$ NMR ($\left.160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=-10.1\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=73.2 \mathrm{~Hz}\right),-10.6\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=68.9 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=165.6^{*}(\mathrm{Xyl}-\mathrm{C}-i), 165.3^{*}(\mathrm{BC}), 164.8^{*}(\mathrm{BC}), 135.0$ (Xyl-C$o), 134.4$ (Xyl-C-o), 134.3 (Xyl-C-m), 133.7 (C-a), 133.3 (C-a), 124.1 (Xyl-C-p), 123.9 (Xyl-C-p), 122.4 (C-b), 122.2 (C-b), $21.9\left(\mathrm{Xyl}-\mathrm{CH}_{3}-m\right), 21.8\left(\mathrm{Xyl}^{-}-\mathrm{CH}_{3}-m\right)$. *detectable only in the ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H} \mathrm{HMBC}$ spectrum
Note: The cis:trans integral ratio was approx. 1:1.

2. Additional data regarding the isomerization of DBA derivatives of the type $\mathbf{M}_{2}\left[A-H_{2}\right]$

In line with the ${ }^{1} \mathrm{H}$ NMR spectra (Figure 6) of $\mathrm{K}_{2}\left[4-\mathrm{H}_{2}\right]$ and $\mathrm{K}_{2}\left[7-\mathrm{H}_{2}\right]$, the ${ }^{11} \mathrm{~B}$ NMR spectra in Figure S1 show different ratios of the respective cis $(\mathbf{\bullet})$ and $\operatorname{trans}(\mathbf{\Delta})$ isomers.

Figure S1. Comparison of the ${ }^{11} \mathrm{~B}$ NMR (blue) and ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (red) spectra (160.5 MHz , THF- d_{8}) of $\mathrm{K}_{2}\left[\mathbf{4}-\mathrm{H}_{2}\right]$ (left) and $\mathrm{K}_{2}\left[7-\mathrm{H}_{2}\right]$ (right); resonances of the cis $(\mathbf{\bullet})$ and the trans isomer ($\left.\mathbf{\Delta}\right)$.

During H_{2} activation experiments, the appearance of two compounds (cis and trans isomer of M_{2} [AH_{2}]; $\mathrm{M}=\mathrm{Na}, \mathrm{K}$; only exception: $\mathrm{R}=\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}$) was observed. According to the postulated concerted mechanism of the H_{2} addition, H_{2} approaches the DBA core from one side so that initially the cis isomer is formed. ${ }^{4}$ At the elevated temperatures applied, a subsequent isomerization takes place and the trans isomer is generated. In the case of $\mathrm{Na}_{2}\left[7-\mathrm{H}_{2}\right]$, we succeeded in the selective crystallization of cis-[Na$]\left[\mathrm{Na}(\mathrm{thf})_{2}(18-\mathrm{c}-6)\right]\left[\mathrm{Na}(\mathrm{thf})_{2}\right]_{2}\left(n\right.$-hexane) $\left[7-\mathrm{H}_{2}\right]_{2}$ (confirmed by X-ray analysis). NMR spectra recorded on these single crystals allowed us to unequivocally confirm the chemical shift values of the cis isomer (Figure S2a). With time, also this sample showed the slow formation of a second species the trans isomer - even at room temperature (Figure S2b). The isomerization is accelerated at elevated temperatures (Figure S2c).

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra (THF- d_{8}) of re-dissolved single crystals of cis-[Na$]\left[\mathrm{Na}(\mathrm{thf})_{2}(18-\mathrm{c}-\right.$ $6)]\left[\mathrm{Na}(\mathrm{thf})_{2}\right]_{2}\left(n\right.$-hexane) $\left[7-\mathrm{H}_{2}\right]_{2}$: a) spectrum recorded immediately after sample preparation (300.0 MHz), b) spectrum recorded after storage of the sample at room temperature for 2 d (250.1 MHz ; resonances of the trans isomer start to appear), c) spectrum recorded after storage of the sample at $50^{\circ} \mathrm{C}$ for $3 \mathrm{~h}(250.1 \mathrm{MHz}$; the amount of the trans isomer has almost doubled. Note: after storage of the NMR tube at room temperature for several months, the amount of cis isomer increased again at the expense of the trans isomer. This points toward a temperature-dependent dynamic isomerization equilibrium).

In order to further proof the existence of cis/trans isomers, $\mathrm{K}_{2}\left[7-\mathrm{H}_{2}\right]$ was also synthesized via a nonconcerted route by using a 1 M THF solution of $\mathrm{K}\left[\mathrm{HBEt}_{3}\right]$ instead of $\mathrm{H}_{2} . \mathrm{K}\left[\mathrm{HBEt}_{3}\right]$ readily reacts with $7(0.050 \mathrm{mmol})$ in a $2: 1$ stoichiometry (THF- $\left.d_{8}, 0.5 \mathrm{~mL}\right)$. In Figure S3, the ${ }^{1} \mathrm{H}$ NMR spectra of both reaction mixtures are shown for comparison. In each case, two isomers are formed. However, the cis/trans ratios differ significantly depending on the hydride source, which is in line with the assumption of a concerted $v s$. non-concerted mechanism.

Figure S3. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixtures of K_{2} [7] with H_{2} (top: 500.2 $\mathrm{MHz}, \mathrm{THF}-d_{8}$) and 7 with $\mathrm{K}\left[\mathrm{HBEt}_{3}\right]$ (bottom: 400.1 MHz , THF- d_{8}).

3. Hydrogenation reactions using $[\mathrm{A}]^{2-}$ derivatives

3.1 General procedures and characterization data

General procedure for the hydrogenation of $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$ with $37 \mathrm{~mol} \%$ of the respective $\mathbf{M}_{2}[A]$ in an NMR tube:
Neat, dry N-benzylidene-tert-butylamine ($10 \mu \mathrm{~L}, 9.1 \mathrm{mg}, 56.2 \mu \mathrm{~mol}$) was added to the respective freshly reduced $\mathrm{M}_{2}[\mathbf{A}]$ derivative $(20.8 \mu \mathrm{~mol})$ in THF- $d_{8}(0.5 \mathrm{~mL})$ and the solution was transferred to an NMR tube. After the addition of H_{2} following the procedure described in 1.1, the NMR tube was flame-sealed, and warmed to $100{ }^{\circ} \mathrm{C}$. The progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The percent conversion to the hydrogenation product after 16 h is summarized in Table 1.
${ }^{1} \mathrm{H}$ NMR (300.0 MHz, THF- d_{8}): $\delta=7.35-7.32\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.25-7.20\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.16-7.11$ $\left(\mathrm{m}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.72\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.14\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{CH}_{3}\right)$; n.o. (NH).
The NMR data are in accordance with those of a commercial sample of the amine $\mathrm{Ph}(\mathrm{H})_{2} \mathrm{C}-\mathrm{N}(\mathrm{H}) t \mathrm{Bu}$ measured in THF- d_{8}, except for the doublet multiplicity of the CH_{2} resonance. Given that an independently prepared mixture of $\mathrm{Li}_{2}[4]$ and the commercial amine showed the same effect, the doublet for the CH_{2} protons likely results from Li^{+}coordination (this was also observed for the corresponding Na^{+}salt).

Hydrogenation of $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$ with $10 \mathrm{~mol} \%$ of Li_{2} [4] in a steel autoclave:

In a glovebox, the glass inlet of a steel autoclave ($100 \mathrm{~mL} / 100$ bar steel autoclave from Roth, model I) was charged with a solution of freshly prepared $\mathrm{Li}_{2}[4](0.124 \mathrm{mmol})$ in THF (10 mL). Neat, dry N -benzylidene-tert-butylamine ($200 \mathrm{mg}, 1.24 \mathrm{mmol}$) was added, the autoclave was closed inside the glovebox, and an H_{2} pressure of approx. 7 bar was applied under inert conditions outside the glovebox. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 18 h , the cooled autoclave was opened under ambient atmosphere, and the conversion to $\mathrm{Ph}(\mathrm{H})_{2} \mathrm{C}-\mathrm{N}(\mathrm{H}) t \mathrm{Bu}$ determined to be quantitative by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The amine was isolated after aqueous work-up: THF was removed under reduced pressure, the residue extracted with $\mathrm{Et}_{2} \mathrm{O}$, the extract washed with NaOH solution $(0.1 \mathrm{M})$, and dried over MgSO_{4}. After evaporation of all volatiles in vacuo, a colorless oil of $\mathrm{Ph}(\mathrm{H})_{2} \mathrm{C}-\mathrm{N}(\mathrm{H}) t \mathrm{Bu}$ remained. Yield: $153 \mathrm{mg}, 0.94 \mathrm{mmol}, 76 \%$.
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=7.38-7.37\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.23-7.20\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.14-7.11(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}$), 3.59 (s, 2H; CH_{2}), 1.01 (s, 9H; CH_{3}); n.o. (NH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=142.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 126.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 50.4$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 47.4\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
The NMR data in $\mathrm{C}_{6} \mathrm{D}_{6}$ are in accordance with the literature. ${ }^{12}$
HRMS: 164.14355 (found); 164.14338 (calc. as $\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{1}+\mathrm{H}\right]^{+}$).

General procedure for hydrogenation reactions using $37 \mathbf{m o l} \%$ of Li_{2} [4] in an NMR tube:

The respective substrate ($53.0 \mu \mathrm{~mol}$) was added to freshly prepared $\mathrm{Li}_{2}[4](19.6 \mu \mathrm{~mol})$ in THF- d_{8} $(0.5 \mathrm{~mL})$ and the resulting mixture was transferred to an NMR tube. After the addition of H_{2} following the procedure described in 1.1, the NMR tube was flame-sealed and kept at $100{ }^{\circ} \mathrm{C}$. The progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

1,1-Diphenylethylene \rightarrow 1,1-diphenylethane

1,1-Diphenylethylene ($9.6 \mathrm{mg}, 9.4 \mu \mathrm{~L}$) was quantitatively hydrogenated after 35 h .
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- $\left.d_{8}\right): \delta=7.24-7.10\left(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.14\left(\mathrm{q},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right)$, $1.61\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- $\left.d_{8}\right): \delta=147.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 129.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 126.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $45.4(\mathrm{CH}), 21.7\left(\mathrm{CH}_{3}\right)$.

HRMS: 221.08007 (found); 221.07271 (calc. as $\left[\mathrm{C}_{14} \mathrm{H}_{14}+\mathrm{K}\right]^{+}$).

Anthracene \rightarrow 9,10-dihydroanthracene

Anthracene (9.4 mg) was quantitatively hydrogenated after 35 h . Note: A solvent mixture of THF- d_{8} $(0.5 \mathrm{~mL})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.1 \mathrm{~mL})$ was used in order to improve the solubility of anthracene.
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- $d_{8} / \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.24-7.22(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}), 7.14-7.12(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}), 3.85(\mathrm{~s}$, $4 \mathrm{H} ; \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125.8 \mathrm{MHz}, \mathrm{THF}-d_{8} / \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=137.9(\mathrm{C}), 128.2(\mathrm{CH}), 126.9(\mathrm{CH}), 36.3\left(\mathrm{CH}_{2}\right)$.
HRMS: 180.08830 (found); 180.09335 (calc. as $\mathrm{C}_{14} \mathrm{H}_{12}$).

The following substrates showed no reaction with $\mathrm{Li}_{2}[4] / \mathrm{H}_{2}$: 1-(1-piperidinyl)cyclohexene, 2,3-dimethyl-2-butene, cyclohexene, phenanthrene, naphthalene, 2-butyne, and bis-(trimethylsilyl)acetylene.

3.2 Additional experimental data regarding the hydrogenation reactions

[4+2]-Cycloaddition reaction between $\mathbf{P h}(\mathbf{H}) \mathbf{C}=\mathbf{N} t \mathbf{B u}$ and $\mathbf{L i}_{2}$ [4]: In order to investigate the interaction between $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$ and $\mathrm{Li}_{2}[4]$, a ${ }^{1} \mathrm{H}$ NMR temperature study was undertaken using an approx. equimolar mixture of both substrates in THF- $d_{8}(0.5 \mathrm{~mL})$. Figure S 4 a shows that the [4+2]cycloaddition product $\mathrm{Li}[\mathbf{1 0}]$ forms to some extent already within 0.5 h at room temperature. After 2 d at room temperature, the conversion was almost complete as evidenced by NMR spectroscopy (Figure S 4 b) and a color change of the solution from deep red to pale red. A temperature rise, however, promotes the retro-Diels-Alder reaction and shifts the dynamic cycloaddition equilibrium back toward the starting materials (Figure S4c); in agreement with that the red color became more intense again.

Figure S4. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra (250.1 MHz , THF- d_{8}) of the same sample of $\mathrm{Li}_{2}[4]$ a) 0.5 h after the addition of the imine $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}, \mathrm{b}) 2 \mathrm{~d}$ after the addition of the imine $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$, and c) after 20 h at $50^{\circ} \mathrm{C}$ (the spectrum was recorded immediately after the sample had been cooled to room temperature).

$\mathbf{L i}_{2}[10]$

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.27-7.25\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.12-7.10\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.87-6.86$ $\left(\mathrm{m}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.70-6.64\left(\mathrm{~m}, 3 \mathrm{H} ; 1 \times \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.2 \times \mathrm{Ph}\right), 6.65-6.61\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.54-6.49(\mathrm{~m}, 3 \mathrm{H}$; $1 \times \mathrm{Ph}$ and $\left.2 \times \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.00$ (very br, $2 \mathrm{H} ; \mathrm{Ph}$), $2.71(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{CH}), 0.80\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.63(\mathrm{~s}, 3 \mathrm{H}$; $\left.\mathrm{NBCH}_{3}\right),-0.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CBCH}_{3}\right)$.
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- d_{8}): $\delta=-10.5$ (br; BN), -15.0 (s; BC).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=176.5$ (very br; CBC), 171.3 (very br; CBC), 164.5 (br; NBC), $164.1(\mathrm{Ph}-i), 163.7(\mathrm{br} ; \mathrm{NBC}), 130.0\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 126.4(2 \times \mathrm{Ph}), 126.3\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 125.6\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 124.2$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 123.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 120.7,120.6,120.4\left(1 \times \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.2 \times \mathrm{C}_{6} \mathrm{H}_{4}\right), 120.1(\mathrm{Ph}), 69.8($ n.r.; CH), 58.9

Note: Resonances marked with a blue/red color belong to the same $\mathrm{C}_{6} \mathrm{H}_{4}$ spin system.

The attempt to grow single crystals of the addition product $\mathrm{Li}_{2}[\mathbf{1 0}]$ from THF in the presence of 12-crown-4 resulted in the crystallization of the N-protonated salt $\left[\mathrm{Li}(12-\mathrm{c}-4)_{2}\right] \mathrm{H}[\mathbf{1 0}](\mathrm{THF})$. The origin of the proton is not clear. We speculate that Li^{+}coordination by the crown ether drastically increases the basicity of the tricyclic amine; the crown ether might also have contained traces of water as proton source.

[Li(12-c-4) $\left.\mathbf{2}_{2}\right] \mathbf{H}[10](\mathbf{T H F})$

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.39-7.38\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.33-7.30\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.91(\mathrm{br}, 1 \mathrm{H}$; $\mathrm{Ph}), 6.82-6.81\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$), 6.79-6.76\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.73-6.72\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.70-6.67$ (m, 2H; $\mathrm{C}_{6} \mathrm{H}_{4}$ and Ph), $6.63(\mathrm{br}, 1 \mathrm{H} ; \mathrm{Ph}), 5.21(\mathrm{br}, 1 \mathrm{H} ; \mathrm{Ph}), 2.86\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.00 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right), 2.73$ $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.00 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NBCH}_{3}\right),-0.29\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CBCH}_{3}\right)$. ${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- d_{8}): $\delta=-2.0(\mathrm{br}, \mathrm{BN}),-14.7$ ($\left.\mathrm{s}, \mathrm{BC}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=170.5$ (very br; CBC), 167.7 (very br; CBC), 160.5 (br; NBC), 159.0 (br; NBC), 153.3 ($\mathrm{Ph}-i), 129.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 128.7$ (br; Ph), $128.1\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 127.2$ (br; Ph), 126.5 $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$), 126.4\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 123.3\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 123.1\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 122.3(2 \times \mathrm{Ph}), 121.6\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 121.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, $68.0(\mathrm{CH}), 61.5\left(\mathrm{C}_{\left.\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 30.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.6\left(\mathrm{br} ; \mathrm{NBCH}_{3}\right), 2.4 \text { (very br; } \mathrm{CBCH}_{3}\right) \text {. } . ~ . ~ . ~}^{\text {. }}\right.$

[4+2]-Cycloaddition products of other substrates

The imine $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$ is not the only substrate that undergoes a formal [4+2] cycloaddtion with $\mathrm{Li}_{2}[4]$.

1,1'-Diphenylethylene and Li_{2} [4]

Neat 1,1 '-diphenylethylene ($13 \mu \mathrm{~L}, 13 \mathrm{mg}, 74 \mu \mathrm{~mol}$) was added at room temperature to $\mathrm{Li}_{2}[4]$, freshly prepared from $4(15 \mathrm{mg}, 74 \mu \mathrm{~mol})$ and excess lithium granules, in THF- $d_{8}(0.5 \mathrm{~mL}$; see 1.1$)$. The mixture was transferred to an NMR tube and the tube was flame-sealed. NMR spectroscopy revealed the immediate and quantitative consumption of the starting materials and the selective formation of a cycloadduct.

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF-d $)_{8}$: $\delta=7.30$ (n.r., $2 \mathrm{H} ; \mathrm{H}-\mathrm{d}$), $7.14-7.13(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.75-6.73(\mathrm{~m}, 4 \mathrm{H}$; Ph-H-o), 6.61-6.58 (m, 2H; H-c), 6.53-6.50 (m, 6H; Ph-H-m and H-b), 6.38-6.35 (m, 2H; Ph-H-p), 0.81-0.80 (n.r., $2 \mathrm{H} ; \mathrm{CH}_{2}$), $0.19\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CBCH}_{3}\right), 0.18$ (n.r., $3 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{BCH}_{3}$).
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- d_{8}): $\delta=-11.7(\mathrm{~s} ; \mathrm{BC}),-15.4\left(\mathrm{~s} ; \mathrm{BCH}_{2}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=171.7\left(\mathrm{q},{ }^{1} J(\mathrm{~B}, \mathrm{C})=44 \mathrm{~Hz} ; \mathrm{C}-\mathrm{e}\right), 169.5$ (n.r.; C-f), $165.0(\mathrm{Ph}-$ C-i), 131.6 (Ph-C-o), 129.7 (C-a), 126.8 (C-d), 124.6 (Ph-C-m), 120.9 (C-b), 120.8 (C-c), 118.9 (Ph-Cp), $51.5\left(\mathrm{q},{ }^{1} J(\mathrm{~B}, \mathrm{C})=37 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 4.6\left(\mathrm{q},{ }^{1} J(\mathrm{~B}, \mathrm{C})=45 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{BCH}_{3}\right), 2.1$ (n.r.; CBCH_{3}); n.o. $\left(\mathrm{CPh}_{2}\right)$.

Ethylene and $\mathbf{L i}_{2}[4]$

$\mathrm{Li}_{2}[11]$
An NMR tube, charged with a solution of freshly prepared $\mathrm{Li}_{2}[4](74 \mu \mathrm{~mol})$ in THF- $d_{8}(0.5 \mathrm{~mL}$; see 1.1), was connected to a Schlenk line. The solution was frozen with liquid nitrogen, the system evacuated, and ethylene (1 atm ; quality grade $>99.95 \% \mathrm{GC}$) was filled in. The content of the NMR tube was allowed to warm to room temperature and the excess pressure released through a Hg bubbler. After 10 min , the reaction mixture was frozen again, the NMR tube was evacuated and flame-sealed. After storage of the sample at room temperature for 3 h , NMR spectroscopy revealed the immediate and quantitative consumption of $\mathrm{Li}_{2}[\mathbf{4}]$ and the selective formation of the cycloadduct $\mathrm{Li}_{2}[\mathbf{1 1}]$. X-ray-
quality crystals of $[\operatorname{Li}(12-c-4)(\operatorname{thf})][\operatorname{Li}(12-c-4)][11]$ were obtained by gas-phase diffusion of n-hexane into a THF/12-crown-4 solution of $\mathrm{Li}_{2}[\mathbf{1 1}]$.
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.28$ (n.r., $\left.4 \mathrm{H} ; \mathrm{H}-\mathrm{a}\right), 6.60-6.59(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{b}), 0.15$ (n.r., 6 H ; BCH_{3}), -0.30 (n.r., $4 \mathrm{H} ; \mathrm{CH}_{2}$).
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- d_{8}): $\delta=-15.2$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=170.8-169.6(\mathrm{~m} ; \mathrm{BC}), 127.2(\mathrm{C}-\mathrm{a}), 120.6$ (C-b), 25.2-24.4 $\left(\mathrm{m} ; \mathrm{CH}_{2}\right), 5.5-4.3\left(\mathrm{~m} ; \mathrm{BCH}_{3}\right)$.

1,2-Diphenylacetylene and Li_{2} [4]

Neat 1,2-diphenylacetylene ($13 \mathrm{mg}, 74 \mu \mathrm{~mol}$) was added at room temperature to Li_{2} [4], freshly prepared from $4(15 \mathrm{mg}, 74 \mu \mathrm{~mol})$ and excess lithium granules in THF- $d_{8}(0.5 \mathrm{~mL}$; see 1.1$)$. The mixture was transferred to an NMR tube and the tube was flame-sealed. NMR spectroscopy revealed the immediate and quantitative consumption of 1,2-diphenylacetylene and the selective formation of an cycloadduct. X-ray-quality crystals of this cycloadduct were obtained by gas-phase diffusion of n hexane into its THF/12-crown-4 solution. The structure is deposited with the CCDC and can be accessed via the following code: 1888739.
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.31-7.30(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-\mathrm{a}), 6.67-6.64$ (m, 4H; Ph-H-m), 6.56-6.54 (m, 4H; Ph-H-o), 6.55-6.51 (m, 4H; H-b), 6.49-6.46 (m, 2H; Ph-H-p), 0.26 (s, 6H; BCH $)^{2}$).
${ }^{11} \mathrm{~B}$ NMR (160.5 MHz, THF- d_{8}): $\delta=-13.3$ (s).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, THF- d_{8}): $\delta=170.9$ (n.r.; BC), 168.5 (n.r.; C=C), 154.9 (Ph-C-i), 130.2 (Ph-C-o), 126.9 (C-a), 125.7 (Ph-C-m), 120.4 (Ph-C-p), 120.0 (C-b), 2.1 (n.r.; BCH_{3}).

Influence of the counter cation on the hydrogenation step

A comparison of $\mathrm{Li}_{2}[4]$ and $\mathrm{Na}_{2}[4]$ as catalysts for the hydrogenation of $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$ reveals four distinct differences (Figure S5):

1. The cycloaddition product $[10]^{2-}$ of $[4]^{2-}$ and $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$ is only observable with Li^{+}as the counter cation (cf. Figures S 5 a vs. S 5 c). The strong Lewis acid Li^{+}is likely required to promote cycloaddition by means of imine coordination.
2. Due to the reversibility of the cycloaddition process, the reaction mixture - after storage at $100{ }^{\circ} \mathrm{C}$ for 16 h - contains no $\mathrm{Li}_{2}[\mathbf{1 0}]$ but exclusively $\mathrm{Li}_{2}[4]$ and amine $\mathrm{Ph}(\mathrm{H})_{2} \mathrm{C}-\mathrm{N}(\mathrm{H}) t \mathrm{Bu}(c f$. Figure S 5 b).
3. Given that H_{2} activation is much slower with $\mathrm{Li}_{2}[4]$ than with $\mathrm{Na}_{2}[4]$, the former reaction mixture contains mainly $\mathrm{M}_{2}[4]$ and only little $\mathrm{M}_{2}\left[4-\mathrm{H}_{2}\right]$, whereas the opposite is true for the latter (after 16 h at $100^{\circ} \mathrm{C}$; cf. Figures S5b vs. S5d).
4. Hydrogenation of $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$ occurs much faster using $\mathrm{Li}_{2}[4]$ than Na_{2} [4], even though the $\mathrm{H}_{2}-$ activation step is slower with the Li^{+}than with the Na^{+}salt.

Figure S5. Comparison of the hydrogenation of $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}$ with $\mathrm{Li}_{2}[4]$ (a+b) or $\mathrm{Na}_{2}[4]$ (c+d) as the catalyst (THF- d_{8}). ${ }^{1} \mathrm{H}$ NMR spectra recorded on a mixture of $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}, \mathrm{Li}_{2}[4]$, and excess H_{2} immediately after sample preparation ($\mathrm{a}, 300.0 \mathrm{MHz}$) and after 16 h at $100{ }^{\circ} \mathrm{C}(\mathrm{b}, 250.1 \mathrm{MHz}) .{ }^{1} \mathrm{H}$ NMR spectra recorded on a mixture of $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{N} t \mathrm{Bu}, \mathrm{Na}_{2}[4]$, and excess H_{2} immediately after sample preparation $(\mathrm{a}, 300.0 \mathrm{MHz})$ and after 16 h at $100^{\circ} \mathrm{C}(\mathrm{b}, 250.1 \mathrm{MHz})$.

4. Hydride-transfer reactions with $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$

It is conceivable that the hydride transfer from $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ to substrates $\mathrm{R}_{\mathrm{n}} \mathrm{ECl}$ proceeds in a stepwise manner via an intermediate hydride monoadduct $\mathrm{Na}[4-\mathrm{H}]$. We therefore treated $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ with either 1 or 2 equiv $\mathrm{Et}_{3} \mathrm{SiCl}$.

4.1 Reaction of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ with 1 equiv of $\mathrm{Et}_{3} \mathrm{SiCl}$

The reaction was performed at room temperature in THF- d_{8} solution in an NMR tube: $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ (0.060 mmol), $\mathrm{Et}_{3} \mathrm{SiCl}(10 \mu \mathrm{~L}, 9.0 \mathrm{mg}, 0.060 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.05$ (n.r., $2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}$), 7.75 (n.r., 2H; $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.19 (n.r., $2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}$), 7.01 (n.r., $2 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}$), 2.32 (q, $\left.{ }^{1} J(\mathrm{~B}, \mathrm{H})=69.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{BH}\right), 1.32$ (s, $3 \mathrm{H} ; \mathrm{Me}$), 0.01 (s, $3 \mathrm{H} ; \mathrm{Me}$).
${ }^{11} \mathrm{~B}$ NMR $\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=62.5\left(h_{1 / 2}=820 \mathrm{~Hz}\right),-17.6\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=69.8 \mathrm{~Hz}\right)$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / 1 \mathrm{Et}_{3} \mathrm{SiCl}\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$. Asterisks mark resonances of the starting material $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$.

Figure S7. ${ }^{11}$ B NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / 1 \mathrm{Et}_{3} \mathrm{SiCl}\left(160.5 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.
The structural motif of $\mathrm{Na}[4-\mathrm{H}]$ with one tetracoordinated and one trigonal-planar boron atom is already known for other DBA derivatives (compare crystal structures with the following CSD codes: IBUTAC, IBUTEG, IBUTOQ, IBUVAE, XITREA, XITRIE, XITROK, XITRUQ, XITSAX, XUQHAS).

4.2 Reaction of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ with 2 equiv of $\mathrm{Et}_{3} \mathrm{SiCl}$; perspectives for a catalytic cycle

The aimed-for accumulation of $\mathrm{Et}_{3} \mathrm{SiH}$ over multiple catalytic cycles as described in the main text requires a stepwise procedure in order to avoid side reactions between $\mathrm{Et}_{3} \mathrm{SiCl}$ and $\mathrm{Na}_{2}[4]$ or sodium metal.

1) Twofold reduction of $\mathbf{4}$ (as described in 1.1) using elemental sodium in THF- d_{8}.

Comment: The use of NMR tubes as reaction vessels limited the amount of Na_{2} [4] to 0.074 mmol because otherwise the available volume of H_{2} is not sufficient to convert all of the starting material to $\mathrm{Na}_{2}\left[\right.$ 4- $\left.\mathrm{H}_{2}\right]$.
2) Transfer of the THF- d_{8} solution of $\mathrm{Na}_{2}[4]$ to an NMR tube and addition of H_{2} following the procedure described in 1.1. Heating of the reaction mixture to $100^{\circ} \mathrm{C}$ for 18 h so that no unreacted $\mathrm{Na}_{2}[4]$ remained.
3) Transfer of the resulting THF- d_{8} solution of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ to a new NMR tube and addition of 2 equiv of $\mathrm{Et}_{3} \mathrm{SiCl}(24 \mu \mathrm{~L}, 22 \mathrm{mg}, 0.143 \mathrm{mmol})$. The hydride-transfer reaction is completed within minutes and accompanied by the precipitation of NaCl ($c f$. Figure S 10 for an X-ray powder diffractogram of the precipitate).
4) Repetition of the steps 1) - 3) in the presence of $\mathrm{Et}_{3} \mathrm{SiH}$, which has no effect on the reaction cascade. Comment: As a proof of concept, we have successfully repeated this protocol three times.

$\mathrm{Et}_{3} \mathrm{SiCl} \rightarrow \mathrm{Et}_{3} \mathrm{SiH}$

${ }^{1} \mathrm{H}$ NMR ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=3.66$ (n.r., $\left.1 \mathrm{H} ; \mathrm{Et}_{3} \mathrm{Si} H\right), 0.99\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 9 \mathrm{H} ;\right.$ $\left.\left(H_{3} \mathrm{CH}_{2} \mathrm{C}\right)_{3} \mathrm{SiH}\right), 0.62\left(\mathrm{dq},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.0 \mathrm{~Hz}, 6 \mathrm{H} ;\left(\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{C}\right)_{3} \mathrm{SiH}\right)$.
${ }^{29} \mathrm{Si}$ NMR (99.4 MHz, THF- d_{8}): $\delta=0.3\left(\mathrm{~d},{ }^{1} J(\mathrm{Si}, \mathrm{H})=178 \mathrm{~Hz} ; \mathrm{Et}_{3} \mathrm{SiH}\right)$.
The ${ }^{29} \mathrm{Si}$ NMR shift is in accordance with the literature: $\delta=0.2\left({ }^{1} J(\mathrm{Si}, \mathrm{H})=179 \mathrm{~Hz}\right) .{ }^{13}$

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$ recorded after the reaction between $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ and $\mathrm{Et}_{3} \mathrm{SiCl}$ to give $\mathrm{Et}_{3} \mathrm{SiH}$ and 4 (*).

Figure S9. ${ }^{29}$ Si NMR spectrum $\left(99.4 \mathrm{MHz}\right.$, THF- d_{8}) recorded after the reaction between $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ and $\mathrm{Et}_{3} \mathrm{SiCl}$ to give $\mathrm{Et}_{3} \mathrm{SiH}$ and 4 .

Figure S10. X-ray powder diffraction pattern of the NaCl precipitate from the reaction between $\mathrm{Na}_{2}[4$ H_{2}] and $\mathrm{Et}_{3} \mathrm{SiCl}$ (black: experiment, red: simulation).

In a second experiment, two cycles 1)-4) (see above) were conducted. A sealed glass capillary containing $\mathrm{Me}_{4} \mathrm{Si}$ and THF- d_{8} served as an internal reference in order to determine the yield of $\mathrm{Et}_{3} \mathrm{SiH}$. In Figure S11, the proton-integral value of the CH_{2} groups of $\mathrm{Et}_{3} \mathrm{SiH}$ are compared to the normalized integral value of the internal standard. As expected, the amount of $\mathrm{Et}_{3} \mathrm{SiH}$ doubled from the first to the second cycle. The amount of the catalyst $\mathbf{4}$ remained unchanged, as proven by the integral ratios.
Comment: A perfectly equimolar stoichiometry between $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ and $\mathrm{Et}_{3} \mathrm{SiCl}$ was not achieved in the $2^{\text {nd }}$ cycle; the black square in Figure S 11 indicates small amounts of still unreacted $\mathrm{Et}_{3} \mathrm{SiCl}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra recorded on the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{Et}_{3} \mathrm{SiCl}$ (top: 250.1 MHz , bottom: 300.0 MHz ; THF- d_{8}). Asterisks mark resonances of $\mathrm{Na}_{2}[4]$ and the black square indicates remaining $\mathrm{Et}_{3} \mathrm{SiCl}$.

4.3 Reaction between $\mathrm{Et}_{3} \mathrm{SiCl}$ and $\mathrm{Na}_{2}[4]$

As discussed in the main article, $\mathrm{Et}_{3} \mathrm{SiCl}$ should not directly encounter the dianion $\mathrm{Na}_{2}[4]$ in order to avoid unwanted side reactions. In the following, this issue is assessed in more detail.

As shown in Figure S 12 , the cathodic peak potential for the reduction of $\mathrm{Et}_{3} \mathrm{SiCl}$ amounts to $E^{\mathrm{pc}}=-1.3$ $\mathrm{V}\left(v s . \mathrm{FcH} / \mathrm{FcH}^{+}\right)$and is thus more anodic than $E_{1 / 2}$ of $\mathbf{4}$ (cf. Table S 4$) . \mathrm{Na}_{2}[\mathbf{4}]$ should therefore be capable of reducing $\mathrm{Et}_{3} \mathrm{SiCl}$.

Figure S12. Cyclic voltammogram of $\mathrm{Et}_{3} \mathrm{SiCl}$ in $\mathrm{THF}\left(\mathrm{vs}\right.$. $\mathrm{FcH} / \mathrm{FcH}^{+}$, room temperature, supporting electrolyte: $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$, scan rate $\left.200 \mathrm{mV} \mathrm{s}{ }^{-1}\right)$.

An ${ }^{1} \mathrm{H}$ NMR spectrum recorded on a stoichiometric mixture of $\mathrm{Na}_{2}[4]$ and $\mathrm{Et}_{3} \mathrm{SiCl} 15 \mathrm{~min}$ after sample preparation showed substantially broadened $\mathrm{Na}_{2}[4]$ resonances (Figure S13). This indicates an interaction between both components, but at this point no new resonances had emerged.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum ($250.1 \mathrm{MHz}, \mathrm{THF}-d_{8}$) recorded 15 min after the addition of $\mathrm{Et}_{3} \mathrm{SiCl}$ to the solution of $\mathrm{Na}_{2}[4]$ (1:1). Asterisks mark the broadened resonances of $\mathrm{Na}_{2}[4]$.

After storage of the sample for 2 d at room temperature, a colorless precipitate had formed and NMR signals assignable to the silylborate $\left[\mathrm{MeB}-\left(o \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}-\mathrm{B}\left(\mathrm{Me}^{2}\right) \mathrm{SiEt}_{3}\right]^{-}$had appeared (two stereoisomers with $\mathrm{Et}_{3} \mathrm{Si}$ in axial or equatorial positions).

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$) recorded 2 d after the addition of $\mathrm{Et}_{3} \mathrm{SiCl}$ to the solution of $\mathrm{Na}_{2}[4]$ (1:1). Red and blue dots indicate the resonances of the two stereoisomers of [MeB$\left.\left(o \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}-\mathrm{B}(\mathrm{Me}) \mathrm{SiEt}_{3}\right]^{-}$; squares mark resonances of residual $\mathrm{Et}_{3} \mathrm{SiCl}$.

The NMR data below referring to the major component are colored in red, the one of the minor component in blue. Note: The major:minor integral ratio was approx. 2:1.

${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=8.06-8.04$ (m, 2H; H-d), 7.92-7.90 (m, 2H; H-d), 7.77-7.75 (m, 2H; H-a), 7.71 (n.r., 2H; H-a), 7.08-7.05 (m, 2H; H-b/2H; H-b), 6.85-6.83 (m, 2H; H-c), 6.84-6.81 $(\mathrm{m}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{c}), 1.32\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{BCH}_{3}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{BCH}_{3}\right), 0.87\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 9 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.48-0.44\left(\mathrm{~m}, 6 \mathrm{H}+12 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{SiBCH}_{3}\right),-0.08-(-0.13)\left(\mathrm{m}, 3 \mathrm{H}+6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{SiBCH}_{3}\right)$.
${ }^{11}$ B NMR ($96.3 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=59.0$ (br), $-15.3,-16.6$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=182.8\left(\mathrm{q},{ }^{1} J(\mathrm{C}, \mathrm{B})=48 \mathrm{~Hz} ; \mathrm{C}-\mathrm{f}\right), 177.5\left(\mathrm{q},{ }^{1} J(\mathrm{C}, \mathrm{B})=48 \mathrm{~Hz} ;\right.$ C-f), 145.0 (C-e), 144.2 (C-e), 134.8 (C-d), 134.1 (C-d), 132.8 (C-a), 132.2 (C-a), 128.7 (C-b), 127.3 (C-b), $120.7(\mathrm{C}-\mathrm{c}), 119.3(\mathrm{C}-\mathrm{c}), 14.1\left(\mathrm{q},{ }^{1} J(\mathrm{C}, \mathrm{B})=41 \mathrm{~Hz}, \mathrm{SiBCH}_{3}\right), 9.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.9\left(\mathrm{BCH}_{3}\right), 4.9\left(\mathrm{q},{ }^{1} J(\mathrm{C}, \mathrm{B})=43 \mathrm{~Hz} ; \mathrm{SiBCH}_{3}\right), 4.0\left(\mathrm{BCH}_{3}\right), 3.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{29} \mathrm{Si}$ NMR ($99.4 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=14.8,-2.6$.

4.4 Reaction between $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$

The reaction between $\mathrm{Na}_{2}\left[\mathbf{4}-\mathrm{H}_{2}\right]$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}\left(1: 1 ; \mathrm{THF}-d_{8}\right)$ resulted in the clean formation of $\mathbf{4}$ and $\mathrm{Me}_{2} \mathrm{SiH}_{2}$ (Figure S16a). If 2 equiv of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ were employed, the primary product was not $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}$, but an equimolar mixture of $\mathrm{Me}_{2} \mathrm{SiH}_{2}$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$. Over several days, however, the free Lewis acid $\mathbf{4}$ catalyzes a comproportionation reaction furnishing $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}$ as the final product.

Figure S15. ${ }^{29} \mathrm{Si} /{ }^{1} \mathrm{H}$ HMBC-NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{Me}_{2} \mathrm{SiCl}_{2}$, recorded after the sample had been kept at room temperature for $5 \mathrm{~h}\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$. Orange: $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$, red: $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}$, blue: $\mathrm{Me}_{2} \mathrm{SiH}_{2}$.

The conversion $\mathrm{Me}_{2} \mathrm{SiCl}_{2}+\mathrm{Me}_{2} \mathrm{SiH}_{2} \rightarrow 2 \mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}$ can be accelerated by heating the sample to $120^{\circ} \mathrm{C}$ and is almost quantitative after 16 h at this temperature (Figure S16b).

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectra ($250.1 \mathrm{MHz}, \mathrm{THF}-d_{8}$) (a) of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / 2 \mathrm{Me}_{2} \mathrm{SiCl}_{2}$ immediately after sample preparation and (b) after the sample had been kept at $120^{\circ} \mathrm{C}$ for 16 h .

Figure S17. ${ }^{29}$ Si NMR spectrum $\left(99.4 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$ corresponding to sample (b) in Figure S16.
Published ${ }^{29} \mathrm{Si}$ NMR shifts for comparison: ${ }^{13}$
$\mathrm{Me}_{2} \mathrm{SiCl}_{2} \quad \delta=32.0$
$\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl} \quad \delta=11.1$
$\mathrm{Me}_{2} \mathrm{SiH}_{2} \quad \delta=-37.7\left({ }^{1} J(\mathrm{Si}, \mathrm{H})=179 \mathrm{~Hz}\right)$

4.5 Substrate scope of the hydride-transfer reaction

General procedure

The respective substrate was added to an NMR tube containing $\mathrm{M}_{2}\left[\mathbf{A}-\mathrm{H}_{2}\right]$ (preparation described in $1.1)$ in THF- $d_{8}(0.5 \mathrm{~mL})$. After mixing the components by shaking the NMR tube, the sample was flame-sealed. Table S3 summarizes the stoichiometries used in this screening process. Each reaction was accompanied by the formation of a colorless precipitate and complete within minutes (according to ${ }^{1} \mathrm{H}$ NMR spectroscopy). Note: Similar to the case of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ (see above), we always observed the exclusive formation of exhaustively hydrogenated products, even if an excess of the halogenated substrate was used.

Table S3. $[\mathbf{A}]^{2-}$ derivatives and substrates investigated for the hydride-transfer reaction.

DBA derivative				substrate			
compound	$n /$ mmol	equiv	compound	$n /$ mmol	equiv	$V / \mu \mathrm{L}$	
$\mathrm{Li}_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right]$	0.028	1	Me 3 SiCl	0.056	2	7.1	$\mathrm{Me}_{3} \mathrm{SiH}$
$\mathrm{K}_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right]$	0.015	1	$\mathrm{Me}_{3} \mathrm{SiCl}$	0.030	2	3.8	$\mathrm{Me}_{3} \mathrm{SiH}$
$\mathrm{Na}_{2}\left[\mathbf{4}-\mathrm{H}_{2}\right]$	0.050	1	$\mathrm{Ph}_{2} \mathrm{SiCl}_{2}$	0.050	1	10.5	$\mathrm{Ph}_{2} \mathrm{SiH}_{2}$
$\mathrm{Na}_{2}\left[\mathbf{4}-\mathrm{H}_{2}\right]$	0.050	1	SiCl_{4}	0.025	0.5	2.9	SiH_{4}
$\mathrm{Na}_{2}\left[\mathbf{4}-\mathrm{H}_{2}\right]$	0.050	1	GeCl_{4}	0.025	0.5	2.9	GeH_{4}
$\mathrm{Na}_{2}\left[\mathbf{4}-\mathrm{H}_{2}\right]$	0.058	3	PCl_{3}	0.039	2	3.4	PH_{3}
$\mathrm{Na}_{2}\left[\mathbf{4}-\mathrm{H}_{2}\right]$	0.050	1	EtBr	0.100	2	7.5	EtH

$\mathrm{Me}_{3} \mathrm{SiCl} \rightarrow \mathrm{Me}_{3} \mathrm{SiH}$

${ }^{1} \mathrm{H}$ NMR ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=3.95\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{Me}_{3} \mathrm{Si} H\right), 0.08\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.6 \mathrm{~Hz}, 9 \mathrm{H} ; M e_{3} \mathrm{SiH}\right)$.
${ }^{29} \mathrm{Si}$-INEPT NMR (99.4 MHz, THF- d_{8}): $\delta=-17.1\left(\mathrm{Me}_{3} \mathrm{SiH}\right)$.
The ${ }^{29} \mathrm{Si}$ NMR shift is in accordance with the literature: $\delta=-16.3 .{ }^{13}$
$\mathrm{Ph}_{2} \mathrm{SiCl}_{2} \rightarrow \mathrm{Ph}_{2} \mathrm{SiH}_{2}$
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=7.41-7.33\left(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{Ph}_{2} \mathrm{SiH}_{2}\right), 4.90\left(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{Ph}_{2} \mathrm{Si}_{2}\right)$.
${ }^{29} \mathrm{Si}$ NMR (99.4 MHz, THF- d_{8}): $\delta=-33.9\left(\mathrm{t},{ }^{1} J(\mathrm{Si}, \mathrm{H})=199 \mathrm{~Hz} ; \mathrm{Ph}_{2} \mathrm{SiH}_{2}\right)$.
The ${ }^{29} \mathrm{Si}$ NMR shift is in accordance with the literature: $\delta=-33.8\left({ }^{1} J(\mathrm{Si}, \mathrm{H})=200 \mathrm{~Hz}\right) .{ }^{13}$
$\mathrm{SiCl}_{4} \rightarrow \mathrm{SiH}_{4}$
${ }^{1} \mathrm{H}$ NMR (400.1 MHz, THF- d_{8}): $\delta=3.18\left(\mathrm{~s} ; \mathrm{SiH}_{4}\right)$.
The ${ }^{1} \mathrm{H}$ NMR shift is in accordance with the literature (THF- d_{8}): $\delta=3.14$. ${ }^{14}$
${ }^{29} \mathrm{Si}$ NMR (99.4 MHz, THF- $\left.d_{8}\right): \delta=-96.3\left(\mathrm{q},{ }^{1} J(\mathrm{Si}, \mathrm{H})=200 \mathrm{~Hz} ; \mathrm{SiH}_{4}\right)$.
The ${ }^{29} \mathrm{Si}$ NMR shift is in accordance with the literature: $\delta=-93.1\left({ }^{1} J(\mathrm{Si}, \mathrm{H})=202 \mathrm{~Hz}\right) .{ }^{13}$
$\mathrm{GeCl}_{4} \rightarrow \mathrm{GeH}_{4}$
${ }^{1} \mathrm{H}$ NMR (400.1 MHz, THF- d_{8}): $\delta=3.14\left(\mathrm{~s} ; \mathrm{Ge} H_{4}\right)$.
The ${ }^{1} \mathrm{H}$ NMR shift is in accordance with the literature $\left(\mathrm{CCl}_{4}\right): \delta=3.27 .{ }^{15}$
$\mathrm{PCl}_{3} \rightarrow \mathrm{PH}_{3}$
${ }^{1} \mathrm{H}$ NMR (400.1 MHz, THF- $\left.d_{8}\right): \delta=1.76\left(\mathrm{~d},{ }^{1} J(\mathrm{P}, \mathrm{H})=186 \mathrm{~Hz} ; \mathrm{PH}_{3}\right)$.
The ${ }^{1} \mathrm{H}$ NMR shift is in accordance with the literature (acetonitrile): $\tau=8.21\left(\hat{=} \delta=1.79,{ }^{1} J(\mathrm{P}, \mathrm{H})=\right.$ 189 Hz). ${ }^{16}$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.5 MHz, THF- $\left.d_{8}\right): \delta=-247.4\left(\mathrm{q},{ }^{1} J(\mathrm{P}, \mathrm{H})=186 \mathrm{~Hz} ; \mathrm{PH}_{3}\right)$.
The ${ }^{31} \mathrm{P}$ NMR shift is in accordance with the literature (THF): $\delta=-245.4 .{ }^{17}$
$\mathrm{EtBr} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
${ }^{1} \mathrm{H}$ NMR (500.2 MHz, THF- d_{8}): $\delta=0.85\left(\mathrm{~s} ; \mathrm{C}_{2} \mathrm{H}_{6}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=6.4\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$.
The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR shifts are in accordance with the literature. ${ }^{1}$

Procedure for the reduction of $\mathbf{C O}_{\mathbf{2}}$

An NMR tube, charged with a solution of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right](0.059 \mathrm{mmol})$ in THF- $d_{8}(0.5 \mathrm{~mL})$, was connected to a Schlenk line. The solution was frozen with liquid nitrogen, the system evacuated, and CO_{2} (1 atm ; quality grade 4.5) was filled in. The content of the NMR tube was allowed to warm to room temperature and the excess pressure released through a Hg bubbler. After 10 min , a precipitate had formed. The reaction mixture was frozen again, the NMR tube was evacuated, flame-sealed, and investigated by NMR spectroscopy. Afterwards, the liquid phase was discarded and the precipitate characterized by IR and NMR spectroscopy (in $\mathrm{D}_{2} \mathrm{O}$).

The mother liquor showed NMR signals assignable to a weak formate adduct.
${ }^{1} \mathrm{H}$ NMR ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=8.00$ (s, 1H; HCOO), 7.79-7.77 (m, 4H; H-a), 7.17-7.15 (m, 4H; H-b), 0.72 (s, 6H; CH_{3}).
${ }^{11}$ B NMR (160.5 MHz, THF- d_{8}): $\delta=34.7\left(h_{1 / 2}=750 \mathrm{~Hz}\right.$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=171.6$ (HCOO), 155.7 (BC),
 133.5 (C-a), 127.6 (C-b), $9.4\left(\mathrm{CH}_{3}\right)$.

Note: Attempts at the crystallization of the formate adduct gave crystals of the free Lewis acid 4.

NMR data of the precipitated sodium formate (Note: 1 equiv of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ is sufficient to produce 2 equiv of sodium formate):
${ }^{1} \mathrm{H}$ NMR ($500.2 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=8.44$ (HCOO).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=171.0$ (HCOO).
The ${ }^{13} \mathrm{C}$ NMR shift is in accordance with the literature: $171.0 \mathrm{ppm} .{ }^{18}$

ATR-IR data of the precipitated sodium formate: $2830,1587,1363,775 \mathrm{~cm}^{-1}$.
Literature data (KBr): $2831,1611,1362,775 \mathrm{~cm}^{-1} .{ }^{19}$

Figure S18. ATR-IR spectrum of the sodium formate obtained from the reaction between $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ and CO_{2}.

5. Cyclic voltammetry measurements

Table S4. Electrochemical data obtained by cyclic voltammetry ($v s . \mathrm{FcH} / \mathrm{FcH}^{+}$; red $1=$ first reduction event, red $2=$ second reduction event, $\mathrm{pc}=$ peak current).

DBA derivative	$E_{1 / 2}$, red1 (V)	$E_{1 / 2}$, red2 (V)	E^{pc}, red2 (V)
$\mathbf{1}$	-2.08	-	-2.75
$\mathbf{2}$	-1.66	-2.32	-
$\mathbf{4}$	-2.02	-	-2.77
$\mathbf{5}$	-2.01	-	-2.74
$\mathbf{7}$	-1.80	-	-2.48
$\mathbf{8}$	-1.90	-	-2.71

Figure S19. Cyclic voltammograms of 1 in THF (vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$, room temperature, supporting electrolyte: $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$, scan rate $200 \mathrm{mV} \mathrm{s}{ }^{-1}$. Left: Full voltammogram; right: first redox event only.

Figure S20. Cyclic voltammogram of 2 in THF ($v s . \mathrm{FcH} / \mathrm{FcH}^{+}$, room temperature, supporting electrolyte: $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$, scan rate $200 \mathrm{mV} \mathrm{s}{ }^{-1}$).

Figure S21. Cyclic voltammograms of $\mathbf{4}$ in THF (vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$, room temperature, supporting electrolyte: $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$, scan rate $\left.200 \mathrm{mV} \mathrm{s}{ }^{-1}\right)$. Left: Full voltammogram; right: first redox event only.

Figure S22. Cyclic voltammograms of 5 in THF (vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$, room temperature, supporting electrolyte: $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$, scan rate $200 \mathrm{mV} \mathrm{s}{ }^{-1}$). Left: Full voltammogram; right: first redox event only.

Figure S23. Cyclic voltammograms of 7 in THF (vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$, room temperature, supporting electrolyte: $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$, scan rate $\left.200 \mathrm{mV} \mathrm{s}{ }^{-1}\right)$. Left: Full voltammogram; right: first redox event only.

Figure S24. Cyclic voltammograms of $\mathbf{8}$ in THF ($v s . \mathrm{FcH} / \mathrm{FcH}^{+}$, room temperature, supporting electrolyte: $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$, scan rate 200 mV s -).

6. Computational details

Geometry optimizations and frequency calculations were carried out with the Gaussian 09 software package ${ }^{20}$ using the B3LYP functional and the $6-31 G^{*}$ basis set in combination with the SMD solvation model ${ }^{21}$ (to account for effects of the THF solvent). The stationary points were characterized as minima (no imaginary frequencies in the vibrational analysis).

Table S5. LUMO-energy values of $\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{8}$, and $\mathbf{9}$, as estimated from cyclic voltammetry $\left(E_{\text {LUMO }}{ }^{\text {CV }}\right.$) or computed by DFT ($E_{\text {LUMO }}{ }^{\text {DFT }}$).

Cmpd	$E_{\mathrm{LUMO}}{ }^{\mathrm{CV}} / \mathrm{eV}^{[\mathrm{a}]}$	$E_{{ }_{\text {LUMO }}{ }^{\mathrm{DFT}} / \mathrm{eV}} E_{\mathrm{LUMO}^{\mathrm{DFT}} / \mathrm{eV}^{[\mathrm{b}]}}$	
$\mathbf{1}$	-2.72	-2.59	-3.12
$\mathbf{2}$	-3.14	-2.59	-3.12
$\mathbf{4}$	-2.78	-2.17	-2.70
$\mathbf{5}$	-2.79	-2.26	-2.79
$\mathbf{8}$	-2.90	-2.42	-2.95
$\mathbf{7}$	-3.00	-2.43	-2.96
$\mathbf{9}$	$-2.96^{[\mathrm{cc]}}$	-2.43	-2.96

[a] $E_{\text {LUMO }}{ }^{\mathrm{CV}}=-4.8 \mathrm{eV}-E_{1 / 2}{ }^{\text {Red1 }}\left(\mathrm{FcH} / \mathrm{FcH}^{+}=-4.8 \mathrm{eV} v s\right.$. vacuum level). ${ }^{22}$
[b] For better comparability with the $E_{\text {LUMO }}{ }^{\mathrm{CV}}$ values, the computed LUMO energies
($E_{\text {LUMO }}{ }^{\text {DFT }}$) were scaled by addition of a constant value of -0.53 eV , which corresponds to the difference $E_{\text {LUMO }}{ }^{\text {CV }}(\mathbf{9})-E_{\text {LUMO }}{ }^{\text {DFT }}(\mathbf{9})$. Compound 9 was selected, because it does not coordinate THF ligands.
[c] Ref.[5].
The electrochemical and computed LUMO-energy levels are directly juxtaposed in Figure S 25 for better comparison. We note a pleasingly good correlation, except for the case of $\mathbf{1}$. THF ligation is an important perturbative factor only to the least hindered parent DBA, but negligible for its derivatives. In conclusion, cyclic voltammetry is a proper tool to evaluate electronic substituent effects provided that THF ligation is not an issue.

Figure S25. Comparison of the $E_{\mathrm{LUMO}}{ }^{\mathrm{CV}}$ and $E_{\mathrm{LUMO}}{ }^{\text {DFT }}$ values of the compounds $\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{8}$, and $\mathbf{9}$ (data from Table S5).

B $\quad 0.000000$-1.482377 0.000291
$\begin{array}{lllll}\text { C } & -1.350470 & -0.714609 & 0.000130\end{array}$
$\begin{array}{lllll}\text { C } & -2.578127 & -1.394479 & -0.000022\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.587756 & -2.482479 & -0.000027\end{array}$
$\begin{array}{lllll}\text { C } & -3.792753 & -0.697621 & -0.000176\end{array}$
$\begin{array}{llll}\text { H } & -4.734007 & -1.241607 & -0.000295\end{array}$
$\begin{array}{llll}\text { C } & 1.350470 & -0.714609 & 0.000130\end{array}$
C $\quad 2.578127-1.394478 \quad-0.000022$
$\begin{array}{llll}\text { H } & 2.587756 & -2.482479 & -0.000027\end{array}$
$\begin{array}{lllll}\text { C } & 3.792753 & -0.697621 & -0.000176\end{array}$
$\begin{array}{llll}\text { B } & 0.000000 & 1.482377 & 0.000291\end{array}$
$\begin{array}{llll}\text { C } & 1.350470 & 0.714609 & 0.000131\end{array}$
$\begin{array}{lllll}\text { H } & 4.734007 & -1.241608 & -0.000295\end{array}$
$\begin{array}{llll}\text { C } & 2.578127 & 1.394478 & -0.000022\end{array}$
$\begin{array}{llll}\text { H } & 2.587756 & 2.482479 & -0.000028\end{array}$
$\begin{array}{llll}\text { C } & 3.792753 & 0.697621 & -0.000176\end{array}$
$\begin{array}{lllll}\text { H } & 4.734007 & 1.241608 & -0.000295\end{array}$
$\begin{array}{llll}\text { C } & -1.350470 & 0.714609 & 0.000131\end{array}$
$\begin{array}{lllll}\text { C } & -2.578127 & 1.394479 & -0.000022\end{array}$
$\begin{array}{llll}\text { H } & -2.587756 & 2.482479 & -0.000028\end{array}$
$\begin{array}{lllll}\text { C } & -3.792753 & 0.697621 & -0.000176\end{array}$
$\begin{array}{llll}\text { H } & -4.734007 & 1.241607 & -0.000295\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.000000 & 2.683826 & 0.000005\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.000000 & -2.683826 & 0.000000\end{array}$

B $\quad 1.4964020 .002296-0.000736$
C $\quad 0.715583-1.353161 \quad-0.000545$
C $\quad-0.711417 \quad-1.355375 \quad 0.000448$
C $\quad-1.386444-2.587850 \quad 0.001024$
$\begin{array}{llll}\mathrm{H} & -2.473677 & -2.597848 & 0.001817\end{array}$
C $\quad-0.691944 \quad-3.800316 \quad 0.000576$
H $\quad-1.236861 \quad-4.741167 \quad 0.001050$

C $\quad 0.703923-3.798127-0.000551$
H $\quad 1.251765 \quad-4.737281 \quad-0.000958$
C $\quad 1.394532 \quad-2.583458 \quad-0.001108$
H $\quad 2.481794 \quad-2.589629-0.002018$
$\begin{array}{llll}\text { C } & 3.019298 & 0.004476 & -0.000235\end{array}$
$\begin{array}{llll}\text { C } & 4.241800 & 0.006545 & 0.001422\end{array}$
$\begin{array}{llll}\text { C } & 5.714036 & 0.005043 & 0.001595\end{array}$
$\begin{array}{llll}\text { C } & 6.212572 & -0.561386 & -1.349964\end{array}$

H $\quad 7.308927-0.571539-1.361204$
$\begin{array}{llll}\mathrm{H} & 5.856849 & -1.585686 & -1.504907\end{array}$

H $\quad 5.866036 \quad 0.052021-2.188782$
$\begin{array}{llll}\text { C } & 6.238958 & 1.446874 & 0.189615\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.335563 & 1.448358 & 0.189418\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.895359 & 2.100474 & -0.619695\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.896763 & 1.870070 & 1.140405\end{array}$
$\begin{array}{llll}\text { C } & 6.218862 & -0.890418 & 1.157954\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.315274 & -0.900795 & 1.164296\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.874370 & -0.515322 & 2.127870\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.864910 & -1.920780 & 1.044425\end{array}$

B $\quad-1.496401 \quad-0.002293 \quad 0.000565$
$\begin{array}{llll}\text { C } & -0.715581 & 1.353163 & 0.000339\end{array}$
C $\quad 0.711419 \quad 1.355377-0.000648$
$\begin{array}{llll}\text { C } & 1.386446 & 2.587852 & -0.001239\end{array}$

H $\quad 2.473679 \quad 2.597850-0.002021$
C $\quad 0.691946 \quad 3.800318 \quad-0.000821$
$\begin{array}{llll}\mathrm{H} & 1.236863 & 4.741170 & -0.001310\end{array}$
$\begin{array}{llll}\text { C } & -0.703920 & 3.798130 & 0.000300\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.251762 & 4.737284 & 0.000690\end{array}$
$\begin{array}{llll}\text { C } & -1.394530 & 2.583460 & 0.000881\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.481791 & 2.589632 & 0.001796\end{array}$

C $\quad-3.019297 \quad-0.004474 \quad 0.000204$
C $\quad-4.241798 \quad-0.006551-0.001304$
C $\quad-5.714037-0.005044 \quad-0.001362$
$\begin{array}{llll}\text { C } & -6.212440 & 0.561086 & 1.350366\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.308794 & 0.571151 & 1.361739\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.856778 & 1.585386 & 1.505451\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.865753 & -0.052459 & 2.189018\end{array}$
C $\quad-6.238991-1.446832-0.189622$

H $\quad-7.335596-1.448296-0.189326$
$\begin{array}{llll}\mathrm{H} & -5.895327 & -2.100604 & 0.619522\end{array}$
H $\quad-5.896893-1.869842 \quad-1.140530$
$\begin{array}{llll}\mathrm{H} & -6.218971 & 0.890669 & -1.157479\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.315386 & 0.900989 & -1.163766\end{array}$
H $\quad-5.874506 \quad 0.515824 \quad-2.127501$
$\begin{array}{llll}\mathrm{H} & -5.865071 & 1.921022 & -1.043715\end{array}$

B	-0.00000	-1.50656	-0.19526	C	-2.57172	1.38874	0.10268
C	1.34766	-0.71365	-0.04611	H	-2.59205	2.47587	0.09654
C	2.57167	-1.38875	0.10271	C	-3.77411	0.69751	0.27540
H	2.59203	-2.47587	0.09665	H	-4.70513	1.24442	0.40410
C	3.77408	-0.69750	0.27534	C	0.00001	3.07009	-0.43447
H	4.70511	-1.24441	0.40392	C	1.34765	0.71367	-0.04616
C	0.00014	-3.07008	-0.43445	C	2.57166	1.38879	0.10266
C	-1.34770	-0.71369	-0.04625	H	2.59199	2.47592	0.09656
C	-2.57172	-1.38879	0.10257	C	3.77407	0.69756	0.27531
H	-2.59211	-2.47590	0.09639	H	4.70510	1.24449	0.40386
C	-3.77411	-0.69756	0.27534	H	0.88463	3.43276	-0.97092
H	-4.70513	-1.24448	0.40396	H	0.00050	3.58513	0.54116
H	-0.88489	-3.43325	-0.96987	H	-0.88489	3.43301	-0.97028
B	-0.00004	1.50656	-0.19522	H	0.88462	-3.43269	-0.97118
C	-1.34771	0.71364	-0.04620	H	0.00117	-3.58495	0.54128

B	0.000178	-1.485283	0.312034	B	-0.000190	1.485289	-0.312048
C	-1.352272	-0.698977	0.149948	C	1.352261	0.698981	-0.149968
C	-1.352436	0.698602	-0.149954	C	1.352424	-0.698597	0.149938
C	-2.588209	1.355184	-0.290088	C	2.588197	-1.355179	0.290071
H	-2.612389	2.416721	-0.519827	H	2.612377	-2.416716	0.519812
C	-3.804015	0.681173	-0.144743	C	3.804003	-0.681170	0.144721
H	-4.742880	1.217862	-0.258286	H	4.742868	-1.217859	0.258264
C	-3.803857	-0.682183	0.144683	C	3.803845	0.682186	-0.144707
H	-4.742597	-1.219102	0.258165	H	4.742586	1.219104	-0.258191
C	-2.587880	-1.355887	0.290021	C	2.587869	1.355890	-0.290043
H	-2.611787	-2.417451	0.519691	H	2.611776	2.417454	-0.519713
C	0.000399	-3.053379	0.564144	C	-0.000412	3.053392	-0.564108
H	0.874594	-3.369033	1.148276	H	-0.874635	3.369074	-1.148183
H	-0.873943	-3.369380	1.147859	H	0.873902	3.369405	-1.147860
C	0.000819	-3.834727	-0.773958	H	-0.000750	3.834696	0.774019
H	-0.000779	-4.918379	-0.600953	-0.000701	4.918354	0.601050	
	0.883933	-3.597048	-1.379416	-3.597075	-1.379896	0.882076	3.597010

$\begin{array}{llll}\text { B } & 1.511976 & -0.007032 & -0.043171\end{array}$
B $\quad-1.512000 \quad-0.007115-0.043285$
$\begin{array}{llll}\text { C } & 0.715377 & -1.359070 & 0.000295\end{array}$

C $\quad-0.715308 \quad-1.359118 \quad 0.000321$
C $\quad-1.386899 \quad-2.589516 \quad 0.112805$
H $\quad-2.472212$-2.605771 0.143173
C $\quad-0.696425-3.802360 \quad 0.197928$
$\begin{array}{llll}\mathrm{H} & -1.245387 & -4.737518 & 0.277684\end{array}$
C $\quad 0.696730-3.802307 \quad 0.197898$
H $\quad 1.245768$-4.737421 0.277633
$\begin{array}{llll}\text { C } & 1.387089 & -2.589402 & 0.112749\end{array}$

H $\quad 2.472408$-2.605531 $\quad 0.143067$
C $\quad 3.084852-0.001261 \quad-0.001491$
C $\quad 3.861499 \quad-0.671337-0.967499$
H $\quad 3.367444$

C $\quad 5.257382-0.654018 \quad-0.930015$
H $\quad 5.820857-1.171214-1.704090$
$\begin{array}{llll}\text { C } & 5.945812 & 0.008714 & 0.094167\end{array}$
C $\quad-3.084866-0.001391 \quad-0.001691$
C $\quad-3.861617-0.671765 \quad-0.967395$
H $\quad-3.367647-1.209593-1.773724$
C $\quad-5.257499 \quad-0.654412 \quad-0.929791$

H $\quad-5.821046 \quad-1.171854 \quad-1.703647$
$\begin{array}{llll}\text { C } & -5.945830 & 0.008727 & 0.094187\end{array}$
$\begin{array}{llll}\text { C } & -7.454539 & 0.024184 & 0.147777\end{array}$
$\begin{array}{llll}\text { C } & 0.715027 & 1.342749 & -0.120071\end{array}$
C $\quad-0.715117 \quad 1.342701 \quad-0.120211$
$\begin{array}{llll}\text { C } & -1.387385 & 2.569929 & -0.259868\end{array}$
H $\quad-2.472982 \quad 2.585483-0.284596$
$\begin{array}{llll}\text { C } & -0.696718 & 3.779789 & -0.380008\end{array}$
H $\quad-1.245533 \quad 4.712627-0.484243$
C $\quad 0.696524 \quad 3.779839-0.379855$
H $\quad 1.245290 \quad 4.712721 \quad-0.483954$
$\begin{array}{llll}\text { C } & 1.387245 & 2.570021 & -0.259603\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.472844 & 2.585632 & -0.284129\end{array}$
$\begin{array}{llll}\text { C } & 3.792275 & 0.677274 & 1.014523\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.240742 & 1.210480 & 1.785955\end{array}$
$\begin{array}{llll}\text { C } & 5.184818 & 0.668516 & 1.071609\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.692003 & 1.188027 & 1.882713\end{array}$
$\begin{array}{llll}\text { C } & -3.792211 & 0.677639 & 1.014079\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.240594 & 1.211208 & 1.785199\end{array}$
$\begin{array}{llll}\text { C } & -5.184739 & 0.668956 & 1.071276\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.691859 & 1.188865 & 1.882167\end{array}$
H $\quad-7.889395-0.624682 \quad-0.619434$
H $\quad-7.849697 \quad 1.036601 \quad-0.009236$
$\begin{array}{llll}\text { C } & 7.454530 & 0.024356 & 0.147440\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.849618 & 1.036280 & -0.012986\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.889255 & -0.626942 & -0.617787\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.824386 & -0.309507 & 1.124889\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.824194 & -0.312879 & 1.124224\end{array}$

B	1.511246	0.012423	0.018691	C	1.387800	2.515366	析
C	0.714043	-1.299098	0.346008	H	2.473211	2.524525	-0.661957
C	-0.716034	-1.298551	0.346144	C	0.697571	3.689210	-0.951391
C	-1.388814	-2.478899	0.708880	H	1.247039	4.592079	-1.206809
H	-2.474334	-2.488414	0.735536	C	-0.695649	3.689441	-0.952568
C	-0.698358	-3.646826	1.047459	H	-1.244385	4.592481	-1.208953
H	-1.247707	-4.545164	1.318607	C	-1.386774	2.515857	-0.635750
C	0.694892	-3.647430	1.047010	H	-2.472134	2.525272	-0.665916
H	1.243636	-4.546260	1.317753	C	-3.086568	0.005652	-0.003423
C	1.386093	-2.480006	0.708244	C	-3.800097	-0.843487	-0.875847
H	2.471628	-2.490222	0.734487	H	-3.251485	-1.503592	-1.545211
C	3.085510	0.003391	-0.002015	C	-5.197524	-0.856839	-0.921731
C	3.836748	0.836081	0.848903	C	-5.902067	-0.020760	-0.042012
H	3.320404	1.504282	1.535839	H	-6.991083	-0.031050	-0.056916
C	5.238580	0.825734	0.853094	C	-5.239920	0.824291	0.854096
C	5.901321	-0.015278	-0.048436	C	-3.836835	0.838208	0.846422
H	6.990585	-0.020393	-0.068878	H	-3.320235	1.506942	1.533083
C	5.196982	-0.851620	-0.926054	C	-5.938604	-1.743739	-1.895131
C	3.798497	-0.841433	-0.877096	H	-5.270053	-2.480046	-2.353495
H	3.250563	-1.499282	-1.549166	H	-6.754433	-2.287537	-1.403422
C	6.017146	1.688649	1.818960	H	-6.389975	-1.157223	-2.706679
H	5.439346	2.565940	2.129720	C	-6.011368	1.696575	1.817615
H	6.957521	2.038803	1.378304	H	5.246123	-2.335008	-2.503129
H	6.276492	1.131469	2.729857	H	6.598499	-2.446924	-1.364645
C	5.938394	-1.746339	-1.892257	H	6.572598	-1.163727	-2.572768
B	-1.512212	0.013394	0.017896	H	-7.077610	1.722987	1.569185
C	-0.715150	1.329867	-0.290001	H	-5.637510	2.727591	1.815052
C	0.715204	1.329576	-0.289013	H	-5.922005	1.327834	2.848327

$\begin{array}{llll}\text { B } & -1.512270 & 0.001484 & 0.000339\end{array}$
B $\quad 1.512273 \quad 0.001508 \quad-0.000283$
C $\quad-0.714362 \quad 1.351991 \quad 0.000195$

C $\quad 0.714343 \quad 1.352002 \quad-0.000142$

C $\quad 1.389259 \quad 2.584729-0.000384$
$\begin{array}{llll}\mathrm{H} & 2.476160 & 2.597570 & -0.000751\end{array}$
C $\quad 0.697001 \quad 3.800182-0.000236$

H $\quad 1.244555 \quad 4.739469-0.000433$

C $\quad-0.697058 \quad 3.800172 \quad 0.000167$
H $\quad-1.244626 \quad 4.739450 \quad 0.000305$

C $\quad-1.389296 \quad 2.584708 \quad 0.000376$
$\begin{array}{llll}\mathrm{H} & -2.476198 & 2.597532 & 0.000747\end{array}$
$\begin{array}{llll}\text { C } & -3.094965 & 0.001028 & 0.001134\end{array}$
C $\quad-3.819759-0.000668 \quad-1.215310$
C $\quad-5.218599 \quad-0.005332-1.197271$
H $\quad-5.758206 \quad-0.008401 \quad-2.143522$
C $\quad-5.940486 \quad-0.006864 \quad 0.002374$
C $\quad-7.451064 \quad 0.009044 \quad-0.001405$

C $\quad 3.094966 \quad 0.001078-0.001135$

C $\quad 3.817139-0.001910 \quad-1.216338$
C $\quad 5.218239-0.006653-1.199150$
$\begin{array}{llll}\mathrm{H} & 5.757294 & -0.011193 & -2.145349\end{array}$

C $\quad 5.940486-0.006864-0.002433$
$\begin{array}{llll}\text { C } & 7.451065 & 0.009032 & 0.001282\end{array}$
$\begin{array}{llll}\text { C } & -0.714326 & -1.349027 & 0.000207\end{array}$

C $\quad 0.714347-1.349015-0.000112$
C $\quad 1.389286-2.581746-0.000290$

H $\quad 2.476179 \quad-2.594591 \quad-0.000638$

C $\quad 0.697064 \quad-3.797209 \quad-0.000101$
H $\quad 1.244648$
C $\quad-0.696996 \quad-3.797221 \quad 0.000270$

H $\quad-1.244563-4.736498 \quad 0.000441$
C $\quad-1.389241 \quad-2.581771 \quad 0.000411$
$\begin{array}{llll}\mathrm{H} & -2.476134 & -2.594642 & 0.000748\end{array}$
$\begin{array}{llll}\text { C } & -3.817157 & -0.001856 & 1.216314\end{array}$
C $\quad-5.218268 \quad-0.006583 \quad 1.199096$
$\begin{array}{llll}\mathrm{H} & -5.757331 & -0.011052 & 2.145290\end{array}$
$\begin{array}{llll}\text { C } & 3.819780 & -0.000536 & 1.215288\end{array}$
$\begin{array}{llll}\text { C } & 5.218629 & -0.005242 & 1.197216\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.758248 & -0.008278 & 2.143460\end{array}$
C $\quad-3.089312 \quad-0.000566 \quad-2.542044$
$\begin{array}{llll}\mathrm{H} & -2.443447 & 0.880905 & -2.647716\end{array}$

H $\quad-3.790405-0.000735-3.383252$

H $\quad-2.442842-0.881591 \quad-2.647843$
$\begin{array}{llll}\text { C } & -3.087504 & -0.003040 & 2.543549\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.441386 & -0.884323 & 2.649330\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.789222 & -0.003719 & 3.384244\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.441572 & 0.878212 & 2.650640\end{array}$
$\begin{array}{llll}\text { C } & 3.089364 & -0.000394 & 2.542032\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.443408 & 0.881015 & 2.647646\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.790472 & -0.000428 & 3.383229\end{array}$
H $\quad 2.442978$-0.881474 2.647914
$\begin{array}{llll}\text { C } & 3.087434 & -0.003135 & -2.543545\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.789118 & -0.003837 & -3.384269\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.441495 & 0.878113 & -2.650636\end{array}$
H $\quad 2.441314 \quad-0.884423-2.649273$

H	-7.855848	-0.214470	0.991398	H	7.855816	-0.215630	-0.991277
H	-7.860973	-0.724484	-0.706421	H	7.860966	-0.723705	0.707120
H	-7.840807	0.991200	-0.302164	H	7.840836	0.991523	0.300903

7. Plots of the NMR spectra

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of $5\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S27. ${ }^{11}$ B NMR spectrum of 5 (160.5 MHz , THF- d_{8}).

Figure S28. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5}\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of $6\left(250.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of 7 ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$).

Figure S31. ${ }^{11}$ B NMR spectrum of $7\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{7}\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S34. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{8}$ (160.5 MHz, THF-d ${ }_{8}$).

Figure S35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8}\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Li}_{2}[3]$ (500.2 MHz, THF- d_{8}).

Figure S37. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Li}_{2}[3]$ ($160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}$).

Figure S38. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}[3]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Li}_{2}[5]\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S40. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Li}_{2}[\mathbf{5}]$ ($160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}$).

Figure S41. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}[5]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Li}_{2}[7]$ (500.2 MHz, THF- d_{8}).

Figure S43. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Li}_{2}[7]$ (160.5 MHz, THF- d_{8}).

Figure S44. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}[7]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Li}_{2}[\mathbf{8}]\left(500.2 \mathrm{MHz}\right.$, THF- d_{8}).

Figure S46. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Li}_{2}[8]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S47. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}[8]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S48. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{Na}_{2}[1]\left(300.0 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$. Asterisks mark resonances of $\mathrm{Na}_{2}\left[1-\mathrm{H}_{2}\right]$ as a minor component; explanation of its derivation is provided in the SI of Ref. [4].

Figure S49. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Na}_{2}[\mathbf{1}]\left(96.3 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S50. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Na}_{2}[\mathbf{1}]\left(75.4 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S51. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Na}_{2}[\mathbf{2}]\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S52. ${ }^{11}$ B NMR spectrum of $\mathrm{Na}_{2}[\mathbf{2}]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S53. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Na}_{2}[\mathbf{2}]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S54. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Na}_{2}[7]\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S55. ${ }^{11}$ B NMR spectrum of $\mathrm{Na}_{2}[7]$ (160.5 MHz, THF- d_{8}).

Figure S56. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Na}_{2}[7]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S57. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{K}_{2}[\mathbf{4}]\left(300.0 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S58. ${ }^{11}$ B NMR spectrum of $\mathrm{K}_{2}[\mathbf{4}]\left(96.3 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S59. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{K}_{2}[4]\left(75.4 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S60. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{K}_{2}[\mathbf{5}]\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S61. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{K}_{2}[5]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S62. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{K}_{2}[5]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S63. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{K}_{2}[7]\left(500.2 \mathrm{MHz}\right.$, THF- d_{8}).

Figure S64. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{K}_{2}[7]$ (160.5 MHz, THF- d_{8}).

Figure S65. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{K}_{2}[7]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S66. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{K}_{2}[\mathbf{8}]\left(400.1 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S67. ${ }^{11}$ B NMR spectrum of $\mathrm{K}_{2}[\mathbf{8}]\left(128.4 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S68. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{K}_{2}[8]\left(100.6 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S69. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Li}_{2}\left[4-\mathrm{H}_{2}\right]\left(300.0 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$. Asterisks mark resonances of the starting material.

Figure S70. ${ }^{11}$ B NMR spectrum of $\mathrm{Li}_{2}\left[4-\mathrm{H}_{2}\right]$ (96.3 MHz, THF- d_{8}). Asterisk marks resonance of the starting material.

Figure S71. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}\left[4-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$. Asterisks mark resonances of the starting material.

Figure S72. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{Li}_{2}\left[5-\mathrm{H}_{2}\right]\left(300.0 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$. Asterisks mark resonances of the starting material.

Figure S73. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Li}_{2}\left[5-\mathrm{H}_{2}\right]\left(96.3 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$. Asterisk marks resonance of the starting material.

Figure S74. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}\left[5-\mathrm{H}_{2}\right]\left(75.4 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$. Asterisks mark resonances of the starting material.

Figure S75. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{Li}_{2}\left[7-\mathrm{H}_{2}\right]\left(400.1 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S76. ${ }^{11}$ B NMR spectrum of $\mathrm{Li}_{2}\left[7-\mathrm{H}_{2}\right]\left(128.4 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S77. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}\left[7-\mathrm{H}_{2}\right]\left(100.6 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S78. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{Li}_{2}\left[8-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S79. ${ }^{11}$ B NMR spectrum of $\mathrm{Li}_{2}\left[8-\mathrm{H}_{2}\right]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S80. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}\left[8-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S81. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{Na}_{2}\left[1-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S82. ${ }^{11}$ B NMR spectrum of $\mathrm{Na}_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S83. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Na}_{2}\left[1-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S84. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Na}_{2}\left[\mathbf{2}-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$. Unpicked peaks are not specified decomposition products.

Figure S85. ${ }^{11}$ B NMR spectrum of $\mathrm{Na}_{2}\left[2-\mathrm{H}_{2}\right]\left(96.3 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S86. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Na}_{2}\left[\mathbf{2}-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S87. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S88. ${ }^{11}$ B NMR spectrum of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S89. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S90. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{Na}_{2}\left[7-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S91. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Na}_{2}\left[7-\mathrm{H}_{2}\right]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S92. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Na}_{2}\left[7-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S93. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{K}_{2}\left[4-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S94. ${ }^{11}$ B NMR spectrum of $\mathrm{K}_{2}\left[4-\mathrm{H}_{2}\right]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S95. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{K}_{2}\left[4-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S96. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{K}_{2}\left[\mathbf{5}-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}\right.$, THF- d_{8}).

Figure S97. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{K}_{2}\left[5-\mathrm{H}_{2}\right]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S98. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{K}_{2}\left[\mathbf{5}-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S99. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{K}_{2}\left[7-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S100. ${ }^{11}$ B NMR spectrum of $\mathrm{K}_{2}\left[7-\mathrm{H}_{2}\right]\left(160.5 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S101. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{K}_{2}\left[7-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S102. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathrm{K}_{2}\left[\mathbf{8}-\mathrm{H}_{2}\right]\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S103. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{K}_{2}\left[8-\mathrm{H}_{2}\right]\left(160.5 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S104. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{K}_{2}\left[8-\mathrm{H}_{2}\right]\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S105. ${ }^{1} \mathrm{H}$ NMR spectrum of the amine $\mathrm{Ph}(\mathrm{H})_{2} \mathrm{C}-\mathrm{N}(\mathrm{H}) t \mathrm{Bu}$ from the autoclave reaction (500.2 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S106. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the amine $\mathrm{Ph}(\mathrm{H})_{2} \mathrm{C}-\mathrm{N}(\mathrm{H}) t \mathrm{Bu}$ from the autoclave reaction ($125.8 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$).

Figure S107. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,1 '-diphenylethane ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$). Asterisks mark resonances of the catalyst $\mathrm{Li}_{2}[4]$.

Figure S108. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,1 '-diphenylethane ($125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}$). Asterisks mark resonances of the catalyst $\mathrm{Li}_{2}[4]$.

Figure S109. ${ }^{1}$ H NMR spectrum of 9,10 -dihydroanthracene ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$). Asterisks mark resonances of the catalyst $\mathrm{Li}_{2}[4]$ and its H_{2} addition product.

Figure S110. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $9,10-$ dihydroanthracene $\left(125.8 \mathrm{MHz}\right.$, THF- d_{8}). Asterisks mark resonances of the catalyst $\mathrm{Li}_{2}[4]$ and its H_{2} addition product.

Figure S111. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Li}[10]\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$. Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[4]$.

Figure S112. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\operatorname{Li}[10]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$. Asterisk marks resonances of the starting material $\mathrm{Li}_{2}[\mathbf{4}]$.

Figure S113. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}[\mathbf{1 0}]\left(125.8 \mathrm{MHz}\right.$, THF- d_{8}). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[\mathbf{4}]$.

Figure S114. ${ }^{1} \mathrm{H}$ NMR spectrum of crystals of $\mathrm{LiH}[10]\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S115. ${ }^{11}$ B NMR spectrum of crystals of $\mathrm{LiH}[10]\left(160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S116. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of crystals of $\mathrm{LiH}[10]$ (125.8 MHz, THF- d_{8}).

Figure S117. ${ }^{1} \mathrm{H}$ NMR spectrum of the cycloadduct of $\mathrm{Li}_{2}[4]$ with 1,1 '-diphenylethylene $(500.2 \mathrm{MHz}$, THF- d_{8}).

Figure S118. ${ }^{11}$ B NMR spectrum of the cycloadduct of $\mathrm{Li}_{2}[4]$ with 1,1 '-diphenylethylene (160.5 MHz , THF- d_{8}).

Figure S119. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the cycloadduct of $\mathrm{Li}_{2}[4]$ with 1,1 '-diphenylethylene (125.8 $\mathrm{MHz}, \mathrm{THF}-d_{8}$).

Figure S120. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Li}_{2}[\mathbf{1 1}]\left(500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S121. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Li}_{2}[\mathbf{1 1}]\left(160.5 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S122. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Li}_{2}[\mathbf{1 1}]\left(125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S123. ${ }^{1} \mathrm{H}$ NMR spectrum of the cycloadduct of $\mathrm{Li}_{2}[4]$ with diphenylacetylene $(500.2 \mathrm{MHz}$, THF- d_{8}). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[\mathbf{4}]$.

Figure S124. ${ }^{11}$ B NMR spectrum of the cycloadduct of $\mathrm{Li}_{2}[4]$ with diphenylacetylene (160.5 MHz , THF- d_{8}).

Figure S125. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the cycloadduct of $\mathrm{Li}_{2}[4]$ with diphenylacetylene (125.8 $\mathrm{MHz}, \mathrm{THF}-d_{8}$). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[4]$.

Figure S126. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(1-piperidinyl)cyclohexene beside $\mathrm{Li}_{2}[4]$ (400.1 MHz, THF$\left.d_{8}\right)$.). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[4]$.

Figure S127. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,3-dimethyl-2-butene beside $\mathrm{Li}_{2}[4]$ ($250.1 \mathrm{MHz}, \mathrm{THF}-d_{8}$).
Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[4]$.

Figure S128. ${ }^{1}$ H NMR spectrum of cyclohexene beside $\mathrm{Li}_{2}[4]\left(300.0 \mathrm{MHz}\right.$, THF- d_{8}). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[\mathbf{4}]$.

Figure S129. ${ }^{1} \mathrm{H}$ NMR spectrum of phenanthrene beside $\mathrm{Li}_{2}[4]\left(250.1 \mathrm{MHz}\right.$, THF- d_{8}). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[\mathbf{4}]$.

Figure S130. ${ }^{1} \mathrm{H}$ NMR spectrum of naphthalene beside $\mathrm{Li}_{2}[4]\left(300.0 \mathrm{MHz}\right.$, THF- d_{8}). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[\mathbf{4}]$.

Figure S131. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-butyne beside $\mathrm{Li}_{2}[4]$ (300.0 MHz , THF- d_{8}). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[4]$.

Figure S132. ${ }^{1} \mathrm{H}$ NMR spectrum of bis-(trimethylsilyl)acetylene beside $\mathrm{Li}_{2}[4]$ (250.1 MHz , THF- d_{8}). Asterisks mark resonances of the starting material $\mathrm{Li}_{2}[4]$.

Figure S133. ${ }^{1} \mathrm{H}$ NMR spectrum ($500.2 \mathrm{MHz}, \mathrm{THF}-d_{8}$) recorded 2 d after the addition of $\mathrm{Et}_{3} \mathrm{SiCl}$ to a solution of $\mathrm{Na}_{2}[4]$ (1:1).

```
O
```


Figure S134. ${ }^{11}$ B NMR spectrum ($160.5 \mathrm{MHz}, \mathrm{THF}-d_{8}$) recorded 2 d after the addition of $\mathrm{Et}_{3} \mathrm{SiCl}$ to a solution of $\mathrm{Na}_{2}[4]$ (1:1).

Figure S135. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($125.8 \mathrm{MHz}, \mathrm{THF}-d_{8}$) recorded 2 d after the addition of $\mathrm{Et}_{3} \mathrm{SiCl}$ to a solution of $\mathrm{Na}_{2}[4]$ (1:1).

Figure S136. ${ }^{29} \mathrm{Si}$ NMR spectrum ($99.4 \mathrm{MHz}, \mathrm{THF}-d_{8}$) recorded 2 d after the addition of $\mathrm{Et}_{3} \mathrm{SiCl}$ to a solution of $\mathrm{Na}_{2}[4]$ (1:1).

Figure S137. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture $\mathrm{Li}_{2}\left[1-\mathrm{H}_{2}\right] / \mathrm{Me}_{3} \mathrm{SiCl}\left(500.2 \mathrm{MHz}\right.$, THF- d_{8}). Asterisks mark resonances of $\mathbf{1}$.

Figure S138. ${ }^{29}$ Si-INEPT NMR spectrum of the reaction mixture $\mathrm{Li}_{2}\left[1-\mathrm{H}_{2}\right] / \mathrm{Me}_{3} \mathrm{SiCl}(99.4 \mathrm{MHz}$, THF$d_{8}$).

Figure S139. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture $\mathrm{K}_{2}\left[1-\mathrm{H}_{2}\right] / \mathrm{Me}_{3} \mathrm{SiCl}\left(300.0 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$. Asterisks mark resonances of $\mathbf{1}$.

Figure S140. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{Ph}_{2} \mathrm{SiCl}_{2}\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$. Asterisks mark resonances of 4.

Figure S141. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{Ph}_{2} \mathrm{SiCl}_{2}$ (99.4 MHz , THFd_{8}). The expansion shows the proton-coupled ${ }^{29} \mathrm{Si}$ NMR spectrum.

Figure S142. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{SiCl}_{4}\left(400.1 \mathrm{MHz}\right.$, THF- d_{8}). Asterisks mark resonances of 4.

Figure S143. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{SiCl}_{4}\left(99.4 \mathrm{MHz}\right.$, THF- d_{8}). The NMR spectrum was measured several months after the initial reaction so that a second species formed which is marked with an asterisk. The expansion shows the proton-coupled ${ }^{29} \mathrm{Si}$ NMR spectrum.

Figure S144. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{GeCl}_{4}\left(400.1 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$. Asterisks mark resonances of 4.

Figure S145. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction between $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right]$ and $\mathrm{PCl}_{3}\left(400.1 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.
Asterisks mark resonances of 4.

Figure S146. ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{PCl}_{3}\left(121.5 \mathrm{MHz}\right.$, THF- d_{8}). Asterisk marks resonance of the starting material PCl_{3} since the stoichiometry of the reaction matched not perfectly.

Figure S147. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{EtBr}\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$. Asterisks mark resonances of $\mathbf{4}$ and black squares mark resonances of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$.

Figure S148. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{EtBr}\left(125.8 \mathrm{MHz}\right.$, THF- d_{8}). Asterisks mark resonances of 4.

Figure S149. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{CO}_{2}\left(500.2 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S150. ${ }^{11}$ B NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{CO}_{2}\left(160.5 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S151. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{CO}_{2}\left(125.8 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S152. ${ }^{1} \mathrm{H}$ NMR spectrum of sodium formate of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{CO}_{2}(500.2$ $\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$).

Figure S153. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of sodium formate of the reaction mixture $\mathrm{Na}_{2}\left[4-\mathrm{H}_{2}\right] / \mathrm{CO}_{2}$ (125.8 MHz, $\mathrm{D}_{2} \mathrm{O}$).

8. X-ray crystal structure analyses

Data for all structures were collected on a STOE IPDS II two-circle diffractometer with a Genix Microfocus tube with mirror optics using MoK α radiation ($\lambda=0.71073 \AA$). The data were scaled using the frame-scaling procedure in the X-AREA program system. ${ }^{23}$ The structures were solved by direct methods using the program SHELX and refined against F^{2} with full-matrix least-squares techniques using the program SHELXL-97. ${ }^{24}$

In 8 , the H atoms of one methyl group in the asymmetric unit are disordered over two positions with a site occupation factor of 0.60 (2) for the major occupied sites.

In $\left[\mathrm{Li}(\mathrm{thf})_{2}\right]_{2}[7]$, two methylene groups of one thf ligand in the asymmetric unit are disordered over two positions with a site occupation factor of 0.576 (12) for the major occupied sites. The displacement ellipsoids of the disordered atoms were restrained to an isotropic behavior. The crystal was twinned with a fractional contribution of $0.7830(17)$ of the major domain.

In $\left[\mathrm{Na}_{2}(\operatorname{thf})_{3}\right][\mathbf{1}]$, one methylene group of one thf ligand in the asymmetric unit is disordered over two positions with a site occupation factor of $0.527(16)$ for the major occupied site. The H atom bonded to B was freely refined.

In $\left[\mathrm{K}_{2}(\mathrm{thf})_{4}\right][\mathbf{1}]$, two methylene groups of one thf ligand in the asymmetric unit are disordered over two positions with a site occupation factor of $0.55(2)$ for the major occupied sites. The displacement ellipsoids of all atoms of the disordered thf ligand were restrained to an isotropic behavior. The H atom bonded to B was freely refined.

In $[\mathrm{Na}]\left[\mathrm{Na}(\mathrm{thf})_{2}(18-\mathrm{c}-6)\right]\left[\mathrm{Na}(\mathrm{thf})_{2}\right]_{2}(n$-hexane $)\left[7-\mathrm{H}_{2}\right]_{2}$, two methylene groups of two thf ligands in the asymmetric unit are disordered over two positions with a site occupation factor of $0.50(3)$ and $0.54(3)$, respectively, for the major occupied sites. In two thf ligands one methylene group is disordered over two positions with a site occupation factor of $0.65(3)$ and $0.63(3)$, respectively, for the major occupied sites. The displacement ellipsoids of the disordered atoms were restrained to an isotropic behavior. The H atoms bonded to B were freely refined. Bond lengths in the n-hexane molecule were restrained to $1.550(1) \AA$ and $1-3$ distances were restrained to $2.42(1) \AA$. The displacement ellipsoids of mutually bonded atoms of the n-hexane molecule were restrained to be similar.

In $[\mathrm{K}(18-\mathrm{c}-6)]_{2}\left[1-\mathrm{H}_{2}\right]$, the H atoms bonded to B were freely refined.
In $[\mathrm{K}][\mathrm{K}(\mathrm{thf})]_{3}\left[4-\mathrm{H}_{2}\right]_{2}$, two methylene groups of two thf ligands in the asymmetric unit are disordered over two positions with a site occupation factor of $0.664(15)$ and $0.548(13)$, respectively, for the major occupied sites. The displacement ellipsoids of all atoms in all thf molecules were restrained to an isotropic behavior. The H atoms bonded to B were freely refined.

In $[\mathrm{K}]_{2}[\mathrm{~K}(18-\mathrm{c}-6)]\left[\mathrm{K}(18-\mathrm{c}-6)(\mathrm{thf})_{2}\right]\left[7-\mathrm{H}_{2}\right]_{2}$, the H atoms bonded to B were freely refined.

In $\left[\operatorname{Li}(12-c-4)_{2}\right](\mathrm{THF})[10]$, two methylene groups of the co-crystallized THF molecule are disordered over two positions with a site occupation factor of $0.545(16)$ for the major occupied sites. The displacement ellipsoids of the disordered atoms were restrained to an isotropic behavior. The H atom bonded to N was freely refined.

In $[\operatorname{Li}(12-c-4)(\operatorname{thf})][\operatorname{Li}(12-\mathrm{c}-4)][11]$, two methylene groups of the thf ligand are disordered over two positions with a site occupation factor of $0.53(4)$ for the major occupied sites. One entire crown-ether ring is disordered over two positions with a site occupation factor of 0.697 (8) for the major occupied sites. The lower occupied atoms of the disordered crown-ether ring and all disordered atoms of the thf molecule were isotropically refined. The displacement ellipsoids of the higher occupied sites of the disordered crown-ether ring were restrained to an isotropic behavior. The coordinates of the H atoms of the ethylene bridge between the B atoms were refined. Bond lengths and angles of the lower occupied crown-ether ring were restrained to be similar to those of a non-disordered crown-ether ring. Bond lengths and angles of the disordered thf ligand were restrained to be similar to those of a nondisordered thf ligand.

Figure S154. Molecular structure of 5 in the solid state. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and bond angles $\left(^{\circ}\right): \mathrm{B} 1-\mathrm{C} 1=1.577(2), \mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=1.572(2), \mathrm{B} 1-\mathrm{C} 7=1.579(2), \mathrm{C} 1-\mathrm{C} 2=1.425(2), \mathrm{C} 1-\mathrm{C} 6=$ $1.402(2), \mathrm{C} 2-\mathrm{C} 3=1.406(2), \mathrm{C} 3-\mathrm{C} 4=1.393(2), \mathrm{C} 4-\mathrm{C} 5=1.382(2), \mathrm{C} 5-\mathrm{C} 6=1.389(2), \mathrm{C} 7-\mathrm{C} 8=$ $1.539(2) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=118.6(1), \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 7=119.8(1), \mathrm{C} 2 \mathrm{~A}-\mathrm{B} 1-\mathrm{C} 7=121.3(1)$. Symmetry transformation used to generate equivalent atoms: $\mathrm{A}:-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+2$.

Figure S155. Molecular structure of $\mathbf{8}$ in the solid state. Displacement ellipsoids are drawn at the 50\% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$, and torsion angle $\left(^{\circ}\right): \mathrm{B} 1-\mathrm{C} 1=1.568(2), \mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=1.568(2), \mathrm{B} 1-\mathrm{C} 11=1.572(2), \mathrm{C} 1-\mathrm{C} 2=1.426(2)$, $\mathrm{C} 1-\mathrm{C} 6=1.404(2), \mathrm{C} 2-\mathrm{C} 3=1.409(2), \mathrm{C} 3-\mathrm{C} 4=1.396(2), \mathrm{C} 4-\mathrm{C} 5=1.385(2), \mathrm{C} 5-\mathrm{C} 6=1.396(2)$; $\mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=119.29(9), \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11=120.6(1), \mathrm{C} 2 \mathrm{~A}-\mathrm{B} 1-\mathrm{C} 11=120.02(10) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11-\mathrm{C} 12=$ $-122.4(1)$. Symmetry transformation used to generate equivalent atoms: $\mathrm{A}:-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$.

Figure S156. Molecular structure of $\left[\operatorname{Li}(\operatorname{thf})_{2}\right]_{2}[7]$ in the solid state. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths (\AA), atom $\cdots \mathrm{COG}$ distance (\AA), bond angles $\left({ }^{\circ}\right)$, and torsion angle $\left({ }^{\circ}\right)$: $\mathrm{B} 1-\mathrm{C} 1=1.538(3)$, $\mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=$ $1.534(3), \mathrm{B} 1-\mathrm{C} 11=1.605(3), \mathrm{C} 1-\mathrm{C} 2=1.473(2), \mathrm{C} 1-\mathrm{C} 6=1.447(3), \mathrm{C} 2-\mathrm{C} 3=1.447(3), \mathrm{C} 3-\mathrm{C} 4=$ $1.368(3), \mathrm{C} 4-\mathrm{C} 5=1.423(3), \mathrm{C} 5-\mathrm{C} 6=1.366(3) ; \mathrm{Li} \cdots \mathrm{COG}=1.891(4) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=117.4(2)$, $\mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11=121.2(2), \mathrm{C} 2 \mathrm{~A}-\mathrm{B} 1-\mathrm{C} 11=121.38(17) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11-\mathrm{C} 12=69.1(3) . \mathrm{COG}=$ centroid of the $\mathrm{B}_{2} \mathrm{C}_{4}$ ring. Symmetry transformation used to generate equivalent atoms: $\mathrm{A}:-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$.

Figure S157. Molecular structure of $\left[\mathrm{Na}_{2}(\text { (thf })_{3}\right][\mathbf{1}]$ in the solid state. Displacement ellipsoids are drawn at the 50% probability level; carbon-bonded hydrogen atoms are omitted for clarity. Selected bond lengths (\AA), atom $\cdots \mathrm{COG}$ distance (\AA), and bond angles $\left({ }^{\circ}\right): \mathrm{B} 1-\mathrm{C} 1=1.527(3), \mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=$ $1.522(3), \mathrm{B} 1-\mathrm{H} 1=1.12(3), \mathrm{C} 1-\mathrm{C} 2=1.468(3), \mathrm{C} 1-\mathrm{C} 6=1.432(3), \mathrm{C} 2-\mathrm{C} 3=1.435(3), \mathrm{C} 3-\mathrm{C} 4=$ $1.354(4), \mathrm{C} 4-\mathrm{C} 5=1.397(4), \mathrm{C} 5-\mathrm{C} 6=1.369(4) ; \mathrm{Na} \cdots \mathrm{COG}=2.2394(7) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=118.3(2)$. $\mathrm{COG}=$ centroid of the $\mathrm{B}_{2} \mathrm{C}_{4}$ ring. Symmetry transformation used to generate equivalent atoms: A : $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}$.

Figure S158. Description of the solid-state structure of $\left[\mathrm{Na}_{2}\left(\operatorname{thf}_{)_{3}}\right][1]\right.$: Two Na^{+}ions are located above and below the $\mathrm{B}_{2} \mathrm{C}_{4}$ ring. Three thf ligands connect two Na^{+}ions of neighboring DBA fragments so that a coordination polymer is formed.

Figure S159. Molecular structure of one of the two crystallographically independent [1] ${ }^{2-}$ moieties of $\left[\mathrm{K}_{2}(\text { thf })_{4}\right][1]$ in the solid state. Displacement ellipsoids are drawn at the 50% probability level; carbonbonded hydrogen atoms are omitted for clarity. Selected bond lengths (\AA), atom $\cdots \mathrm{COG}$ distances (\AA), and bond angles $\left(^{\circ}\right)$ of the two crystallographically independent dianions: $\mathrm{B} 1-\mathrm{C} 1=1.523(4) / 1.512(5)$, $\mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=1.531(4) / 1.509(6), \mathrm{B} 1-\mathrm{H} 1=1.14(3) / 1.13(5), \mathrm{C} 1-\mathrm{C} 2=1.467(4) / 1.463(5), \mathrm{C} 1-\mathrm{C} 6=$ $1.444(4) / 1.441(5), \quad \mathrm{C} 2-\mathrm{C} 3=1.441(4) / 1.435(5), \quad \mathrm{C} 3-\mathrm{C} 4=1.368(5) / 1.326(8), \quad \mathrm{C} 4-\mathrm{C} 5=$ $1.415(5) / 1.391(8), \mathrm{C} 5-\mathrm{C} 6=1.382(5) / 1.396(7) ; \mathrm{K} 1 \cdots \mathrm{COG}=2.7927(6) / 2.7165(6) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=$ $118.7(3) / 119.1(3) . \mathrm{COG}=$ centroid of the $\mathrm{B}_{2} \mathrm{C}_{4}$ ring. Symmetry transformation used to generate equivalent atoms: $\mathrm{A}:-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$.

Figure S160. Description of the solid-state structure of $\left[\mathrm{K}_{2}(\mathrm{thf})_{4}\right][1]$: In the crystal lattice, coordination polymers are formed: Each K^{+}ion coordinates one $\mathrm{B}_{2} \mathrm{C}_{4}$ ring in an η^{6} mode, so that two K^{+}ions are located above and below each $\mathrm{B}_{2} \mathrm{C}_{4}$ ring. Half of the K^{+}ions connect two [DBA] ${ }^{2-}$ ions because they also coordinate to one phenylene ring (in an η^{3} fashion). Two thf ligands are located in bridging positions between two K^{+}ions. The coordination sphere of one K^{+}ion is completed by two additional thf ligands. Both $[\mathrm{DBA}]^{2-}$ units form a dihedral angle of $63.71(9)^{\circ}$.

Figure S161. Molecular structure of $[\mathrm{K}(\mathrm{thf})]_{2}[7]$ in the solid state. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths (\AA), atom $\cdots \mathrm{COG}$ distances (\AA), bond angles $\left({ }^{\circ}\right)$, and torsion angle $\left({ }^{\circ}\right): \mathrm{B} 1-\mathrm{C} 1=1.535(7), \mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=$ $1.542(7), \mathrm{B} 1-\mathrm{C} 11=1.583(7), \mathrm{C} 1-\mathrm{C} 2=1.460(6), \mathrm{C} 1-\mathrm{C} 6=1.434(6), \mathrm{C} 2-\mathrm{C} 3=1.444(6), \mathrm{C} 3-\mathrm{C} 4=$ $1.355(7), \mathrm{C} 4-\mathrm{C} 5=1.414(7), \mathrm{C} 5-\mathrm{C} 6=1.374(7) ; \mathrm{K} 1 \cdots \mathrm{COG}=2.702(1) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 2 \mathrm{~A}=117.4(4)$, $\mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11=122.1(4), \mathrm{C} 2 \mathrm{~A}-\mathrm{B} 1-\mathrm{C} 11=120.5(4) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11-\mathrm{C} 12=-124.6(5) . \mathrm{COG}=$ centroid of the $\mathrm{B}_{2} \mathrm{C}_{4}$ ring. Symmetry transformation used to generate equivalent atoms: $\mathrm{A}:-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$.

Figure S162. Description of the solid-state structure of $[\mathrm{K}(\mathrm{thf})]_{2}[7]$: In the crystal lattice, coordination polymers are formed: Each K^{+}ion coordinates one $\mathrm{B}_{2} \mathrm{C}_{4}$ ring in an η^{6} mode, one tolyl ring of a neighboring $[\mathrm{DBA}]^{2-}$ unit in an η^{3} mode $(\mathrm{K} 1 \cdots \mathrm{COG}(\mathrm{C} 11-\mathrm{C} 16)=3.201(2))$. The coordination sphere is completed by one thf ligand. The [DBA] ${ }^{2-}$ ions and the tolyl groups of the same polymer strand are oriented parallel to each other, respectively.

Figure S163. Molecular structure of one of the two crystallographically independent $\left[7-\mathrm{H}_{2}\right]^{2-}$ moieties of $[\mathrm{Na}]\left[\mathrm{Na}(\text { thf })_{2}(18-\mathrm{c}-6)\right]\left[\mathrm{Na}(\text { thf })_{2}\right]_{2}(n$-hexane $)\left[7-\mathrm{H}_{2}\right]_{2}$ in the solid state. Displacement ellipsoids are drawn at the 30% probability level; carbon-bonded hydrogen atoms, the $\left[\mathrm{Na}(\mathrm{thf})_{2}(18-\mathrm{c}-6)\right]^{+}$ion, and the n-hexane molecule are omitted for clarity. Selected bond lengths (\AA), atom \cdots atom distances (\AA), and bond angles (${ }^{\circ}$) of the two crystallographically independent molecules: B1-C1 = $1.624(5) / 1.626(5), \quad \mathrm{B} 1-\mathrm{C} 11=1.620(5) / 1.634(5), \quad \mathrm{B} 1-\mathrm{C} 21=1.625(5) / 1.610(5), \quad \mathrm{B} 1-\mathrm{H} 1=$ $1.26(3) / 1.24(3), \quad \mathrm{B} 2-\mathrm{C} 2=1.627(5) / 1.623(5), \quad \mathrm{B} 2-\mathrm{C} 12=1.630(5) / 1.628(5), \quad \mathrm{B} 2-\mathrm{C} 31=$ $1.626(5) / 1.614(4), \quad \mathrm{B} 2-\mathrm{H} 2=1.27(3) / 1.20(3), \quad \mathrm{C} 1-\mathrm{C} 2=1.424(4) / 1.424(4), \quad \mathrm{C} 11-\mathrm{C} 12=$ $1.424(4) / 1.427(4) ; \mathrm{Na} 1 \cdots \mathrm{C} 11=2.542(3) / 2.575(3), \mathrm{Na} 1 \cdots \mathrm{H} 1=2.31(3) / 2.46(3), \mathrm{Na} 1 \cdots \mathrm{H} 2=$ $2.29(3) / 2.37(3), \quad \mathrm{Na} 2 \cdots \mathrm{C} 1=2.741(3) / 2.738(3), \mathrm{Na} 2 \cdots \mathrm{H} 1=2.35(3) / 2.31(3), \mathrm{Na} 2 \cdots \mathrm{H} 2=$ $2.28(3) / 2.34(3) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11=109.1(2) / 109.4(2), \mathrm{C} 2-\mathrm{B} 2-\mathrm{C} 12=108.7(3) / 109.6(3)$.

Figure S164. Description of the solid-state structure of $[\mathrm{Na}]\left[\mathrm{Na}(\mathrm{thf})_{2}(18-\mathrm{c}-6)\right]\left[\mathrm{Na}(\mathrm{thf})_{2}\right]_{2}(n$-hexane $)[7-$ $\left.\mathrm{H}_{2}\right]_{2}$ (the discrete $\left[\mathrm{Na}(\operatorname{thff})_{2}(18-\mathrm{c}-6)\right]^{+}$ion and the n-hexane molecule are omitted for clarity): The crystal lattice consists of dimers, in which two [DBA] ${ }^{2-}$ entities are connected by one central Na^{+}ion. This cation is coordinated in a chelating manner by the two axial BH substituents of each anionic fragment; the octahedral ligand sphere is completed by short contacts to two trans-positioned phenylene rings. Two other $\left[\mathrm{Na}(\mathrm{thf})_{2}\right]^{+}$ions are also coordinated in a chelating manner by two axial BH substituents of the same $\left[7-\mathrm{H}_{2}\right]^{2-}$ fragment.

Figure S165: Molecular structure of one of the two crystallographically independent molecules of $[\mathrm{K}(18-\mathrm{c}-6)]_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right]$ in the solid state. Displacement ellipsoids are drawn at the 50% probability level; carbon-bonded hydrogen atoms are omitted for clarity. Selected bond lengths (\AA), atom $\cdots \mathrm{COG}$ distances (\AA), and bond angles $\left({ }^{\circ}\right)$ of the two crystallographically independent molecules: $\mathrm{B} 1-\mathrm{C} 1=$ $1.619(3) / 1.622(3), \quad \mathrm{B} 1-\mathrm{H} 1 \mathrm{~A}=1.16(3) / 1.20(3), \mathrm{B} 1-\mathrm{H} 1 \mathrm{~B}=1.13(3) / 1.18(4), \mathrm{C} 1-\mathrm{C} 1(\# 1 / \# 2)=$ $1.431(5) / 1.434(4), \mathrm{C} 1-\mathrm{C} 2=1.408(4) / 1.414(4), \mathrm{C} 2-\mathrm{C} 3=1.383(4) / 1.378(4), \mathrm{C} 3-\mathrm{C} 3(\# 1 / \# 2)=$ $1.399(5) / 1.393(5) ; \mathrm{K} 1 \cdots \mathrm{COG}=2.9165(8) / 2.9177(7) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 1(\# 3 / \# 4)=115.7(3) / 116.0(3) . \mathrm{COG}=$ centroid of the $B_{2} C_{4}$ ring. Symmetry transformation used to generate equivalent atoms: $\# 1$: $-x+1$, $-\mathrm{y}+2, \mathrm{z} ; \# 2:-\mathrm{x}+1,-\mathrm{y}+1, \mathrm{z} ; \# 3: \mathrm{x}, \mathrm{y},-\mathrm{z}+1 ; \# 4: \mathrm{x}, \mathrm{y},-\mathrm{z}$.

The molecule possesses a high symmetry with a center of inversion, one mirror plane containing the two BH_{2} fragments, and one C_{2} axis perpendicular to the mirror plane.

Figure S166. Molecular structure of one of the two crystallographically independent $\left[4-\mathrm{H}_{2}\right]^{2-}$ moieties of $[\mathrm{K}][\mathrm{K}(\mathrm{thf})]_{3}\left[4-\mathrm{H}_{2}\right]_{2}$ in the solid state. Displacement ellipsoids are drawn at the 30% probability level; carbon-bonded hydrogen atoms and all counter cations are omitted for clarity. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of the two crystallographically independent molecules: B1-C1 $=$ $1.625(3) / 1.638(3), \quad \mathrm{B} 1-\mathrm{C} 7=1.633(3) / 1.645(3), \quad \mathrm{B} 1-\mathrm{C} 11=1.632(3) / 1.632(3), \quad \mathrm{B} 1-\mathrm{H} 1=$ $1.19(2) / 1.18(2), \quad \mathrm{B} 2-\mathrm{C} 2=1.631(4) / 1.630(3), \quad \mathrm{B} 2-\mathrm{C} 12=1.630(3) / 1.628(3), \quad \mathrm{B} 2-\mathrm{C} 17=$ $1.642(3) / 1.627(3), \quad \mathrm{B} 2-\mathrm{H} 2=1.21(2) / 1.220(18), \quad \mathrm{C} 1-\mathrm{C} 2=1.425(3) / 1.426(3), \quad \mathrm{C} 11-\mathrm{C} 12=$ $1.425(3) / 1.432(3) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11=107.97(15) / 107.15(15), \mathrm{C} 2-\mathrm{B} 2-\mathrm{C} 12=108.29(16) / 105.87(15)$.

Figure S167. Description of the solid-state structure of $[\mathrm{K}][\mathrm{K}(\mathrm{thf})]_{3}\left[4-\mathrm{H}_{2}\right]_{2}$: In the crystal lattice, coordination polymers are formed. The repeating unit consists of two $[\mathrm{DBA}]^{2-}$ entities, which are bridged by three $[\mathrm{K}(\mathrm{thf})]^{+}$ions, mainly via $\mathrm{K} \cdots \mathrm{H}$ interactions. The repeating units are connected by K^{+} cations embedded between the concave sites of two $\left[4-\mathrm{H}_{2}\right]^{2-}$ units (contact ion pairs without additional thf ligands).

Figure S168. Molecular structure of one $\left[7-\mathrm{H}_{2}\right]^{2-}$ moiety of $[\mathrm{K}]_{2}[\mathrm{~K}(18-\mathrm{c}-6)]\left[\mathrm{K}(18-\mathrm{c}-6)(\mathrm{thf})_{2}\right]\left[7-\mathrm{H}_{2}\right]_{2}$ in the solid state. Displacement ellipsoids are drawn at the 50% probability level; carbon-bonded hydrogen atoms, the $[\mathrm{K}(18-\mathrm{c}-6)]^{+}$ion, and the $\left[\mathrm{K}(18-\mathrm{c}-6)(\mathrm{thf})_{2}\right]^{+}$ion are omitted for clarity. Selected bond lengths (\AA), atom \cdots atom distances (\AA), and bond angles $\left({ }^{\circ}\right)$: B1-C1 $=1.628(2)$, B1-C11 $=$ $1.636(2), \mathrm{B} 1-\mathrm{C} 21=1.626(2), \mathrm{B} 1-\mathrm{H} 1=1.217(17), \mathrm{B} 2-\mathrm{C} 2=1.641(2), \mathrm{B} 2-\mathrm{C} 12=1.634(2), \mathrm{B} 2-\mathrm{C} 31=$ $1.631(2), \mathrm{B} 2-\mathrm{H} 2=1.22(2), \mathrm{C} 1-\mathrm{C} 2=1.426(2), \mathrm{C} 11-\mathrm{C} 12=1.427(2) ; \mathrm{K} 1 \cdots \mathrm{H} 1=2.655(18), \mathrm{K} 1^{+} \cdots \mathrm{H} 2$ $=2.622(19) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11=107.8(1), \mathrm{C} 2-\mathrm{B} 2-\mathrm{C} 12=108.3(1)$.

Figure S169. Description of the solid-state structure of $[\mathrm{K}]_{2}[\mathrm{~K}(18-\mathrm{c}-6)]\left[\mathrm{K}(18-\mathrm{c}-6)(\mathrm{thf})_{2}\right]\left[7-\mathrm{H}_{2}\right]_{2}$ (the discrete $\left[\mathrm{K}(18-\mathrm{c}-6)(\text { thf })_{2}\right]^{+}$ions are omitted for clarity): In the crystal lattice, coordination polymers are formed. The repeating unit consists of two $\left[7-\mathrm{H}_{2}\right]^{2-}$ entities, which are bridged by two K^{+}ions. Each of these cations forms four $\mathrm{K} \cdots \mathrm{H}-\mathrm{B}$ and two $\mathrm{K} \cdots$ phenylene short contacts. The repeating units are connected by $[\mathrm{K}(18-\mathrm{c}-6)]^{+}$ions via $\mathrm{K} \cdots$ phenylene and $\mathrm{O}-\mathrm{K}$ interactions.

Figure S170. Molecular structure of $\left[\operatorname{Li}(12-c-4)_{2}\right](\mathrm{THF})[10]$ in the solid state. Displacement ellipsoids are drawn at the 50% probability level; carbon-bonded hydrogen atoms, the $\left[\mathrm{Li}(12-\mathrm{c}-4)_{2}\right]^{+}$ion, and the co-crystallized THF molecule are omitted for clarity. Selected bond lengths (\AA) and bond angles $\left(^{\circ}\right)$: $\mathrm{B} 1-\mathrm{C} 1=1.616(3), \mathrm{B} 1-\mathrm{C} 7=1.624(3), \mathrm{B} 1-\mathrm{C} 11=1.629(3), \mathrm{B} 1-\mathrm{N} 1=1.737(3), \mathrm{B} 2-\mathrm{C} 2=1.622(3)$, $\mathrm{B} 2-\mathrm{C} 8=1.693(3), \mathrm{B} 2-\mathrm{C} 12=1.613(3), \mathrm{B} 2-\mathrm{C} 17=1.623(3), \mathrm{C} 1-\mathrm{C} 2=1.408(3), \mathrm{C} 11-\mathrm{C} 12=1.411(3)$, $\mathrm{C} 8-\mathrm{N} 1=1.537(3), \mathrm{N} 1-\mathrm{H} 1=0.90(2), \mathrm{N} 1-\mathrm{C} 21=1.535(3) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11=109.6(2), \mathrm{C} 2-\mathrm{B} 2-\mathrm{C} 12=$ 108.3(2).

Figure S171. Molecular structure of one of the two crystallographically independent contact-ion pairs $[\operatorname{Li}(12-\mathrm{c}-4)(\mathrm{thf})][\operatorname{Li}(12-\mathrm{c}-4)][11]$ in the solid state. Displacement ellipsoids are drawn at the 50% probability level; carbon-bonded hydrogen atoms of the DBA scaffold and the $[\operatorname{Li}(12-c-4)(\text { thf })]^{+}$ion are omitted for clarity. Selected bond lengths (\AA), atom \cdots atom distances (\AA), bond angles $\left({ }^{\circ}\right)$, and torsion angles $\left({ }^{\circ}\right)$ of the two crystallographically independent dianions: $\mathrm{B} 1-\mathrm{C} 1=1.617(7) / 1.632(8)$, $\mathrm{B} 1-\mathrm{C} 7=1.632(8) / 1.633(8), \mathrm{B} 1-\mathrm{C} 11=1.633(8) / 1.623(8), \mathrm{B} 1-\mathrm{C} 21=1.684(7) / 1.662(8), \mathrm{B} 2-\mathrm{C} 2=$ $1.630(8) / 1.611(8), \quad \mathrm{B} 2-\mathrm{C} 12=1.623(9) / 1.634(8), \quad \mathrm{B} 2-\mathrm{C} 17=1.628(9) / 1.643(8), \quad \mathrm{B} 2-\mathrm{C} 22=$ $1.677(8) / 1.691(8), \quad \mathrm{C} 1-\mathrm{C} 2=1.440(7) / 1.428(8), \mathrm{C} 11-\mathrm{C} 12=1.423(8) / 1.415(7), \mathrm{C} 21-\mathrm{C} 22=$ $1.552(8) / 1.551(8) ; \mathrm{Li}^{+} \ldots \mathrm{C} 21=2.334(10) / 2.309(11), \mathrm{Li}^{+} \cdots \mathrm{C} 22=2.361(10) / 2.420(10) ; \mathrm{C} 1-\mathrm{B} 1-\mathrm{C} 11$ $=104.2(4) / 103.5(4), \mathrm{C} 2-\mathrm{B} 2-\mathrm{C} 12=105.4(4) / 104.3(4) ; \mathrm{B} 1-\mathrm{C} 21-\mathrm{C} 22-\mathrm{B} 2=-1.4(6) /-1.9(6)$.

Table S6. Selected crystallographic data for $\mathbf{5 , 8}$, and $\left[\mathrm{Li}(\mathrm{thf})_{2}\right]_{2}[7]$.

compound	5	8	$\left[L i(t h f)_{2}\right]_{2}[7]$
CCDC	1888723	1888724	1888725
formula	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~B}_{2}$	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~B}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{Li}_{2} \mathrm{O}_{4}$
M_{r}	231.92	384.11	658.35
T (K)	173(2)	173(2)	173(2)
radiation, $\lambda(\AA)$	MoK $\alpha, 0.71073$	MoK $\alpha, 0.71073$	MoK $\alpha, 0.71073$
crystal system	triclinic	monoclinic	triclinic
space group	$P-1$	$P 2{ }_{1} / \mathrm{n}$	$P-1$
$a(\AA)$	5.1697(6)	10.3844(7)	9.1549(7)
b (${ }_{\text {(}}$)	7.5135(9)	8.6036(4)	9.8159(7)
$c(\AA)$	9.1628(11)	12.5024(8)	11.6092(9)
$\alpha\left({ }^{\circ}\right)$	76.716(9)	90	69.862(6)
$\beta\left({ }^{\circ}\right)$	74.826(9)	98.997(5)	79.949(6)
$\gamma\left({ }^{\circ}\right)$	84.882(9)	90	81.811(6)
$V\left(\AA^{3}\right)$	334.15(7)	1103.26(12)	960.60(13)
Z	1	2	1
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.153	1.156	1.138
$F(000)$	124	408	354
$\mu\left(\mathrm{mm}^{-1}\right)$	0.062	0.064	0.069
crystal size (mm)	$0.28 \times 0.21 \times 0.05$	$0.28 \times 0.26 \times 0.25$	$0.19 \times 0.18 \times 0.09$
crystal shape, color	colorless plate	yellow block	red plate
reflections collected	5472	19516	21740
independent reflections	1364	2812	21740
$R_{\text {int }}$	0.0193	0.0287	-
data/restraints/parameters	1364 / 0 / 82	2812/0/139	21740 / 24 / 247
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0473, 0.1360	0.0477, 0.1226	0.0604, 0.1410
$R_{1}, w R_{2}$ (all data)	0.0534, 0.1397	0.0562, 0.1282	0.0873, 0.1523
GOF on F^{2}	1.114	1.059	0.978
largest difference peak and hole (e \AA^{-3})	0.265, -0.165	0.317, -0.191	0.243, -0.220

Table S7. Selected crystallographic data for $\left[\mathrm{Na}_{2}(\operatorname{thf})_{3}\right][1],\left[\mathrm{K}_{2}(\mathrm{thf})_{4}\right][1]$, and $[\mathrm{K}(\mathrm{thf})]_{2}[7]$.

compound	$\left[\mathrm{Na}_{2}(\mathrm{thf})_{3}\right][\mathbf{1}]$	$\left[\mathrm{K}_{2}(\mathrm{thf})_{4}\right][\mathbf{1}]$	$[\mathrm{K}(\mathrm{thf})]_{2}[7]$
CCDC	1888726	1888727	1888728
formula	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{Na}_{2} \mathrm{O}_{3}$	$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~B}_{2} \mathrm{~K}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{~K}_{2} \mathrm{O}_{2}$
M_{r}	438.11	542.43	578.46
T (K)	173(2)	173(2)	173(2)
radiation, $\lambda(\AA)$	MoK $\alpha, 0.71073$	MoK $\alpha, 0.71073$	MoK $\alpha, 0.71073$
crystal system	monoclinic	monoclinic	monoclinic
space group	C2/c	$P 2{ }_{1} / n$	$P 2{ }_{1} / c$
$a(\AA)$	16.846(2)	14.6657(7)	6.3580(9)
$b(\AA)$	10.2105(8)	10.0154(4)	12.581(2)
$c(\AA)$	15.0325(17)	21.2355(10)	19.691(3)
$\alpha{ }^{\circ}{ }^{\circ}$	90	90	90
$\beta\left({ }^{\circ}\right)$	106.425(9)	102.926(4)	90.278(12)
$\gamma\left({ }^{\circ}\right)$	90	90	90
$V\left(\AA^{3}\right)$	2480.2(5)	3040.1(2)	1575.1(4)
Z	4	4	2
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.173	1.185	1.220
$F(000)$	936	1160	612
$\mu\left(\mathrm{mm}^{-1}\right)$	0.103	0.341	0.329
crystal size (mm)	$0.27 \times 0.11 \times 0.11$	$0.28 \times 0.12 \times 0.12$	$0.22 \times 0.08 \times 0.03$
crystal shape, color	dark red needle	dark red needle	dark red needle
reflections collected	10625	41456	8870
independent reflections	2316	5727	2778
$R_{\text {int }}$	0.0479	0.0350	0.1002
data/restraints/parameters	2316/0/155	5727/42/352	2778 / 0 / 182
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0476, 0.1156	0.0597, 0.1597	0.0735, 0.1518
$R_{1}, w R_{2}$ (all data)	0.0689, 0.1238	0.0730, 0.1696	0.1380, 0.1750
GOF on F^{2}	1.043	1.021	0.971
largest difference peak and hole (e \AA^{-3})	0.216, -0.185	0.745, -0.430	0.380, -0.358

Table S8. Selected crystallographic data for $[\mathrm{Na}]\left[\mathrm{Na}(\mathrm{thf})_{2}(18-\mathrm{c}-6)\right]\left[\mathrm{Na}(\mathrm{thf})_{2}\right]_{2}(n$-hexane $)\left[7-\mathrm{H}_{2}\right]_{2}$, $[\mathrm{K}(18-\mathrm{c}-6)]_{2}\left[\mathbf{1}-\mathrm{H}_{2}\right]$, and $[\mathrm{K}][\mathrm{K}(\mathrm{thf})]_{3}\left[\mathbf{4}-\mathrm{H}_{2}\right]_{2}$.

compound	$\begin{aligned} & {[\mathrm{Na}]\left[\mathrm{Na}(\mathrm{thf})_{2}(18-\mathrm{c}-6)\right]} \\ & {\left[\mathrm{Na}(\mathrm{thf})_{2}\right]_{2}(n \text {-hexane })[7-} \\ & \left.\mathrm{H}_{2}\right]_{2} \end{aligned}$	$[\mathrm{K}(18-\mathrm{c}-6)]_{2}\left[1-\mathrm{H}_{2}\right]$	$[\mathrm{K}][\mathrm{K}(\mathrm{thf})]_{3}\left[\mathbf{4}-\mathrm{H}_{2}\right]_{2}$
CCDC	1888729	1888730	1888731
formula	$\mathrm{C}_{94} \mathrm{H}_{134} \mathrm{~B}_{4} \mathrm{Na}_{4} \mathrm{O}_{12}$	$\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{~B}_{2} \mathrm{~K}_{2} \mathrm{O}_{12}$	$\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~B}_{4} \mathrm{~K}_{4} \mathrm{O}_{3}$
M_{r}	1591.20	784.66	784.48
T (K)	173(2)	173(2)	173(2)
radiation, λ (A)	MoK $\alpha, 0.71073$	MoK α, 0.71073	MoK $\alpha, 0.71073$
crystal system	monoclinic	orthorhombic	monoclinic
space group	$P 2{ }_{1} / c$	Pbam	$P 2{ }_{1} / n$
$a(\AA)$	16.0130(8)	22.959(2)	11.1111(3)
b (A)	17.3067(6)	9.4933(8)	24.7167(5)
$c($ ($)$	34.7821(19)	18.771(2)	16.6417(4)
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	101.572(4)	90	107.866(2)
$\gamma\left({ }^{\circ}\right)$	90	90	90
$V\left(\AA^{3}\right)$	9443.3(8)	4091.3(7)	4349.91(19)
Z	4	4	4
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.119	1.274	1.198
$F(000)$	3432	1680	1664
$\mu\left(\mathrm{mm}^{-1}\right)$	0.087	0.289	0.443
crystal size (mm)	$0.21 \times 0.11 \times 0.02$	$0.17 \times 0.17 \times 0.08$	$0.29 \times 0.28 \times 0.23$
crystal shape, color	colorless plate	colorless plate	colorless block
reflections collected	107613	13623	69817
independent reflections	17461	3949	8450
R_{int}	0.0924	0.0558	0.0284
data/restraints/parameters	17461 / 103 / 1105	3949 / 0 / 259	8450 / 90 / 509
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0682, 0.1531	0.0422, 0.0586	0.0441, 0.1148
$R_{1}, w R_{2}$ (all data)	0.1432, 0.1844	0.1055, 0.0699	0.0517, 0.1196
GOF on F^{2}	0.970	0.872	1.059
largest difference peak and hole (e \AA^{-3})	0.287, -0.327	0.197, -0.211	0.668, -0.354

Table S9. Selected crystallographic data for and $[\mathrm{K}]_{2}[\mathrm{~K}(18-\mathrm{c}-6)]\left[\mathrm{K}(18-\mathrm{c}-6)(\mathrm{thf})_{2}\right]\left[7-\mathrm{H}_{2}\right]_{2}$, for $[\mathrm{Li}(12-\mathrm{c}-$ $\left.4)_{2}\right](\mathrm{THF})[10]$ and $[\mathrm{Li}(12-\mathrm{c}-4)($ thf $)][\mathrm{Li}(12-\mathrm{c}-4)][11]$.

compound	$\begin{aligned} & {[\mathrm{K}]_{2}[\mathrm{~K}(18-\mathrm{c}-6)][\mathrm{K}(18-\mathrm{c}-} \\ & \left.6)(\mathrm{thf})_{2}\right]\left[7-\mathrm{H}_{2}\right]_{2} \end{aligned}$	$\left[\operatorname{Li}(12-\mathrm{c}-4)_{2}\right]$ (THF) $[10]$	$\begin{aligned} & {[\mathrm{Li}(12-\mathrm{c}-4)(\mathrm{thf})][\mathrm{Li}(12-\mathrm{c}-} \\ & 4)][\mathbf{1 1}] \end{aligned}$
CCDC	1888732	1888733	1888734
formula	$\mathrm{C}_{84} \mathrm{H}_{112} \mathrm{~B}_{4} \mathrm{~K}_{4} \mathrm{O}_{14}$	$\mathrm{C}_{45} \mathrm{H}_{70} \mathrm{~B}_{2} \mathrm{LiNO}_{9}$	$\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~B}_{2} \mathrm{Li}_{2} \mathrm{O}_{9}$
M_{r}	1545.37	797.58	670.32
T (K)	173(2)	173(2)	173(2)
radiation, λ (\AA)	MoK $\alpha, 0.71073$	MoK $\alpha, 0.71073$	MoK $\alpha, 0.71073$
crystal system	triclinic	monoclinic	monoclinic
space group	$P-1$	$P 2{ }_{1} / c$	$P 2_{1}$
$a(\AA)$	11.9532(7)	13.8997(6)	14.3173(13)
b (${ }_{\text {(}}$)	12.6550(7)	13.1337(5)	12.8231(8)
$c(\AA)$	15.2730(9)	25.5265(12)	20.9241(18)
$\alpha\left({ }^{\circ}\right)$	112.470(4)	90	90
$\beta\left({ }^{\circ}\right)$	90.868(5)	104.454(4)	102.873(7)
$\gamma\left({ }^{\circ}\right)$	100.044(5)	90	90
$V\left(\AA^{3}\right)$	2093.7(2)	4512.5(3)	3744.9(5)
Z	1	4	4
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.226	1.174	1.189
F (000)	824	1728	1448
$\mu\left(\mathrm{mm}^{-1}\right)$	0.273	0.079	0.081
crystal size (mm)	$0.27 \times 0.27 \times 0.13$	$0.29 \times 0.27 \times 0.11$	$0.14 \times 0.11 \times 0.04$
crystal shape, color	colorless plate	colorless plate	colorless plate
reflections collected	26936	52297	29657
independent reflections	7828	8793	12967
$R_{\text {int }}$	0.0279	0.0622	0.0692
data/restraints/parameters	7828 / 0 / 491	8793 / 24 / 546	12967 / 236 / 955
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0367, 0.0902	0.0637, 0.1580	0.0678, 0.1387
$R_{1}, w R_{2}$ (all data)	0.0506, 0.0950	0.0955, 0.1734	0.1072, 0.1541
GOF on F^{2}	1.048	1.042	0.950
largest difference peak and hole (e \AA^{-3})	0.315, -0.302	0.477, -0.183	0.453, -0.210

9. References

(1) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176.
(2) Januszewski, E.; Lorbach, A.; Grewal, R.; Bolte, M.; Bats, J. W.; Lerner, H.-W.; Wagner, M., Unsymmetrically Substituted 9,10-Dihydro-9,10-Diboraanthracenes as Versatile Building Blocks for Boron-Doped π-Conjugated Systems. Chem. Eur. J. 2011, 17, 12696.
(3) Lorbach, A.; Bolte, M.; Li, H.; Lerner, H.-W.; Holthausen, M. C.; Jäkle, F.; Wagner, M., 9,10-Dihydro-9,10-diboraanthracene: Supramolecular Structure and Use as a Building Block for Luminescent Conjugated Polymers. Angew. Chem. Int. Ed. 2009, 48, 4584.
(4) von Grotthuss, E.; Diefenbach, M.; Bolte, M.; Lerner, H.-W.; Holthausen, M. C.; Wagner, M., Reversible Dihydrogen Activation by Reduced Aryl Boranes as Main-Group Ambiphiles. Angew. Chem. Int. Ed. 2016, 55, 14067.
(5) Hoffend, C.; Diefenbach, M.; Januszewski, E.; Bolte, M.; Lerner, H.-W.; Holthausen, M. C.; Wagner, M., Effects of Boron Doping on the Structural and Optoelectronic Properties of 9,10Diarylanthracenes. Dalton Trans. 2013, 42, 13826.
(6) Kessler, S. N.; Neuburger, M.; Wegner, H. A., Bidentate Lewis Acids for the Activation of 1,2-Diazines - a New Mode of Catalysis. Eur. J. Org. Chem. 2011, 3238.
(7) von Grotthuss, E.; Prey, S. E.; Bolte, M.; Lerner, H.-W.; Wagner, M., Selective CO_{2} Splitting by Doubly Reduced Aryl Boranes to Give CO and $\left[\mathrm{CO}_{3}\right]^{2-}$. Angew. Chem. Int. Ed. 2018, 57, 16491.
(8) Lorbach, A.; Bolte, M.; Lerner, H.-W.; Wagner, M., Dilithio 9,10-Diborataanthracene: Molecular Structure and 1,4-Addition Reactions. Organometallics 2010, 29, 5762.
(9) Müller; P.; Huck, S. K., H.; Pritzkow, H.; Siebert, W., Synthesis and Structures of 9,10-Dihydro-9,10-diboraanthracene Derivatives. Z. Naturforsch. 1995, 50b, 1476.
(10) Brunner, E., Solubility of Hydrogen in 10 Organic Solvents at 298.15, 323.15, and 373.15 K. J. Chem. Eng.Data 1985, 30, 269.
(11) Eisch, J. J.; Kotowicz, B. W., Novel Organoborane Lewis Acids via Selective Boron-Tin Exchange Processes Steric Constraints to Electrophilic Initiation by the Boron Halide. Eur. J. Inorg. Chem. 1998, 761.
(12) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G., Metal-Free Catalytic Hydrogenation of Enamines, Imines, and Conjugated Phosphinoalkenylboranes. Angew. Chem. Int. Ed. 2008, 47, 7543.
(13) NMR Basic Principles and Progress - Oxygen-17 and Silicon-29; Diehl, P.; Fluck, E.; Kosfeld, R., Eds., 17th ed.; Springer-Verlag: Berlin Heidelberg, New York, 1981.
(14) Thorshaug, K.; Swang, O.; Dahl, I. M.; Olafsen, A., An Experimental and Theoretical Study of Spin-Spin Coupling in Chlorosilanes. J. Phys. Chem. A 2006, 110, 9801.
(15) Spectral Database for Organic Compounds (SDBS); ${ }^{1}$ H spectrum; SDBS No.: 9419; RN 7782-65-2; https://sdbs.db.aist.go.jp/sdbs/ (accessed January 14, 2019).
(16) Ebsworth, E. A. V.; Sheldrick, G. M., N.M.R. Spectra of Phosphine, Arsine and Stibine. Trans. Faraday Soc. 1967, 63, 1071.
(17) NMR-Spektroskopie von Nichtmetallen - 31P-NMR-Spektroskopie; Berger, S.; Braun, S.; Kalinowski, H.-O., Eds., 3th ed.; Georg Thieme Verlag: Stuttgart New York, 1993.
(18) Jana, A.; Tavcar, G.; Roesky, H. W.; John, M., Germanium(II) Hydride Mediated Reduction of Carbon Dioxide to Formic Acid and Methanol with Ammonia Borane as the Hydrogen Source. Dalton Trans. 2010, 39, 9487.
(19) Spectral Database for Organic Compounds (SDBS); IR spectrum (KBr disc); SDBS No.: 2964; RN 141-53-7; https://sdbs.db.aist.go.jp/sdbs/ (accessed January 14, 2019).
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;

Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013; http://www.gaussian.com.
(21) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378.
(22) Brend'amour, S.; Gilmer, J.; Bolte, M.; Lerner, H.-W.; Wagner, M., C-Halogenated 9,10Diboraanthracenes: How the Halogen Load and Distribution Influences Key Optoelectronic Properties. Chem. Eur. J. 2018, 24, 16910.
(23) $\quad X$-AREA: Diffractometer Control Program System; Stoe \& Cie: Darmstadt, Germany, 2002.
(24) Sheldrick, G. M., A Short History of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112.

