Supporting Information

Synthesis of Constrained Tetracyclic Peptides by Consecutive CEPS, CLiPS and Oxime Ligation

Dieuwertje E. Streefkerk ${ }^{\mathrm{a}, \ddagger}$, Marcel Schmidta, ${ }^{\mathrm{b}} \ddagger$, Johannes H. Ippel ${ }^{\text {d }}$, Tilman M. Hackeng ${ }^{d}$, Timo Nuijens ${ }^{\text {b }}$, Peter Timmerman*a,c, Jan H. van Maarseveen*a
a Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH Amsterdam, the Netherlands.
${ }^{\text {b }}$ EnzyPep B.V., Urmonderbaan 22, 6167 RD Geleen, the Netherlands.
c Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands.
${ }^{\text {d D Department of Biochemistry (CARIM), University of Maastricht, Universiteitssingel 50, } 6229 \text { ER Maastricht, }}$ The Netherlands.

Contents

1 General information 3
2 Amino Acid Synthesis4
3 Peptide synthesis 10
4 Tolerance of unnatural amino acids $\mathrm{hS}\left(\mathrm{ONH}_{2}\right), \mathrm{F}(\mathrm{C}=\mathrm{O})$, and $\mathrm{D}(\mathrm{C}=\mathrm{O})$ in the omniligase-1 binding pockets: model studies 11
5 Enzymatic cyclizations 14
6 Scaffold Synthesis 19
7 Preparation of tetracyclic peptides 30
8 UPLC graphs of the synthesized tetracycles 39
9 NMR spectra 60
10 References 86

1 General information

1.1 Amino acid and scaffold synthesis

Unless stated otherwise, reactions were performed without special precautions like drying or $\mathrm{N}_{2} /$ Argon atmosphere. Dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ were obtained by distilling these solvents with CaH_{2} as drying agent. Dried THF was obtained by distillation with sodium. All dried solvents were stored under N_{2} atmosphere. Dry DMF on 4 Å molecular sieves was obtained from Sigma-Aldrich and stored under N_{2} atmosphere. Reagents were purchased with the highest purity (usually $>98 \%$) from Sigma Aldrich, Bachem and Fluorochem and used as received. Reactions were monitored with thin layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254). SilaFlash ${ }^{\circledR}$ P60 (particle size 40$63 \mu \mathrm{~m}$) was used for silica column chromatography. NMR spectra were recorded on Bruker DRX-500, 400 and 300 MHz instruments and calibrated on residual undeuterated solvent signals as internal standard. The $1 \mathrm{H}-\mathrm{NMR}$ multiplicities were abbreviated as followed: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, quint $=$ quintet, $m=$ multiplet. High resolution mass spectra (HRMS) were recorded on an AccuTOF GC v 4g, JMS-T100GCV Mass spectrometer (JEOL, Japan). FD/FI probe equipped with FD Emitter, Carbotec or Linden (Germany), FD $10 \mu \mathrm{~m}$. Current rate $51.2 \mathrm{~mA} / \mathrm{min}$ over 1.2 min machine using field desorption (FD) and ESI as ionization methods. Melting points were recorded on a Wagner \& Munz Polytherm A melting point apparatus and are uncorrected. IR spectra were recorded on a Bruker Alpha FTIR machine.

1.2 Peptide synthesis and reaction analysis

The peptide purity and identity was assessed using an Agilent 1260 Infinity HPLC system coupled with an Agilent 6130 quadrupole mass spectrometer (Agilent, Santa Clara, CA, USA) to determine the peptide mass. Separation was performed using a Waters XSelect ${ }^{\circledR}$ CSH C18 column ($2.5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$. Waters Corporation, Milford, MA, USA) column, eluting with $0.05 \%(\mathrm{v} / \mathrm{v}) \mathrm{MSA}$ in a water/ACN gradient, with a flow rate of 1 mL min- 1 and a column temperature of $50^{\circ} \mathrm{C}$. As mobile phase a binary mixture of solvent A (water $+0.05 \%(\mathrm{v} / \mathrm{v}) \mathrm{MSA}$) and solvent $\mathrm{B}(\mathrm{ACN}+0.05 \%(\mathrm{v} / \mathrm{v}) \mathrm{MSA})$ was used. A linear gradient from $5-60 \%$ B in 7.5 min , followed by isocratic 95% solvent B for 3 min was used by default. The purity of peptides was determined by automatically integrating product and impurity peaks of the relevant HPLC spectrum ($\lambda=220 \mathrm{~nm}$).

CLIPS and oxime ligation reaction mixtures were measured on a UPLC-ESMS system ($3 \mathrm{~min}, 5-80 \% \mathrm{~B}$, where $\mathrm{B}=\mathrm{MeCN}$, column temperature of $50^{\circ} \mathrm{C}$), Acquity UPLC Peptide BEH C18 Column, 130 \AA, $1.7 \mu \mathrm{~m}, 2.1 \times 50 \mathrm{~mm}$ with UV detection (λ $=215 \mathrm{~nm}$) and positive ion current for MS analysis, unless stated otherwise.

2 Amino Acid Synthesis

$2.1 \mathrm{hS}\left(\mathrm{ONH}_{2}\right)$

$\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$ is prepared for SPPS, with an N-terminal Fmoc-protecting group and a Boc-group protecting the aminooxy ONH_{2}. As such, it is synthesized as $\mathbf{h S}$ (ONHBoc).

Scheme 1: Synthesis of $\mathbf{h S}($ ONHBoc). Steps are detailed in procedures.

In a flame-dried flask, under Ar-pressure, Fmoc-Asp(OtBu)-OH (1) (43.106 g, 106.12 mmol , 1 equiv) was suspended in 400 ml of anhydrous $\mathrm{MeOH} . \mathrm{Cs}_{2} \mathrm{CO}_{3}(17.288 \mathrm{~g}, 53.06 \mathrm{mmol}, 0.5$ equiv) was added and the mixture immediately becomes a colorless solution, which was subsequently stirred for 45 min . The volatiles were removed under reduced pressure, yielding a while solid. The residue is dissolved in 500 ml anhydrous MeCN and benzyl
bromide ($37.86 \mathrm{ml}, 318.36 \mathrm{mmol}, 3$ equiv) was added. The mixture was stirred for 3 hours at rt . during which a white precipitate forms. The volatiles were removed and the remaining solid was washed with water and EtOH twice, yielding the desired product as a white solid, in quantitative yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.78(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=15.3,7.5 \mathrm{~Hz}, 7 \mathrm{H}), 5.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.14(\mathrm{~m}, 2 \mathrm{H})$, $4.70(\mathrm{dt}, J=8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=17.0,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{J}=16.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.70,169.85,155.89,143.81,143.59$, $141.17,135.15,128.47,128.31,128.13,127.60,126.97,125.08,125.03,119.87,81.74,67.34,67.17,50.55,46.98,37.62$, 27.89. Spectroscopic data are in accordance with those reported in literature. ${ }^{1}$

3

Fmoc-Asp(OtBu)-OBn (2) (1.604 g, 3.197 mmol) was dissolved in 15 ml of freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2} .15 \mathrm{ml} \mathrm{HCOOH}$ was added to the solution and the mixture was stirred overnight at $r t$, after which TLC showed full conversion of the starting material. The volatiles were removed under reduced pressure and the remnants of HCOOH were removed by coevaporation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, yielding Fmoc-Asp(OH)-OBn as a white solid ($1.310 \mathrm{~g}, 2.94 \mathrm{mmol}$, $92 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 11.15$ ($\mathrm{s}, 1 \mathrm{H}$), $7.80(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 (d, J=7.4 Hz, 2H), $7.44(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 7 \mathrm{H}), 6.16(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{dt}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=10.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=17.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=17.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 175.36,170.34,156.04,143.53,143.39,141.02,134.84,128.34,128.20,127.94,127.51,126.87$, 124.90, 119.76, 67.44, 67.21, 50.18, 46.79, 36.12. Spectroscopic data are in accordance with those reported in literature. ${ }^{2}$

In a flame-dried flask, under N_{2} flow, Fmoc-Asp(OH)-OBn (3) (11.11 g, 25 mmol) was dissolved in 175 ml of freshly distilled THF. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, after which $\mathrm{BH}_{3} \bullet \mathrm{SMe}_{2}(11.85 \mathrm{ml}, 125 \mathrm{mmol}, 5$ equiv) is added dropwise over 1 hour. The mixturewas stirred on ice for 2 h , and subsequently warmed to rt and stirred overnight, after which TLC showed full consumption of the starting material. The mixture was cooled on ice, and carefully quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc (3x). The organic phase was washed with 1M KHSO_{4}, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure, after which $\mathbf{4}$ crystallized as a white solid ($10.74 \mathrm{~g}, 24.86 \mathrm{mmol}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.81-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, 2 H), $7.41(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=15.3,7.4 \mathrm{~Hz}, 8 \mathrm{H}), 5.93-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.54(\mathrm{~m}, 1 \mathrm{H})$, $4.44(\mathrm{p}, J=10.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{td}, J=9.3,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77(\mathrm{td}, \mathrm{J}=9.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.28,156.64,143.68,143.57,143.52,143.47,141.17$, $135.03,128.50,128.38,128.13,127.62,126.97,124.93,124.90,119.88,119.86,67.25,67.04,58.20,51.29,47.03,35.23$, 29.97. Spectroscopic data are in accordance with those reported in literature. ${ }^{3}$

5

In a flame-dried flask, under N_{2}, Fmoc-homoSer-OBn (4) (7.01 g, 16.21 mmol) was dissolved in 125 ml of anhydrous THF. Subsequently $\mathrm{Boc}_{2} \mathrm{NOH}$ (prepared according to Jacobson et al. ${ }^{4}$) ($3.97 \mathrm{~g}, 17.02 \mathrm{mmol}, 1.05$ equiv) and $\mathrm{PPh}_{3}(4.46 \mathrm{~g}, 17.02 \mathrm{mmol}, 1.05$ equiv) were added, and the flask was cooled on an ice bath. DIAD ($4.29 \mathrm{ml}, 17.02 \mathrm{mmol}, 1.05$ equiv) was added dropwise via a syringe pump ($4.4 \mathrm{ml} / \mathrm{h}$). The mixture was warmed to rt , and stirred overnight. The volatiles were removed under reduced pressure, after which
the mixture was immobilized in silica. Column chromatography (6:2:1 - petroleum ether: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}$) provided the product 5 as a white solid ($7.514 \mathrm{~g}, 11.60 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.77(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H})$, $4.65(\mathrm{dt}, J=10.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}$, $1 \mathrm{H}), 4.03-3.93(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{q}, J=10.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{dd}, J=12.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (171.63, 156.42, 150.34, 144.08, 143.95, 141.28, 135.52, 128.54, 128.31, 128.17, 127.66, 127.65, 127.07, 127.06, 125.32, 125.31, 119.92, 84.41, 72.54, 67.18, 67.14, 52.04, 47.21, 29.64, 28.10. IR (cm^{-1}) 3349, 2979, 2044, 1969, 1953, $1789,1746,1715,1608,1524,1477,1540,1392,1368,1345,1270,1246,1145,1110,1001,911,846,793,755,736$. HR-MS FD m/z [$\left.\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{9}$: 646.2890, found 646.2866. mp $31-34{ }^{\circ} \mathrm{C}$.

(d, J = 7.6 Hz, 2H), $7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 9 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{q}, \mathrm{J}$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{tt}, J=17.9,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, J=11.4,7.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dt}, J=10.5$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{tq}, \mathrm{J}=15.4,9.8,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.96,157.13,156.32,143.98$,
143.79, 141.21, 135.33, 128.49, 128.30, 128.19, 127.59, 127.00, 125.21, 119.85, 82.05, 72.89, 67.16, 67.05, 51.81, 47.11, 29.92, 28.14. IR (cm ${ }^{-1}$) 3285, 3065, 2977, 2933, 1702, 1529, 1477, 1449, 1391, 1367, 1337, 1248, 1214, 1159, 1104, 1080, $1057,1003,909,853,757,737$. HR-MS FD m/z [$\left.\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O} 7: 546.2336$, found 546.2366. mp $43^{\circ} \mathrm{C}$.

hS(ONHBoc)

In a flame-dried flask, benzyl-ester $6(5.17 \mathrm{~g}, 9.22 \mathrm{mmol})$ was dissolved in 200 ml EtOH. The flask was degassed and Pd/C ($10 \mathrm{wt} \%$ loading, 256 mg) was added. The flask was evacuated and purged with H_{2} three times and the reaction mixture was stirred under H_{2} pressure (balloon) for 4 h at rt . TLC showed full conversion of the starting material and the reaction flask was purged with N_{2}. The mixture was filtered over Celite and eluted with EtOH. The volatiles were evaporated under reduced pressure, yielding the product $\mathbf{h S}$ (ONHBoc) as a
white solid ($4.20 \mathrm{~g}, 9.21 \mathrm{mmol}, 99 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.91(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.70$, 157.66, 156.61, 143.82, 143.65, 141.11, 127.55, 126.97, 125.18, 119.78, 82.32, 72.93, 67.15, 51.61, 46.95, 29.67, 28.07. IR (cm^{-1}) 3272, 3065, 2977, 1695, 1524, 1477, 1448, 1393, 1368, 1336, 1249, 1158, 1105, 1080, 1051, 940, 907, 850, 758, 733. HR-MS FD m/z [M ${ }^{+}$] calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$: 456.1897 found 456.1896. mp $46.2^{\circ} \mathrm{C}$

$2.2 \quad F(C=O)$

Scheme 2: The synthesis of $\mathrm{F}(\mathrm{C}=\mathrm{O})$. Procedures are detailed below.

8

H-Phe-OH (7) ($33.073 \mathrm{~g}, 200 \mathrm{mmol}, 1$ equiv) was added to a flask equipped with a with reflux condenser, and suspended in 170 ml EtOH. $\mathrm{Ac}_{2} \mathrm{O}$ ($52 \mathrm{ml}, 540 \mathrm{mmol}, 2.7$ equiv) was added and the solution was stirred at reflux overnight. The volatiles (acetic acid remnants) were removed under reduced pressure, yielding a yellowish sticky oil. The mixture was redissolved in 170 ml of EtOH and concentrated $\mathrm{HCl}(4 \mathrm{ml}, \mathrm{cat})$ was added. The mixture was heated to reflux and stirred overnight. The volatiles were removed under reduced pressure. The yellow oil was redissolved in EtOAc and washed with a $1 \mathrm{M} \mathrm{KHSO}_{4}$ solution, sat. NaHCO_{3} solution and brine, and subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure, yielding Ac-Phe-OEt (8) as an off-white solid ($38.89 \mathrm{~g}, 165.31 \mathrm{mmol}, 82 \%$). ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.28$ (dt, J = 15.6, $7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 7.13 (d, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.16 (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.87 (q, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{tt}, \mathrm{J}=13.8,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 171.69,169.61,135.95,129.26,128.45,127.00,61.43,53.16,37.90,23.04,14.06 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3312,3025$, $3002,2973,2932,2908,1946,1728,1641,1530,1493,1480,1444,1398,1374,1345,1319,1259,1220,1198,1156$, $1129,1075,1033,1021,966,929,909,867,824,813,764,745 . m p 6{ }^{\circ} \mathrm{C}$. Spectroscopic data are in accordance with those reported in literature. ${ }^{5}$

To a flame-dried flask, under N_{2} flow and at $0{ }^{\circ} \mathrm{C}, \mathrm{AlCl}_{3}(12.40 \mathrm{~g}, 93.00 \mathrm{mmol}, 5.5$ equiv) was added, followed by the dropwise addition of $\mathrm{AcCl}(7.2 \mathrm{ml}, 101.27 \mathrm{mmol}, 6.0$ equiv). To the chuncky suspension, a solution of Ac-Phe-OEt (8) ($4.00 \mathrm{~g}, 17.00 \mathrm{mmol}, 1$ equiv) in 18 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The dark orange solution was stirred for 30 min on ice, then the mixture was warmed to rt and stirred overnight. The mixture was crashed onto ice, containing $10 \% 1 \mathrm{M} \mathrm{HCl}$ solution. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase was washed twice with a sat. NaHCO_{3} solution and water. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the volatiles were removed under reduced pressure to yield a dark brown oil. Flash column chromatography (1:2 - petroleum ether:EtOAc) provided the product 9 as a yellowish oil, which crystallizes upon standing ($4.26 \mathrm{~g}, 15.36 \mathrm{mmol}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.84$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=19.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.19$ (dd, $J=13.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=13.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl} 3)$ ($197.50,171.19,169.48,141.59,135.78,129.39,128.32,61.51,52.79,37.74,26.38,22.90,13.94$. Spectroscopic data are in accordance with those reported in literature. ${ }^{6}$

To a flask, equipped with a reflux condenser, $9(7.00 \mathrm{~g}, 25.24 \mathrm{mmol}, 1$ equiv) was added. A 9 M HCl solution was added (100 ml , excess) and the slight orange mixture was heated to $90^{\circ} \mathrm{C}$ and stirred for 6 h . The mixture was cooled to rt , yielding a precipitate. This precipitate was filtered and washed with acetone and $\mathrm{Et}_{2} \mathrm{O}$ to yield the product 10 as fine, slightly brown needles ($3.769 \mathrm{mg}, 15.41 \mathrm{mmol}, 61 \%$). The remaining solution was evaporated to dryness, yielding a yellow solid, which was washed with acetone and $\mathrm{Et}_{2} \mathrm{O}$. Filtration yielded the second batch of the product as a pale-yellow solid ($2.32 \mathrm{~g}, 9.47 \mathrm{mmol}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Deuterium Oxide) $\delta 7.89$ (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.26$ (ddd, J = 58.6, 14.5, 6.7 Hz, 2H), $2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D} 2 \mathrm{O}$) $\delta 203.57,171.59,140.59,135.99,129.81,129.29,54.09,35.75,26.31$. Spectroscopic data are in concurrence with literature. ${ }^{6}$

The free H-p-AcPhe-OH ($1.00 \mathrm{~g}, 4.09 \mathrm{mmol}, 1$ equiv) was dissolved in 11 ml of 1,4 dioxane, after which 15 ml of an aqueous saturated NaHCO_{3} solution was added, and the solution was subsequently cooled to $0{ }^{\circ} \mathrm{C}$. A solution of Fmoc-OSu ($1.45 \mathrm{~g}, 4.29$ $\mathrm{mmol}, 1.05$ equiv) in 10 ml of acetone was added in a dropwise fashion. The flask was warmed to rt , and the solution was stirred overnight. The volatiles were removed under reduced pressure and the remaining solution was diluted with EtOAc. The organic phase was washed with an 1 M KHSO solution (8 times) followed by brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the volatiles were vaporized under reduced pressure, yielding pF , or $\mathbf{F}(\mathrm{C}=\mathrm{O})$ as an off-white solid ($1.72 \mathrm{~g}, 3.99 \mathrm{mmol}, 97 \%$). ${ }^{1} \mathrm{H} \mathbf{N M R}(500 \mathrm{MHz}$, Methanol-d4) $\delta 7.89(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=11.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, \mathrm{J}=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=10.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=10.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, \mathrm{J}=13.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 198.79$, 173.70, $156.85,143.75,143.52,141.09,135.40,129.28,128.16,127.31,126.68,124.83,124.74,119.44,66.49,55.01,46.89$, 37.15, 25.20. IR (cm^{-1}) 3311, 1679, 1606, 1538, 1448, 1267, 1084, 1048, 826, 759. HR-MS ESI+, for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{5}$ calc 430.1654 , found $430.1663 . \mathrm{mp} 155-160{ }^{\circ} \mathrm{C}$.

$2.3 D(C=0)$

Scheme 3: The synthesis of $\mathbf{D}(\mathrm{C}=0)$. Synthesis steps are detailed below.

12

In a flame-dried flask, Fmoc-Asp(OH)-OtBu (11) (10.00 g, 24.30 mmol$)$ was dissolved in 120 ml of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\mathrm{HOSu}(5.87 \mathrm{~g}, 51.03 \mathrm{mmol}$, 2.1 equiv) and pyridine ($9.78 \mathrm{ml}, 121.50$ $\mathrm{mmol}, 5$ equiv) were added and the mixture was cooled on ice. TFAA ($6.76 \mathrm{ml}, 48.60 \mathrm{mmol}$, 2 equiv) was added dropwise. Once addition was finished, the mixture was warmed to rt and stirred overnight. The organic phase was washed $3 x$ with 1 M KHSO 4 solution, water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, yielding the activated ester $\mathbf{1 2}$ as an off-white foam ($12.06 \mathrm{~g}, 23.71 \mathrm{mmol}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.76$ ($\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 ($\mathrm{d}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=$ $7.2,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=8.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.73,168.37,166.32,155.90,143.81,141.27,127.71,127.12,125.31,125.25,119.95,83.62,67.45,50.56,47.09$, 34.21, 27.77, 25.57. IR (cm^{-1}) 3341, 2976, 2944, 1814, 1784, 1735, 1650, 1631, 1612, 1563, 1511, 1477, 1449, 1427, 1394, $1368,1340,1292,1202,1152,1062,1045,992,879,842,811,759$. HR-MS FD m/z [M $\left.{ }^{+}\right]$calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}$: 508.1846, found 508.1845. mp $69-72{ }^{\circ} \mathrm{C}$.

In a flask, 1-bromo-3,3-dimethylbutaN-2-one ($6.73 \mathrm{ml}, 50 \mathrm{mmol}$) was dissolved in 40 ml of acetone, after which $\mathrm{NaN}_{3}(4.23 \mathrm{~g}, 65 \mathrm{mmol}, 1.3$ equiv) was added. The suspension was stirred overnight at $r t$. The suspension was filtered over a Celite pad and eluted with acetone. The volatiles were removed under rotary evaporation, where the flask was kept under $40^{\circ} \mathrm{C}$. The resulting oil was further dried under high vacuum, yielding the desired azide 13 as a yellowish oil ($6.95 \mathrm{~g}, 49.23 \mathrm{mmol}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR 400 MHz , Chloroform-d) δ $4.10(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$. Spectroscopic data are in concurrence with those reported in literature. ${ }^{7}$

In a flame-dried flask, Fmoc-Asp(OSu)-OtBu (12) (11.65 g, 22.91 mmol) was dissolved in 200 ml of freshly distilled THF. Azide $\mathbf{1 3}$ ($5.18 \mathrm{~g}, 36.52 \mathrm{mmol}, 1.6$ equiv) was added, after which the mixture was degassed and purged with N_{2}. Pd/C (10 wt\% loading, $3 \mathrm{~mol} \%, 760 \mathrm{mg}$) was added, and the reaction vessel was evacuated and purged with H_{2} (repeated trice). The reaction mixture was stirred under H_{2} pressure (balloon). The reaction was monitored via TLC, and upon consumption of the starting material, the reaction was flushed with N_{2}. The mixture was filtered over a Celite pad, and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were removed under reduced pressure. The remaining oil was dissolved in EtOAc and the organic phase was washed with $1 \mathrm{M} \mathrm{KHSO}_{4}$, water, and brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the volatiles were removed under
reduced pressure, yielding 14 as a white fluffy solid ($11.67 \mathrm{~g}, 22.9 \mathrm{mmol}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 7.75$ (d, J = 7.4 Hz, 2H), 7.61 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 6.40 (s, 1H), 6.00 (d, J = 8.1 Hz, $1 \mathrm{H}), 4.51(\mathrm{dt}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=15.7,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, \mathrm{J}=15.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.32,169.93,156.13$, 143.94, 141.27, 127.67, 127.06, 125.24, 119.94, 82.40, 67.17, 51.36, 47.15, 44.77, 43.10, 37.86, 27.91, 26.34. IR (cm^{-1}) $3368,3064,2976,2925,1714,1671,1555,1507,1476,1466,1448,1395,1366,1342,1287,1247,1215,1167,1113$, 1077, 1049, 1013, 1000, $989,955,943,906,849,825,776,759,734$. HR-MS FD m/z [M $\left.{ }^{+}\right]$calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$: 508.2573, found $508.2553 . \mathrm{mp} 186^{\circ} \mathrm{C}$

The tert-butyl ester 14 ($11.66 \mathrm{~g}, 22.92 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{HCOOH}$ (1:2, $300 \mathrm{ml})$. The reaction mixture goes from yellowish to red to dark green over 36h, after which TLC shows the deprotection is complete. The volatiles were removed under reduced pressure and the resulting oil is dissolved in EtOAc. The organic phase is washed with $1 \mathrm{M} \mathrm{KHSO}_{4}$ solution (3x), water (2x) and brine (2x). The remaining product is very bright yellow. The organic phase is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$
while stirring for 15 min . To remove the discoloration, some activated carbon powder is added, and stirred for 5 min . After filtration, the volatiles were removed under reduced pressure, yielding the product amino acid $\mathbf{F}(\mathbf{C = O})$ as a paleyellow solid ($10.40 \mathrm{~g}, 22.9 \mathrm{mmol}$, quant). The product amino acid is used in peptide synthesis without further purification, even though some impurities are noticeable on ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Peptides are of good quality and no detrimental effect of any impurities is recorded. Column purification was performed for analytical data: $\mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$, after first spots are eluted, 0.05% HOAc is added, to elute the acid $\mathbf{D}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, Chloroform-d) $\delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.76$ ($\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, \mathrm{J}=$ $15.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.32,173.43,171.12,156.20,143.68,143.63,141.14$, $127.60,126.99,125.12,119.84,67.29,50.51,46.94,44.94,43.02,37.41,26.17$. IR (cm^{-1}) $3325,3066,2967,1709,1646$, 1519, $1477,1448,1416,1367,1328,1244,1155,1105,1049,994,940,912,874,845,758,733$. HR-MS ESI+ for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ calc 453.2026 , found 453.2017 . mp $101{ }^{\circ} \mathrm{C}$

3 Peptide synthesis

Amino acids are indicated by single-letter codes. Special amino acids used are: homo-Serine aminooxy derivative $\left(\mathbf{h S}\left(\mathrm{ONH}_{2}\right)\right)$, para-acetyl phenylalanine $(\mathbf{F}(\mathrm{C}=\mathrm{O})$), Aspartic acid tert-butyl ketone derivative $(\mathrm{D}(\mathrm{C}=\mathrm{O}))$, O carboxyamidomethyl is abbreviated as Cam.

3.1 General procedure for solid-phase peptide synthesis of C-terminal Cam-ester peptides

Fmoc-L-Wang resin (0.2 mmol) was washed with DCM (3 x) and DMF (3 x) and Fmoc-deprotected using piperidine/DMF ($20 \%(\mathrm{v} / \mathrm{v}), 2 \times 8 \mathrm{~min}$). After washing with DMF (6 x), the corresponding Fmoc-AA-glycolic acid (2 equiv.) was coupled to the resin using HBTU (4 equiv.), Oxyma Pure (4 equiv.) and DIPEA (10 equiv.) in DMF (45 min). Fmoc-AAx-glycolic acid was prepared according to Nuijens et al. ${ }^{8}$ After washing with DMF and Fmoc deprotection the next amino acid Fmoc-AAx-OH was coupled using DIC (4 equiv.) and Oxyma Pure (4 equiv.) in DMF (45 min). After the final Fmoc-deprotection, the resin was dried in a stream of nitrogen gas.

3.2 Synthesis of peptide amides

Peptide amides were synthesized using a Rink amide resin. After washing the resin with DMF ($3 x$) and Fmoc deprotection using piperidine/DMF ($20 \%(\mathrm{v} / \mathrm{v}$), $2 \times 8 \mathrm{~min}$)., the amino acids Fmoc-AAx-OH were coupled using DIC (4 equiv.) and Oxyma Pure (4 equiv.) in DMF (45 min). After final Fmoc-deprotection, the resin was dried

3.3 Cleavage of peptides containing unnatural amino acids

Peptides containing unnatural amino acids were cleaved using the following protocols:

1) Aminooxy peptides with $\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$, a cocktail of TFA/MiliO/thioanisole/DODT/TIS (90/5/2/5/5/2.5, v/v/v/v/v) for 2 hours at room temperature.
2) Ketone-peptides with either $\mathbf{F}(\mathbf{C = O})$ or $\mathbf{D}(\mathbf{C = O})$, a cocktail of TFA/MilliQ/thioanisole/TIS/Phenol (80/5/5/5/2.5/7.5, v/v/v/v/v) for 2 hours at room temperature.

Precipitation of the peptide with diethylether/ pentane ($1: 1, \mathrm{v} / \mathrm{v}$) followed by lyophilization of the precipitated peptide afforded the crude peptide. Purification of the crude peptide was performed by reversed-phase HPLC (mobile phase consists of gradient mixture of eluent-A (milliQ containing $0.05 \%(\mathrm{v} / \mathrm{v})$ TFA) and eluent- $\mathrm{B}\left(\mathrm{CH}_{3} \mathrm{CN}\right.$ containing $0.05 \%(\mathrm{v} / \mathrm{v})$ TFA).

4 Tolerance of unnatural amino acids $\mathrm{hS}\left(\mathrm{ONH}_{2}\right), \mathrm{F}(\mathrm{C}=\mathrm{O})$, and $\mathrm{D}(\mathrm{C}=0)$ in the omniligase-1 binding pockets: model studies

Reaction procedure

Peptides bearing an $\mathbf{h S}\left(\mathrm{ONH}_{2}\right), \mathbf{F}(\mathbf{C = O})$ or $\mathbf{D}(\mathbf{C = O})$ residue in either of the positions P4-P2' were synthesized according to the procedures described in section 2 . For a list of sequences including their respective molecular weights see Table 1.

For testing the acceptance of each respective substrate by omniligase-1 stock solutions of acyl donor (ester) fragment $(10 \mathrm{mM})$ and acyl acceptor fragment (amine) (15 mM) were prepared in deionized water. $25 \mu \mathrm{~L}$ of both ester and amine fragment stock solution were added. The mixture was diluted with $100 \mu \mathrm{~L} 1 \mathrm{M}$ potassium phosphate buffer pH 8.5 . Final concentration of the ester fragment was 1.66 mM and of the amine fragment 2.5 mM (5 eq .). In order to start the reaction $2 \mu \mathrm{~g}$ of Omniligase-1 (final concentration $0.5 \mu \mathrm{M}$) was added. After 0 and $30 \mathrm{~min} 25 \mu \mathrm{~L}$ of reaction mixture were quenched in $475 \mu \mathrm{~L}$ of quenching solution ($0.5 \%(\mathrm{v} / \mathrm{v}$) methanesulfonic acid in water). Samples were analyzed using HPLC-MS. HPLC yields were calculated based on integration of the product peak and the remaining peak area of the acyl donor fragment. Analytical HPLC was performed on an Agilent 1260 liquid chromatography system using a reversed-phase column (Waters XSelect CSH C18, $2.5 \mu \mathrm{~m}$ particle size, $150 \times 3.0 \mathrm{~mm}$) at $40^{\circ} \mathrm{C}$, coupled with an Agilent 6130 quadrupole LC/MS system. UV detection was performed at $\lambda=220 \mathrm{~nm}$ using a UV-VIS 204 linear spectrometer and peptides were identified by their mass using LC-MS. As eluents A (water+ $0.05 \%(v / v) M S A)$ and $B(M e C N+0.05 \%(v / v)$ MSA) were used.

All reactions performed are listed in Figure 1a. In the HPLC trace the peaks of product ("synthesis"), hydrolyzed ester ("hydrolysis") as well as potentially remaining educt ("ester") were integrated. The results are displayed in Figure $1 \mathrm{~b}, \mathrm{c}, \mathrm{d}$. The reaction was deliberately performed under sub-optimal reaction conditions and stopped after 30 min in order to highlight differences between the substrates. After 30 min the control "benchmark" reaction (Ac-DFSKL-Cam-$\mathrm{L}-\mathrm{OH}+\mathrm{H}-\mathrm{ALKKF}-\mathrm{NH}_{2}$) is usually complete with exclusive formation of the desired ligation product.
(A)

P4	Ac-DXSKL-Cam-L-OH
P3	Ac-DFXKL-Cam-L-OH
	+ H-ALKKF-NH2
P2	Ac-DFSXL-Cam-L-OH
P1	Ac-DFSKX-Cam-L-OH
P1'	H-XLKKF-NH2
P2'	H-AXKKF-NH2
	$\mathbf{X}=\mathrm{hS}\left(\mathrm{ONH}_{2}\right), \mathrm{F}(\mathrm{C}=\mathrm{O}), \mathrm{D}(\mathrm{C}=\mathrm{O})$

Control reaction:

Ac-DFSKL-Cam-L-OH + H-ALKKF-NH 2

Figure 1. a) Model reactions performed for testing the acceptance of [Aha] in each respective peptide binding pocket of omniligase1. X represent either $\mathbf{h S}\left(\mathrm{ONH}_{2}\right), \mathbf{F}(\mathrm{C}=\mathrm{O})$ or $\mathbf{D}(\mathrm{C}=\mathrm{O})$. The reaction Ac-DSFKL-Cam-L-OH + H-ALKKF-NH2 served as a control ligation. b) Reaction yields after 30 min (blue bars) of $\mathbf{F}(\mathrm{C}=0$) containing model peptides, corresponding hydrolysis of the Cam-ester (red bars) Fnd remaining Cam-ester peptide (grey bars). c) Reaction yields after 30 min (blue bars) of $\mathbf{1}\left(\mathrm{ONH}_{2}\right)$ containing model peptides. c) hSeaction yields after 30 min (blue bars) of $\mathbf{D}(\mathrm{C}=0)$ containing model peptides.

Table 1. Codes, sequences and exact masses (calculated and experimental) of synthesized Cam esters.

Peptide	Sequence	MW ${ }_{\text {calc }}$	$\mathrm{MW}_{\text {exp }}$
$\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$-S4	Ac-D-hS $\left(\mathrm{ONH}_{2}\right)$-SKL-Cam-L-OH	790.4	790.3
$\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$-S3	Ac-DF-hS $\left(\mathrm{ONH}_{2}\right)$-KL-Cam-L-OH	850.4	850.3
$\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$-S2	Ac-DFS-hS $\left(\mathrm{ONH}_{2}\right)$-L-Cam-L-OH	809.4	809.3
$\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$-S1	Ac-DFSK-hS $\left(\mathrm{ONH}_{2}\right)$-Cam-L-OH	843.4	*
$\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$-S1'	H-hS(ONH_{2})-LKKF-NH2	649.4	649.3
$\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$-S2'	H-A-hS $\left(\mathrm{ONH}_{2}\right)$-KKF-NH2	607.4	607.3
F(C=0)-S4	Ac-D-F(C=O)-SKL-Cam-L-OH	863.4	863.3
F(C=0)-S3	Ac-DF-F(C=O)-KL-Cam-L-OH	923.5	923.4
F(C=0)-S2	Ac-DFS-F(C=O)-L-Cam-L-OH	882.4	882.3
F(C=0)-S1	Ac-DFSK-F(C=O)-Cam-L-OH	897.4	897.3
F(C=0)-S1'	H-F(C=O)-LKKF-NH2	722.5	722.3
F(C=0)-S2'	$\mathrm{H}-\mathrm{A}-\mathrm{F}(\mathrm{C}=0)-\mathrm{KKF}-\mathrm{NH}_{2}$	680.4	680.3
D(C=0)-S4	Ac-D-D(C=O)-SKL-Cam-L-OH	886.5	886.3
D(C=0)-S3	Ac-DF-D(C=O)-KL-Cam-L-OH	946.5	946.3
D(C=0)-S2	Ac-DFS-D(C=O)-L-Cam-L-OH	905.4	905.3
D(C=0)-S1	Ac-DFSK-D(C=O)-Cam-L-OH	920.5	*
D(C=0)-S1'	H-D(C=O)-LKKF-NH2	745.5	745.3
D(C=0)-S2'	H-A-D(C=O)-KKF-NH2	703.4	703.3
Control ester	Ac-DFSKL-Cam-L-OH	821.4	821.3
Control amine	H-ALKKF-NH2	604.4	604.3

5 Enzymatic cyclizations

CEPS:

Linear Cam-ester peptides were dissolved in potassium phosphate buffer solution ($500 \mathrm{mM}, \mathrm{pH}=8.5$) to a concentration of approx. $0.5 \mathrm{mg} / \mathrm{mL}(0.15-0.25 \mathrm{mM})$, followed by addition of omniligase- $1(0.15-0.5 \mu \mathrm{M})$. The reaction was followed by HPLC-MS using an individualized gradient. After completion of the reaction the reaction mixture was purified via preparative RP-HPLC. If the linear precursor peptides exhibited low solubility, guanidinium hydrochloride was added to a concentration of 1 M .

Example:

Linear Cam-ester $\mathbf{2}_{3333}-\mathbf{F}(\mathbf{C = O})(\mathrm{H}-\mathrm{CYKQF}(\mathrm{C}=0) \mathrm{SIKF}(\mathrm{C}=0)$ AKGCSKL-CamL-OH, $20 \mathrm{mg}, 7.5 \mu \mathrm{~mol}$) was dissolved in 500 mM phosphate buffer ($30 \mathrm{~mL}, \mathrm{pH}=8$), followed by addition of omniligase- 1 to a concentration of $0.4 \mu \mathrm{M}$. After a reaction time of 60 min the reaction mixture was purified using RP-HPLC. The monocyclic peptide $\mathbf{c} \mathbf{2}_{3333}-\mathbf{F}(\mathrm{C}=0)$ was isolated using preparative RP-HPLC.

The following linear peptide Cam-esters were cyclized into their head-to-tail cyclic counterpart:

Table 2: The sequences of linear peptide-Cam-esters that were synthesized and subjected to cyclization.

Name	Sequence
$\mathbf{1 3 3 3 3}^{\text {-hS }}\left(\mathrm{ONH}_{2}\right)$	H-CYKQhS(ONH_{2})SIKhS $\left(\mathrm{ONH}_{2}\right)$ AKGCSKL-O-Cam-L-OH
$\mathbf{2 3 3 3 3 - F ~}^{\text {F }}$ ($\mathrm{C}=\mathrm{O}$)	H-CYKQF(C=O)SIKF(C=0)AKGCSKL-O-Cam-L-OH
$3_{3333}-\mathrm{D}(\mathrm{C}=0)$	H-CYKQD(C=O)SIKD(C=0)AKGCSKL-O-Cam-L-OH
${\mathbf{4 4 4 4 4 - h S ~}\left(\mathrm{ONH}_{2}\right)}^{\text {a }}$	H -RhS $\left(\mathrm{ONH}_{2}\right)$ FRLPCRQLRCFRLPhS $\left(\mathrm{ONH}_{2}\right) \mathrm{RQL}$-O-Cam-L-OH
$5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O})$	H-RF(C=O)FRLPCRQLRCFRLPF(C=0)RQL-O-Cam-L-OH
$\mathbf{6}_{5555}$-hS(ONH_{2})	H-CYKGKQhS(ONH_{2})SIKAShS $\left(\mathrm{ONH}_{2}\right)$ AKVRGCKFSKL-O-Cam-L-OH
$\mathbf{7 5 5 5 5}^{\text {- }}$ ($\mathrm{C}=\mathrm{O}$)	H-CYKGKQF(C=O)SIKASF(C=0)AKVRGCKFSLK-O-Cam-L-OH
88_{5555}-D(C=O)	H-CYKGKQD(C=0)SIKASD(C=0)AKVRGCKFSKL-O-Cam-L-OH

Table 3: The synthesized cyclic peptides with the corresponding retention time on UPLC and masses.

Name	Sequence	t_{R}	m / z found	$\begin{aligned} & \mathrm{m} / \mathrm{z} \\ & \text { calc } \end{aligned}$	Species
c1 ${ }_{3333}$-hS(SONH_{2})	cycCYKQhS $\left(\mathrm{ONH}_{2}\right) \mathrm{SIKhS}\left(\mathrm{ONH}_{2}\right)$ AKGCSKL	0.59	1771.91	1771.46	$[\mathrm{M}+\mathrm{H}]^{+}$
C2 $\mathbf{3 3 3 3} \mathbf{- F}(\mathrm{C}=0)$	сусCYKQF(C=0)SIKF(C=0)AKGCSKL	0.97	1918.32	1918.64	$[\mathrm{M}+\mathrm{H}]^{+}$
C3 $3333-\mathrm{D}(\mathrm{C}=\mathrm{O}$)	cycCYKQD(C=0)SIKD(C=0)AKGCSKL	1.01	983.02	983.85	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
c4 4_{444}-hS $\left(\mathrm{ONH}_{2}\right)$	cycRhS $\left(\mathrm{ONH}_{2}\right)$ FRLPCRQLRCFRLPhS $\left(\mathrm{ONH}_{2}\right) \mathrm{RQL}$	1.04	859.04	859.18	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
$\mathrm{C5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O})$	$\operatorname{cycRF}(\mathrm{C}=0) \mathrm{FRLPCRQLRCFRLPF}(\mathrm{C}=0) \mathrm{RQL}$	1.29	907.80	907.90	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
c6 ${55555-\mathrm{hS}\left(\mathrm{ONH}_{2}\right)}^{\text {(}}$	cycCYKGKQhS $\left(\mathrm{ONH}_{2}\right)$ SIKAShS(${ }^{\text {(ONH2 }}$)AKVRGCKFSKL	0.69	1325.27	1325.31	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
C7 ${ }_{5555}-\mathrm{F}(\mathrm{C}=0)$	cycCYKGKQF(C=0)SIKASF(C=0)AKVRGCKFSLK	0.90	1397.57	1397.40	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
C8 5555- $^{-\mathrm{D}}$ ($\left.\mathrm{C}=0\right)$	cycCYKGKQD(C=0)SIKASD(C=0)AKVRGCKFSKL	0.96	1420.30	1420.43	$[\mathrm{M}+2 \mathrm{H}]^{2+}$

$5.1 \quad \mathrm{c1}_{3333}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right)$

linear starting sequence $\left(\mathbf{1}_{3333}-\mathbf{h S}\left(\mathrm{ONH}_{2}\right)\right)$:
cyclic product ($\mathrm{c1}_{3333}$-hS $\left(\mathrm{ONH}_{2}\right)$):

H-CYKQ[HS($\left.\left.\mathrm{ONH}_{2}\right)\right] \mathrm{SIK}\left[\mathbf{h S}\left(\mathrm{ONH}_{2}\right)\right] A K G C S K L-C a m L-O H$
 c[CYKQ[hS(ONH_{2})]SIK[hS($\left.\left.\mathrm{ONH}_{2}\right)\right]$ AKGCSKL]

Figure 3. Omniligase-1 mediated cyclization of $\mathbf{1}_{3333}-\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$. HPLC trace after 0 min (blue, $\mathbf{1}_{3333}-\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$) and 90 min (red, $\mathrm{cl}_{3333}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right)$) are shown. The cyclization yield is approx. 90% (a/a) based on the HPLC trace.

$5.2 \quad \mathrm{c2}_{3333}-\mathrm{F}(\mathrm{C}=\mathrm{O})$

linear starting sequence ($\mathbf{2}_{3333}-\mathbf{F}(\mathrm{C}=\mathrm{O})$):

$$
\begin{aligned}
& \mathrm{H}-\mathrm{CYKQ}[\mathbf{F}(\mathrm{C}=0)] \mathrm{SIK}[\mathrm{~F}(\mathrm{C}=0)] \text { AKGCSKL-CamL-OH } \\
& \mathrm{c}[\mathrm{CYKQ}[\mathbf{F}(\mathrm{C}=0)] \mathrm{SIK}[\mathbf{F}(\mathrm{C}=0)] \text { AKGCSKL }]
\end{aligned}
$$

cyclic product ($\mathrm{CF}_{3333}-\mathbf{2}(\mathrm{C}=\mathrm{O})$):

Figure 2. Omniligase-1 mediated cyclization of $\mathbf{2}_{3333}-\mathbf{F}(\mathbf{C}=\mathrm{O})$. HPLC trace after 0 min (blue, $\mathbf{2}_{3333} \mathbf{- F}(\mathbf{C = O})$) and 60 min (red, $\mathrm{c} \mathbf{2}_{3333^{-}}$ $F(C=O)$) are shown. The cyclization yield is approx. 95% (a/a) based on the HPLC trace.

$5.3 \quad \mathrm{c} 3_{3333}-\mathrm{D}(\mathrm{C}=0)$

linear starting sequence ($\mathbf{3}_{3333}-\mathrm{D}(\mathrm{C}=\mathrm{O})$):

> H-CYKQ[D(C=O)]SIK[D(C=O)]AKGCSKL-Cam-L-OH
cyclic product ($\mathrm{c3}_{3333}-\mathrm{D}(\mathrm{C}=\mathrm{O})$):

Figure 4. Omniligase-1 mediated cyclization of $\mathbf{3}_{3333}-\mathrm{D}(\mathrm{C}=\mathrm{O})$. HPLC trace after 0 min (blue, $\mathbf{3}_{3333}-\mathrm{D}(\mathrm{C}=\mathrm{O})$) and 30 min (red, $\mathrm{c}_{3333^{-}}$ $\mathbf{D}(\mathrm{C}=0)$) are shown. The cyclization yield is approx. $95 \%(\mathrm{a} / \mathrm{a})$ based on the HPLC trace.

$5.4 \quad \mathrm{c4}_{4444}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right)$

linear starting sequence ($\mathbf{4}_{4444}-\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$):
cyclic product (c44444-hS(ONH_{2})):

H-R[hS(ONH2)]FRLPCRQLRCFRLP[hS(ONH2)]RQL-Cam-L-OH
$\mathrm{c}\left[\mathrm{R}\left[\mathbf{h S}\left(\mathrm{ONH}_{2}\right)\right]\right.$ FRLPCRQLRCFRLP[hS $\left.\left.\left(\mathrm{ONH}_{2}\right)\right] \mathrm{RQL}\right]$

Figure 6. Omniligase-1 mediated cyclization of $\mathbf{4}_{4444}-\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$. HPLC trace after 0 min (blue, $\mathbf{4}_{4444}$-hS $\left(\mathrm{ONH}_{2}\right)$) and 240 min (red,

$5.5 \quad \mathrm{c} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O})$

linear starting sequence $\left(\mathbf{5}_{4444}-\mathbf{F}(\mathbf{C}=\mathbf{O})\right.$): $\quad \mathrm{H}-\mathrm{R}[\mathbf{F}(\mathrm{C}=0)]$ FRLPCRQLRCFRLP[F(C=O) $]$ RQL-Cam-L-OH
cyclic product $\left(\mathrm{c5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O})\right): \quad \mathrm{c}[\mathrm{R}[\mathrm{F}(\mathrm{C}=0)]$ FRLPCRQLRCFRLP[F(C=O)]RQL]

Figure 5. Omniligase-1 mediated cyclization of $\mathbf{5}_{4444}-\mathbf{F}(\mathrm{C}=\mathrm{O})$. HPLC trace after 0 min (blue, $\mathbf{5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O})$) and 240 min (red, $\mathrm{C5}_{4444-}$ $\mathrm{F}(\mathrm{C}=\mathrm{O})$) are shown. The cyclization yield is approx. 85% (a/a) based on the HPLC trace.

$5.6 \quad \mathrm{c} 6_{5555}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right)$

linear starting sequence $\left(\mathbf{6}_{5555}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right)\right)$: cyclic product (c $_{55555}$-hS $\left(\mathrm{ONH}_{2}\right)$):

H-CYKGKQ[hS $\left.\left(\mathrm{ONH}_{2}\right)\right]$ SIKAS[hS $\left.\left(\mathrm{ONH}_{2}\right)\right]$ AKVRGCKFSKL-Cam-L-OH c[CYKGKQ[hS(ONH_{2})]SIKAS[hS $\left.\left.\left(\mathrm{ONH}_{2}\right)\right] A K V R G C K F S K L\right]$

Figure 8. Omniligase-1 mediated cyclization of $\mathbf{6}_{5555}-\mathbf{h S}\left(\mathrm{ONH}_{2}\right)$. HPLC trace after 0 min (blue, $\mathbf{6}_{5555} \mathbf{- h S}\left(\mathrm{ONH}_{2}\right)$) and 75 min (red, c6 $\mathbf{5 5 5 5 5}$-hS $\left(\mathrm{ONH}_{2}\right)$) are shown. The cyclization yield is approx. 70% (a/a) based on the HPLC trace.

$5.7 \quad \mathrm{C} 7_{5555}-\mathrm{F}(\mathrm{C}=0)$

linear starting sequence $\left(\mathbf{7}_{5555}-\mathrm{F}(\mathrm{C}=\mathrm{O})\right.$):
H-CYKGKQ[F(C=O)]SIKAS[F(C=O)]AKVRGCKFSKL-Cam-L-OH
cyclic product (c7 $_{5555}-\mathrm{F}(\mathrm{C}=\mathrm{O})$):

```
c[CYKGKQ[F(C=0)]SIKAS[F(C=O)]AKVRGCKFSKL]
```


Figure 7. Omniligase-1 mediated cyclization of $\mathbf{7}_{5555}-\mathbf{F}(\mathrm{C}=\mathrm{O})$. HPLC trace after 0 min (blue, $\mathbf{7}_{5555}-\mathbf{F}(\mathrm{C}=\mathrm{O})$) and 90 min (red, $\mathrm{c}_{5555^{-}}$ $F(C=O)$) are shown. The cyclization yield is approx. 95% (a/a) based on the HPLC trace.

$5.8 \quad \mathrm{c} 8_{5555}-\mathrm{D}(\mathrm{C}=\mathrm{O})$

linear starting sequence $\left(8_{5555}-\mathrm{D}(\mathrm{C}=\mathrm{O})\right.$):
cyclic product ($\mathrm{c8}_{5555-\mathrm{D}} \mathrm{D}(\mathrm{C}=\mathrm{O})$):

H-CYKGKQ[D(C=0)]SIKAS[D(C=0)]AKVRGCKFSKL-Cam-L-OH c[CYKGKQ[D(C=0)]SIKAS[D(C=0)]AKVRGCKFSKL]

Figure 9. Omniligase-1 mediated cyclization of $\mathbf{8}_{5555}-\mathrm{D}(\mathrm{C}=\mathrm{O})$. HPLC trace after 0 min (blue; $\mathbf{8 8}_{5555}-\mathrm{D}(\mathrm{C}=\mathrm{O})$) and 60 min (red, C8 ${ }_{5555-\mathrm{D}} \mathbf{(C = O)}$) are shown. The cyclization yield is approx. 95% (a/a) based on the HPLC trace.

6 Scaffold Synthesis

6.1 Strategy C, 'C' scaffolds

6.1.1 T4-C=O amine 18.

Scheme 4: The synthesis of the T4C amine, bearing the acetal protected aldehyde. This amine is used for both T4C scaffolds.

17

To a flame dried flask, under N_{2} flow, benzylamine (15) ($5 \mathrm{ml}, 45.77 \mathrm{mmol}$, 1 equiv) was added, followed by bromoacetaldehyde dietethyl acetal (16) ($16 \mathrm{ml}, 106.36 \mathrm{mmol}, 2.3$ equiv) and triethylamine ($18 \mathrm{ml}, 129.05 \mathrm{mmol}, 2.8$ equiv). The yellowish mixture was stirred at $100^{\circ} \mathrm{C}$ for 18 h , resulting is a thick slurry. The solids were filtered off and washed with EtOAc, which was subsequently washed with water, a saturated solution of NaHCO_{3} and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure to yield an orange oil. The oil was immobilized on silica, and the desired compound was purified via flash column chromatography ($20: 1$ - Petroleum ether:EtOAc) yielding the benzyl-protected amine 17 as a pale yellow oil in 37% yield ($5.715 \mathrm{~g}, 16.83 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) δ 7.30 (ddt, $J=21.7,13.9,7.0 \mathrm{~Hz}, 5 \mathrm{H}$), $4.58(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{dq}, J=9.2,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.51(\mathrm{dq}, J=9.3$, $7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.76(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.75,128.68,127.86,126.59$, 102.25, 61.75, 59.97, 57.21, 15.17. IR (cm^{-1}) 3027, 2973, 2928, 2876, 1602, 1494, 1452, 1372, 1345, 1267, 1114, 1056, 1023, 916, 849, 816, 739, 698. HR-MS (FD) 339.23924, (calc. 339.23828).

The benzyl-protected amine 17 ($5.711 \mathrm{~g}, 16.82 \mathrm{mmol}, 1$ equiv) was dissolved in 160 ml EtOH , and the solution was degassed and flushed with N_{2}. Pd/C (10% loading, 267 mg) was added and hydrogen pressure was applied (H_{2} filled balloon) after evacuation/saturation (3x).The mixture was stirred for 4 h at rt , after TLC indicated the reaction had finished. The solution was filtered over a $\mathrm{Na}_{2} \mathrm{SO}_{4}$ /Celite pad and eluted with EtOH . The volatiles were removed under reduced pressure, yielding the product amine 18 as a pale-yellow oil ($4.050 \mathrm{~g}, 16.24 \mathrm{mmol}, 97 \%) .{ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform-d) $\delta 4.44(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.60-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.44-3.34(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 101.70, 61.98, 51.62, 14.99. IR (cm ${ }^{-1}$) 2974, 2876, 1455, 1372, 1346, 1282, 1223, 1118, 1056, 1021, 944, 854, 813, 603, 504. HR-MS (FD) 249.19077 (calc. 249.19401).

6.1.2 T4-1 $(\mathrm{C}=0)$

Scheme 5: The synthesis of $\mathrm{T} 4-1(\mathrm{C}=0)$.

T4-1(C=O)

In a flame-dried flask, under N2 flow, 1,2,4,5- tetrakis (bromomethyl)benzene (1.50 g, $3 \mathrm{mmol}, 3$ equiv) was dissolved in 110 ml of freshly distilled MeCN and DIPEA ($209 \mu \mathrm{~L}, 1.2$ mmol, 1.2 equiv) was added. The secondary amine product ($250 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) was dissolved in 2 ml MeCN , and added dropwise to the durene solution. After stirring for one hour, the reaction mixture was concentrated, and immobilized on silica, after which the scaffold was obtained via flash column chromatography (EtOAc to EtOAc:EtOH-4:1), as a slight orange foam ($510 \mathrm{mg}, 0.94 \mathrm{mmol}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 7.50$ $(\mathrm{s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 4 \mathrm{H}), 4.86(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.76(\mathrm{~s}, 4 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{dq}, \mathrm{J}=9.3,7.0$ $\mathrm{Hz}, 4 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 138.63,134.90,126.08,97.95,70.33,65.05,64.27,30.13$, 15.09. IR (cm^{-1}) 2973, 2929, 2886, 1443, 1374, 1349, 1219, 1121, 1046, 998, 958, 893, 832, 789. HR-MS (LC-ESI) for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{NO}_{4}{ }^{+}$calc. 536.1011 , found 536.1033 . mp $32{ }^{\circ} \mathrm{C}$. Even though the scaffold is reactive during CLIPS, it cannot be used in oxime ligation. Due to the quaternary ammonium ion, the acetal deprotection does not proceed. It was therefore omitted from this study.

6.1.3 T4-2(C=O)

Scheme 6: The synthesis of scaffold T4-2(C=O). Procedures are detailed below.

To a flame-dried flask, under N_{2} flow, 3,5-dimethyl benzoic acid (19) ($2.00 \mathrm{~g}, 13.31 \mathrm{mmol}, 1$ equiv) was suspended in 1.6 ml of toluene. Thionyl chloride ($2 \mathrm{ml}, 27.6 \mathrm{mmol}, 2.06$ equiv) was added and the mixture was warmed to a gentle reflux and stirred for 4 hours. The volatiles were removed under reduced pressure, after which the oily residue is diluted with 4 ml of freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2} . t-\mathrm{BuOH}$ ($2.05 \mathrm{ml}, 21.31 \mathrm{mmol}, 1.6$ equiv) is added followed by pyridine ($1.13 \mathrm{ml}, 13.98 \mathrm{mmol}, 1.05$ equiv). The mixture was stirred for 12 hours, after which the solids are removed by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase is washed with 4 M HCl , water, 2 M NaOH and water. After drying over $\mathrm{K}_{2} \mathrm{CO}_{3}$, the volatiles are removed, yielding

20 as a colorless oil ($2.48 \mathrm{~g}, 12.03 \mathrm{mmol}, 90 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.63(\mathrm{~s}, 2 \mathrm{H}$), $7.17(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H})$, $1.62(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.12,137.75,133.99,127.09,80.70,28.18,21.13$. Analytical data are in concurrence to those found in literature. ${ }^{9}$

To a flame-dried flask, under N_{2} flow, OtBu-ester 20 ($13.95 \mathrm{~g}, 67.64 \mathrm{~mol}, 1$ equiv) was dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (250 ml). NBS ($25.28 \mathrm{~g}, 142.04 \mathrm{mmol}, 2.1$ equiv) was added and the mixture was degassed and flushed with N_{2}. The flask was irradiated with a lamp (500W), heating the mixture to a gentle reflux. The mixture was stirred for 1.5 hours, after which ${ }^{1} \mathrm{H}$-NMR showed the reaction completed*. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the volatiles were removed under reduced pressure, yielding a colorless oil. The mixture was crystallized from hexane, providing the desired product 21 as a white solid ($7.56 \mathrm{~g}, 20.77 \mathrm{mmol}, 31 \%$). A second crystallization yielded another $1.71 \mathrm{~g}(4.70 \mathrm{mmol}, 7 \%)$. * The mixture contains both doubly-brominated product, as well as some incomplete bromination of the starting material. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.94(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H})$, $4.51(\mathrm{~s}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.31,138.54,133.28,133.10,129.69,81.56,31.94,28.01$. IR $\left(\mathrm{cm}^{-1}\right) 3013,2982,2969,2932,1790,1714,1604,1472,1449,1390,1369,1319,1236,1213,1154,1110,1060,999$, $973,953,918,893,846,794,771,753,734,692 . m p 52{ }^{\circ} \mathrm{C}$. HR-MS FD m/z [M+] calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}: 361.951$, found 361.950.

Bromide compound 21 ($5.00 \mathrm{~g}, 13.73 \mathrm{mmol}$, 1 equiv) was dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml). HCOOH was added and the solution was stirred overnight at rt , after which ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed completion of the reaction. The volatiles were removed under reduced pressure and co-evaporation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x) yielded $\mathbf{2 2}$ as a white solid ($3.98 \mathrm{~g}, 12.92 \mathrm{mmol}, 94 \%$) which was used without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.10(\mathrm{~s}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.03,139.08,134.64,130.45,130.31,31.53 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 2971,2821,2710,2604,2539,1686,1603,1460$, $1437,1420,1308,1278,1248,1211,1162,1111,1056,998,938,927,904,855,771,728,691,662 . \mathrm{mp} 123^{\circ} \mathrm{C}$ (sublimates), $142{ }^{\circ} \mathrm{C}$ (melts). HRMS (FD^{+}) for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$ calc. 307.8886, found 307.8891 .

In a flame-dried flask, under N_{2} flow, the acid $22(1.047 \mathrm{~g}, 3.39 \mathrm{mmol})$ was dissolved in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. SOCl_{2} (5 ml , excess) was added and the mixture was heated to $75^{\circ} \mathrm{C}$, and stirred for 5 hours. The mixture was cooled to rt and the volatiles were removed under reduced pressure. The remaining oil was dissolved in 18 ml of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{NaHCO}_{3}(\mathrm{~s}, 2.60 \mathrm{~g}$, 30.94 mmol 9.1 equiv), NEt_{3} ($1 \mathrm{ml}, 7.17 \mathrm{mmol}, 2.1$ equiv) and DMAP ($25 \mathrm{mg}, 0.20 \mathrm{mmol}, 6$ mol\%) were added. The amine 18 ($676 \mathrm{mg}, 2.71 \mathrm{mmol}, 0.8$ equiv) was added dropwise, and the mixture was stirred overnight. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase was washed with water (2 x) and brine, and subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation yielded the crude product, which was purified via column chromatography ($3: 1$ to $2: 1$ P.E:EtOAc) and T42(C=O) was obtained as an off-white waxy solid ($414 \mathrm{mg}, 0.77 \mathrm{mmol}, 23 \%$). ${ }^{1} \mathrm{H} \mathbf{N M R}$ (500 MHz , Chloroform-d) $\delta 7.43$ (s, $1 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 4 \mathrm{H}), 3.81(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) 3.71(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}$, $J=16.3,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.17(\mathrm{t}, J=4.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (125 MHz, CDCl3) δ 171.41, 171.33, 138.66, 138.60, 137.79, 137.75, 130.23, 129.75, 127.71, 127.19, 101.20, 100.90, $63.39,52.73,49.01,45.22,32.13,32.08,15.45,15.33$. (italic are rotamers). IR (cm^{-1}) 2974, 2929, 2877, 2349, $1735,1634,1600,1468,1441,1417,1374,1345,1306,1236,1215,1162,1116,1055,932,896,837,757,704$. HR-MS FD m/z [M^{+}] calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{NO}_{5}$: 537.0725, found $537.0702 \mathrm{mp} 27^{\circ} \mathrm{C}$. It was estimated, based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$, that the scaffold has a mixture of Br and Cl substituents. About $38 \% \mathrm{Cl}$ is incorporated. Determined via $\mathrm{LC}-\mathrm{MS}$, there is $9.9 \% \mathrm{Cl}-\mathrm{Cl}$ present, 44.4% of the $\mathrm{Cl}-\mathrm{Br}$, and 45.7% of the $\mathrm{Br}-\mathrm{Br}$.

6.1.4 T4-3(C=O) scaffold

Scheme 7: The synthesis of $\mathrm{T} 4-3(\mathrm{C}=0)$ scaffold. Highlighted in grey is treated in the section of $\mathrm{T} 4-2(\mathrm{C}=0)$. Phth = phthalimide.

To a flame-dried flask, under N_{2} flow, bromide 21 ($500 \mathrm{mg}, 1.37 \mathrm{mmol}, 1$ equiv) was dissolved in 27 ml anhydrous DMF. KPhth ($1015 \mathrm{mg}, 5,48 \mathrm{mmol}, 4$ equiv) was added next, and the mixture was heated to 125° and stirred overnight. The suspension was cooled to rt and the mixture was evaporated to dryness. The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water, $1 \mathrm{M} \mathrm{KHSO}_{4}$, saturated aqueous NaHCO_{3} and water. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the volatiles were removed under reduced pressure. The Phth remnants were removed via flash column chromatography (3:1-P.E:EtOAc to remove first spot, then increased to 4:1-EtOAc: Petroleum ether), yielding 23 as a white solid ($533 \mathrm{mg}, 1.07 \mathrm{mmol}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroformd) $\delta 7.90(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 4 \mathrm{H}), 1.56(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.88,164.97,137.03,134.06,133.01,132.31,132.02,128.57,123.46,81.35,41.10$, 28.11. IR (cm^{-1}) 2975, 2938, 1769, 1706, 1607, 1554, 1536, 1466, 1427, 1391, 1367, 1342, 1310, 1257, 1231, 1155, 1122, 1099, 1086, $973,957,918,896,845,794,774,726,710,695$. HR-MS FD m/z [$\left.\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$: 496.1634, found 496.1634. mp $212{ }^{\circ} \mathrm{C}$.

To a flask, the phthalimide ester $\mathbf{2 3}$ ($468 \mathrm{mg}, 0.94 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml), after which $\mathrm{HCOOH}(10 \mathrm{ml})$ was added. A precipitate starts to form, and the mixture was stirred overnight. The solids were filtered off, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The off-white solid $\mathbf{2 4}$ was dried under high vacuum, yielding 303 mg ($0.69 \mathrm{mmol}, 73 \%$). No further purification is necessary for subsequent reactions. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.10$ $(\mathrm{s}, 1 \mathrm{H}), 7.88(\mathrm{q}, \mathrm{J}=4.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.61,166.70,137.65,134.61,131.43,130.93,127.27$, 123.26, 40.44. IR (cm^{-1}) $3064,1771,1704,1604,1466,1428,1393,1359,1343,1311,1261,1240,1190,1170,1112$, $1102,1086,1071,980,960,914,885,834,792,773,746,725,710 . m p 228^{\circ} \mathrm{C}$ (sublimates), $351^{\circ} \mathrm{C}$ melts. HRMS FD m/z [M^{+}] calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$: 440.1008, found 440.1004.

In a flame-dried flask, under N_{2} flow, the Phth-acid $\mathbf{2 4}$ ($1000 \mathrm{mg}, 2.27 \mathrm{mmol}$), was suspended in 15 ml of anhydrous DMF. HATU ($949 \mathrm{mg}, 2.497 \mathrm{mmol}, 1.1$ equiv) and DIPEA ($1 \mathrm{ml}, 5.74 \mathrm{mmol}, 2.5$ equiv) were added, yielding a clear solution. The mixture was stirred for 30 min , after which the amine 18 (594 $\mathrm{mg}, 2.38 \mathrm{mmol}, 1.05$ equiv) was added. The mixture was stirred overnight, after which it was diluted with EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration and evaporation of the volatiles, $\mathbf{2 5}$ is obtained as a pale brown solid, which is used without further purification (1540 mg , $2,27 \mathrm{mmol}$, quant). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.82$ (dd, $J=5.3,3.1$ $\mathrm{Hz}, 4 \mathrm{H}), 7.70(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 4 \mathrm{H}), 4.77(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{dt}, J=15.5,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.44(\mathrm{dt}, J=14.8,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.25(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 8 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3$) \delta 171.76$, $167.76,137.71,137.21,134.03,132.05,129.72,126.25,123.39,101.49,100.98,63.56,63.26,52.70,49.26,41.12,15.42$, 15.20. IR (cm^{-1}) 2974, 2929, 2877, 1765, 1702, 1635, 1605, 1468, 1445, 1421, 1394, 1348, 1329, 1313, 1260, 1233, 1173, $1119,1103,1054,1016,958,960,938,914,886,846,799,733,712$. HR-MS FD m/z [$\left.\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{9}$: 671.2843, found $671.2842 \mathrm{mp} 161-164{ }^{\circ} \mathrm{C}$.

The Phthalimide compound 25 ($1530 \mathrm{mg}, 2.27 \mathrm{mmol}$) was suspended in 20 ml of Toluene/EtOH (1:2). Hydrazine hydrate (51% solution in water, $1.42 \mathrm{ml}, 22.77 \mathrm{mmol}$, 10 equiv) was added and the mixture was stirred at reflux for 2 hours, during which a thick precipitate has formed. The mixture was cooled to rt after which the solids were filtered off, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were removed under reduced pressure, yielding the crude diamine $\mathbf{2 6}$ in quantitative yield, which was used without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.14$ $(\mathrm{s}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.55-3.40(\mathrm{~m}, 5 \mathrm{H})$, $3.35(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.16(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 8 \mathrm{H}), 1.08-0.95(\mathrm{~m}, 6 \mathrm{H})$.

The crude diamine 26 (contains water, 1190 mg , est. 2.27 mmol) was dissolved in $55 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 5 ml EtOH added. Then $\mathrm{NaHCO}_{3}(1334 \mathrm{mg}, 15.89 \mathrm{mmol}, 7$ equiv) and Bromoacetic acid N-hydroxysuccinimide ester (27) (1768 mg, 7.49 mmol, 3.3 equiv) were added and the mixture was stirred for 1 hour, after which TLC-analysis showed full conversion. The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was subsequently washed with water, brine and a sat. solution of NaHCO_{3}. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration and evaporation of the volatiles under reduced pressure, the crude product was obtained, which was purified by column chromatography (7:1 - EtOAc:P.E.),yielding scaffold T4-3(C=O) as a fluffy white solid ($950 \mathrm{mg}, 1.54 \mathrm{mmol}, 64 \%$ overall). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.20(\mathrm{t}, \mathrm{J}=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 4 \mathrm{H}), 3.75$ $(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{dq}, J=14.1,6.9 \mathrm{~Hz}, 5 \mathrm{H}), 3.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{dt}, J=15.5,7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.11,165.89,138.56,137.35,127.32$, 125.09, 101.14, 100.80, 63.33, 52.68, 48.78, 43.40, 28.86, 15.28. IR (cm^{-1}) 3262, 3067, 2971, 2873, 1678, 1665, 1599, 1480, 1424, 1373, 1341, 1297, 1266, 1248, 1227, 1209, 1177, 1120, 1063, 1027, 933, 905, 858, 830, 799, 763, 723, 708. HR-MS FD m/z [M^{+}] calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}$: 651.1155, found 651.1136. $\mathrm{mp} 74^{\circ} \mathrm{C}$.

6.2 Strategy for the alkoxy amine centered scaffolds

6.2.1 Amine for aminooxy centered scaffolds

Scheme 8: Synthesis of the aminooxy type scaffold amine. This amine is used for all three scaffolds in this strategy.

solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($6.931 \mathrm{~g}, 50 \mathrm{mmol}, 2$ equiv) was added. Then, $\mathrm{Cbz}-\mathrm{Cl}(3.7 \mathrm{ml}, 26 \mathrm{mmol}, 1.01$ equiv) was added to the mixture in a dropwise fashion. The suspension was warmed to rt. and stirred overnight. The volatiles were removed via rotary evaporation. The resulting slurry was redissolved in EtOAc and washed with water and brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the volatiles were removed under reduced pressure, yielding a colorless oil. Flash column purification (5\% EtOH in EtOAc) provided 29 as a colorless oil ($4.097 \mathrm{~g}, 17.12 \mathrm{mmol}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}$), $5.13(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 4 \mathrm{H}), 3.44-3.33(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.58,136.17$, $128.33,127.90,127.63,67.16,61.36,60.99,52.33,51.76$. IR (cm^{-1}) $3368,3064,3032,3942,2879,1671,1496,1473$, $1455,1415,1363,1262,1217,1130,1046,989,906,858,768,734,696$. HR-MS FD m/z [M $\left.{ }^{+}\right]$calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$: 239.1158, found 239.1157 .

To a flame-dried flask, under N_{2} flow, Cbz-protected diethanolamine 29 (10.0 $\mathrm{g}, 41.79 \mathrm{mmol}, 1$ equiv) was dissolved in 230 ml of freshly distilled THF. PPh_{3} ($23.02 \mathrm{~g}, 87.76 \mathrm{mmol}, 2.1$ equiv) and $\mathrm{Boc}_{2} \mathrm{~N}-\mathrm{OH}(20.47 \mathrm{~g}, 87.76 \mathrm{mmol}, 2.1$ equiv) were added, and the solution was cooled to $0^{\circ} \mathrm{C}$. DIAD ($17.3 \mathrm{ml}, 87.76 \mathrm{mmol}, 2.1$ equiv) was added in dropwise fashion via a syringe pump ($5 \mathrm{ml} / \mathrm{h}$). The mixture was warmed to rt and stirred overnight. The volatiles were removed under reduced pressure, providing a yellow oil. Flash column chromatography (3:2:0.5 - Petroleum ether: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}^{2}$) yielded 30 as a colorless oil ($21.39 \mathrm{~g}, 31.94 \mathrm{mmol}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}$), 5.14 $(\mathrm{s}, 2 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{q}, \mathrm{J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 18 \mathrm{H}), 1.51(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 155.73,149.88,136.43,128.49,128.03,127.93,83.72,83.68,75.00,74.90,67.21,47.26,46.68,28.01$. IR $\left(\mathrm{cm}^{-1}\right) 2979,2936,1792,1751,1703,1475,1457,1412,1393,1368,1344,1271,1247,1140,1109,1092,1038,1004$, $912,890,848,794,768,751,735,697$. HR-MS FD m/z [M+H $]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{12}$: 670.3551, found 670.6468 .

31

The protected amino-oxy compound 30 ($840 \mathrm{mg}, 1.2 \mathrm{mmol}$, 1 equiv) was dissolved in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. TFA ($368 \mu \mathrm{~L}, 4.8 \mathrm{mmol}, 4$ equiv) was added in dropwise fashion, after which the mixture was stirred for 16 h at rt . TLC and NMR analysis showed the mono-deprotection. The volatiles were removed under reduced pressure. To remove the Cbzgroup, the oily residue was redissolved in 25 ml of EtOH. The solution was evacuated, and purged with N_{2}. Pd/C (10 $\mathrm{wt} \%, 75 \mathrm{mg}$) was added. H_{2} pressure was applied via a balloon. The solution was thrice evacuated and saturated with H_{2}. The solution was stirred for 3 h at rt , after which it was filtered over a Celite pad. After elution with EtOH the volatiles were removed under reduced pressure, yielding an opaque oil. Further purification via flash column chromatography (EtOAc:EtOH - 5:1) yielded the deprotected amine 31 as a very sticky foam ($363 \mathrm{mg}, 1.08 \mathrm{mmol}, 90 \%$) (can also be a solid, as the oil solidifies). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 4.26-4.13(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.18(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $_{3}$) $\delta 158.30,82.98,71.54,45.93,28.17 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3198,2981,2938,1672,1446,1395,1369,1287$, $1253,1201,1161,1112,1051,1011,925,837,799,774,721 . \mathrm{mp} 61$ to $70^{\circ} \mathrm{C}$. the melting is very slow, yielding a gloopier substance. HR-MS FD m/z [M] ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$: 336.2134, found 336.2192.

6.2.2 T4-N1

Scheme 9: The synthesis of T4-1 $\left(\mathrm{ONH}_{2}\right)$.

To a flame-dried flask, under N_{2}-flow, 1,2,4,5-tetrakis (bromomethyl)benzene 32 ($1.350 \mathrm{~g}, 3 \mathrm{mmol}, 3$ equiv) was added and dissolved in 175 ml of freshly distilled MeCN. DIPEA ($348 \mu \mathrm{~L}, 2 \mathrm{mmol}, 2$ equiv) was added and the mixture was stirred until all solids had dissolved. A solution of the deprotected amine 31 ($335 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) in 20 ml of MeCN was added to the durene solution in dropwise fashion over the course of an hour, and the mixture was stirred overnight. Full consumption of the starting material
was shown via LC-MS analysis. (EtOAc, then 5:1 up to 2:1 EtOAc:EtOH) yielded scaffold T4-1 $\left(\mathrm{ONH}_{2}\right)$ as an off-white foam ($400 \mathrm{mg}, 0.64 \mathrm{mmol}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}+\mathrm{D}_{2} \mathrm{O}$) $\delta 7.47(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 4 \mathrm{H}), 4.74(\mathrm{~s}, 4 \mathrm{H}), 4.18(\mathrm{~s}, 4 \mathrm{H}), 3.95-$ $3.88(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CH}_{3} \mathrm{CN}+\mathrm{D}_{2} \mathrm{O}\right) \delta 157.78,138.90,134.88,126.62,82.51,70.58,69.38,60.80$, 30.16, 28.10. IR (cm^{-1}) 3255, 3236, 3134, 2976, 2934, 2177, 2164, 2157, 2033, 1712, 1453, 1393, 1367, 1273, 1250, 1213, 1159, 1107, 1007, 946, 926, 841, 799, 772. HR-MS (LC-ESI) for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}$calc 622.1127 found $622.1148 . \mathrm{mp} 101{ }^{\circ} \mathrm{C}$.

6.2.3 T4-2 $\left(\mathrm{ONH}_{2}\right)$

Scheme 10: The synthesis of T4-2 $\left(\mathrm{ONH}_{2}\right)$, where the steps highlighted in grey are treated under strategy 1 for $\mathbf{T 4 - 2}(\mathrm{C}=\mathrm{O})$

To a flame-dried Schlenk flask, under N_{2} atmosphere, acid 22 ($2.00 \mathrm{~g}, 6.49 \mathrm{mmol}$) is added, followed by SOCl_{2} (9 ml , excess). The mixture is heated to reflux, for 1.5 hours, after which the remaining SOCl_{2} is removed in vacuo. After co-evaporation with toluene, the acid-chloride was obtained as a pale-yellow solid. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) was added, followed by DMAP ($50 \mathrm{mg}, 6 \mathrm{~mol} \%$), The amine 31 ($1.94 \mathrm{~g}, 5.78 \mathrm{mmol}$, 0.9 equiv) was dissolved with $\mathrm{NEt}_{3}\left(1.13 \mathrm{ml}, 6.49 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml). The mixture was stirred for 2 hours at rt . After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase was washed with $1 \mathrm{M} \mathrm{KHSO}_{4}(1 \mathrm{x})$ and water (2 x), and subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

Filtration and evaporation yielded the crude product, which was purified via column chromatography (3:1 to 2:1 P.E:EtOAc) and T4-2 $\left(\mathrm{ONH}_{2}\right)$ was isolated as a colorless oil ($763 \mathrm{mg}, 1.22 \mathrm{mmol}, 21 \%$). Theproduct is isolated as a single spot on TLC. In LC-MS, the presence of the desired product was shown. Additionally, the presence of partially chlorinated product was shown by mass, and confirmed via the isotope pattern. As the peaks are too close to integrate, the ratio of Cl -substitution was determined via NMR, as in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ the $-\mathrm{CH}_{2}-\mathrm{Cl}$ and the $-\mathrm{CH}_{2}-\mathrm{Br}$ signals can be distinguished. Using a long delay time, the ratio can be determined by integration of the signals. In ${ }^{1} \mathrm{H}-\mathrm{NMR}$, with a delay of 10 s , the ratio $\mathrm{Br}: \mathrm{Cl}$ was determined at $1: 0.30$. $\mathrm{In}{ }^{13} \mathrm{C}-\mathrm{NMR}$, with a delay of 15 s , the ratio of $\mathrm{Br}: \mathrm{Cl}$ was determined at 1 : 0.29. ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}$), $7.96(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}$, of CH $2-\mathrm{Cl}, 4.39$ ($\mathrm{s}, 3 \mathrm{H}$, of $\mathrm{CH}_{2}-\mathrm{Br}$), $4.01(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 18 \mathrm{H}$, overlapping singlet of Bocgroups). ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.36,171.30,156.68,156.42,138.61,138.28,136.93,130.16,129.68,127.12$, $126.60,81.39,81.09,74.01,73.23,47.79,44.80,43.66,31.76,27.93$. IR (cm^{-1}) $3247,2977,2933,1715,1620,1598,1475$, 1444, 1392, 1366, 1270, 1247, 1159, 1109, 1049, 1010, 910, 836, 771, 757, 729, 704. mp $38{ }^{\circ} \mathrm{C}$ HR-MS FD, for $\left[\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right]^{+}$, calc 624.0920, found, 624.0880. The Boc-group is easily lost during ionization. The mono-Chloride mass is also found.

6.2.4 T4-3(ONH_{2})

HATU
THF
amine 31

Scheme 11: The synthesis of scaffold $\mathbf{T 4}-\mathbf{3}\left(\mathrm{ONH}_{2}\right)$. Highlighted in grey are compounds whereof the synthesis was detailed under strategy I.

Phthalimide tert-butyl ester $\mathbf{2 3}$ ($1.82 \mathrm{mg}, 3.67 \mathrm{mmol}$) was dissolved in 1:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{HCOOH}(60 \mathrm{ml})$. The reaction mixture was stirred for 2 days at rt yielding a white suspension. The solids were filtered off, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, yielding 24 as a very fine white powder (1.8 g , contains water, quant). The free acid 24 was suspended in DMF (25 ml). HATU ($1.53 \mathrm{~g}, 4.04$ mmol, 1.1 equiv) was added followed by DIPEA ($1.28 \mathrm{ml}, 7.34 \mathrm{mmol}, 2$ equiv). This mixture is left for 15 minutes, during which a yellow solution forms, which later forms a precipitate. The aminooxy amine 31 (1.32 g , $3.92 \mathrm{mmol}, 1.07$ equiv) was dissolved in 17 ml DMF, and added dropwise to the HATU solution. The reaction mixture remains yellow but becomes quite opaque with more precipitate. The reaction is finished after 2 h . The reaction mixture was evaporated to yield a very viscous yellow oil. EtOAc was added and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, sat. NaHCO_{3} solution, $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{M}$ KHSO $4_{4}, \mathrm{H}_{2} \mathrm{O}$, brine and was subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by column chromatography (1:1 to 1:2 P.E:EtOAc). 33 is isolated as a white powder ($1.87 \mathrm{~g}, 2.36 \mathrm{mmol}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 8.42$ (s, $1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{dd}, \mathrm{J}=5.3,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 4 \mathrm{H}), 3.97$ $(\mathrm{s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.87,167.75,156.88,156.63$, $137.24,137.06,134.10,131.77,129.64,126.22,123.33,81.39,81.07,74.27,73.41,47.96,43.87,40.98,28.17$. IR (cm^{-1}) $3266,2976,2934,1770,1707,1624,1468,1426,1391,1366,1344,1248,1161,1108,1050,1012,955,728,711$. HRMS FD m/z [M+ $\left.\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{11}{ }^{+}$: 758.3032 found $758.3005 \mathrm{mp} 78{ }^{\circ} \mathrm{C}$.

Phthalidmide compound 33 ($1866 \mathrm{mg}, 2.36 \mathrm{mmol}, 1$ equiv) was added to a flask, and dissolved in EtOH:Toluene - 2:1 (31 ml). Hydrazine hydrate (50% solution in water, 1.6 $\mathrm{ml}, 23.6 \mathrm{mml}, 10$ equiv) was added and the mixture was heated to reflux, where a solid started to precipitate after 30 min . The mixture was refluxed overnight, after which the yellow suspension was cooled to rt. The solids were filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The volatiles were removed under reduced pressure, yielding the desired product 34 as a white solid ($1084 \mathrm{mg}, 2.18 \mathrm{mmol}, 92 \%$), which was used in the next reaction step without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) δ
$8.51(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 1.49$ ($\mathrm{s}, 18 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 173.28,157.34,156.60,143.71,136.76,127.11,124.05,81.65,81.48,74.01,73.35$, 48.03, 45.97, 43.39, 38.62, 28.26.

The free amine 34 ($688 \mathrm{mg}, 1.38 \mathrm{mmol}$) was dissolved in $36 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. To fully dissolve the compound, 7 ml of EtOH is added. Solid NaHCO_{3} ($381 \mathrm{mg}, 4.53$ mmol, 3.3 equiv) is added, followed by Bromoacetyl-O-succinimide ester 27 ($1.07 \mathrm{~g}, 4.53 \mathrm{mmol}, 3.3$ equiv) which is added in one portion. The reaction mixture is stirred at rt for 30 min , after which LC-MS shows the reaction had completed. The volatiles were removed under reduced pressure and the remainder was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $1 \mathrm{M} \mathrm{KHSO}_{4}(3 \mathrm{x})$ and brine (2x) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure. The product was further purified by column chromatography (7:1

EtOAc: Petroleum ether), yielding the finished scaffold T4-3(ONH_{2}) as a white foam ($635 \mathrm{mg}, 0.89 \mathrm{mmol}, 62 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.30(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $4 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 25{ }^{\circ} \mathrm{C}$) δ $9.99(\mathrm{~s}, 2 \mathrm{H}), 8.82(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 4 \mathrm{H}), 3.79(\mathrm{~s}$, $2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, ~ D M S O-d_{6}, 75^{\circ} \mathrm{C}\right) \delta 9.75(\mathrm{~s}, 2 \mathrm{H}), 8.61(\mathrm{~s}, 2 \mathrm{H})$, $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.C D C l_{3}, r t\right) \delta 172.47,166.58,157.14,156.76,138.92,136.62,128.38,127.39,125.56,124.58,81.80,81.66,73.71,73.61$, $73.20,72.99,48.22,44.09,43.72,43.35,42.97,29.64,29.50,28.86,28.74,28.23,27.85,26.96$. (note: many double peaks due to rotameric effect). IR (cm^{-1}) 3257, 3076, 2975, 2928, 1713, 1657, 1619, 1598, 1536, 1476, 1424, 1392, 1366, 1274, 1249, 1160, 1106, 1048, 1026, 899, 836, 792, 761, 688. HR-MS FD m/z [M-Boc+ H^{+}] calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{5} \mathrm{O}_{7}{ }^{+}$: 638.0820 found $638.0867 . \mathrm{mp} 60-63^{\circ} \mathrm{C}$.

7 Preparation of tetracyclic peptides

7.1 General information

Sample preparation

Peptides

Approximately 0.2 mg of peptide was dissolved in $100 \mu \mathrm{~L}$ of 1:1 (v/v) MeCN:MilliQ. $10 \mu \mathrm{~L}$ of this solution is diluted with $50 \mu \mathrm{~L}$ of MilliQ. For analysis, $6 \mu \mathrm{~L}$ was injected onto the UPLC column. Reaction samples were measured on a UPLCESMS system ($3 \mathrm{~min}, 5-55 \% \mathrm{~B}$, where $\mathrm{B}=\mathrm{MeCN}$, column temperature of $50^{\circ} \mathrm{C}$), Acquity UPLC Peptide BEH C18 Column, $130 \AA$, $1.7 \mu \mathrm{~m}, 2.1 \times 50 \mathrm{~mm}$ with UV detection ($\lambda=215 \mathrm{~nm}$) and positive ion current for MS analysis.

Reaction mixtures in MeCN:MilliQ solvent mixtures

$20 \mu \mathrm{~L}$ of sample was diluted with $40 \mu \mathrm{~L}$ MilliQ, and filtered over a pipet-tip frit filter. For analysis, $6 \mu \mathrm{~L}$ was injected onto the UPLC column. Reaction samples were measured on a UPLC-ESMS system ($3 \mathrm{~min}, 5-55 \% \mathrm{~B}$, where $\mathrm{B}=\mathrm{MeCN}$, column temperature of $50^{\circ} \mathrm{C}$), Acquity UPLC Peptide BEH C18 Column, $130 \AA ̊, 1.7 \mu \mathrm{~m}, 2.1 \times 50 \mathrm{~mm}$ with UV detection ($\lambda=215 \mathrm{~nm}$) and positive ion current for MS analysis.

Reaction mixtures in DMSO:MilliQ solvent mixtures

$30 \mu \mathrm{~L}$ of sample was diluted with $30 \mu \mathrm{~L}$ MilliQ and filtered over a pipet-tip frit filter. For analysis, 8 was is injected onto the UPLC column. Reaction samples were measured on a UPLC-ESMS system ($3 \mathrm{~min}, 5-55 \% \mathrm{~B}$, where $B=\mathrm{MeCN}$, column temperature of $50^{\circ} \mathrm{C}$), Acquity UPLC Peptide BEH C18 Column, $130 \AA ̊, 1.7 \mu \mathrm{~m}, 2.1 \times 50 \mathrm{~mm}$ with UV detection ($\lambda=215 \mathrm{~nm}$) and positive ion current for MS analysis.

7.2 General CLIPS/oxime procedure

7.2.1 Strategy I

In a glass vial (5 ml), the peptide (0.2 mg) was dissolved in DMSO: MilliQ ($1: 1, \mathrm{v} / \mathrm{v}$) at a concentration of 0.50 mM . The scaffold (1 to $2 \mathrm{mg} / 100 \mu \mathrm{~L}$) was added with a molar equivalent relative to the peptide whereby the peptide weight was taken uncorrected for any TFA-salts present in the dry material ($\mathbf{T 4 - 2}(\mathrm{C}=\mathrm{O}$) at 0.95 equiv, $\mathbf{T 4 - 3}(\mathrm{C}=\mathrm{O})$ at 1.05 equiv). A solution of $1 \mathrm{M} \mathrm{NH} 4_{4} \mathrm{HCO}_{3}$ was added to reach $\mathrm{pH}>8(30 \mu \mathrm{~L})$. The reaction mixture is analyzed after 20 min . Upon completion, the reaction mixture was acidified with a 15% TFA solution (volume of base $+20 \%$, generally $40 \mu \mathrm{~L}$), to remove the acetal protecting groups of the aldehydes. Oxime ligation occurs simultaneously. The reaction mixture was analyzed at certain time intervals, until the reaction had completed.

7.2.2 Strategy II

CLIPS

In a glass vial (5 ml), the peptide (0.2 mg) was dissolved in MeCN: MilliQ (1:1) at a concentration of 0.50 mM . The scaffold (1 to $2 \mathrm{mg} / 100 \mu \mathrm{~L}$) was added with a molar equivalent relative to the peptide, whereby the peptide weight was taken uncorrected for any TFA-salts present in the dry material ($\mathbf{T 4 - 1}\left(\mathrm{ONH}_{2}\right)$ at 0.95 equiv, $\mathbf{T 4}-2\left(\mathrm{ONH}_{2}\right)$ at 1.05 equiv and T4-3(ONH_{2}) at 0.85 equiv). A solution of $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ is added to reach $\mathrm{pH}>8(30 \mu \mathrm{~L})$. The reaction mixture is analyzed after 20 min . Upon completion, the reaction mixture is lyophilized to dryness. The reaction can also be performed in DMSO:MilliQ mixtures, but DMSO is less suitable for lyophilizing. This has, however, no noticeable effect on the further reactions.

Scaffold deprotection

To remove the Boc-groups on the scaffold aminooxy, the lyophilized product was treated with excess 2:1 TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($300 \mu \mathrm{~L}$ total). The solution was left for 2 hours at rt , after which the volatiles were evaporated under a flow of N_{2}. For larger scale reactions, the material was again dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and evaporated to dryness, to remove all TFA remnants.

Oxime Ligation

The free aminooxy peptide was dissolved in DMSO:MilliQ to reach a peptide concentration of 0.50 mM (same as the CLiPS reaction). The pH does not necessarily need adjustment, and was usually omitted. If the pH needs adjustment, the optimum is considered to be pH 4.5 , reached by adding a 1 M acetate buffer of pH 4.5 . The reaction can be carried out at rt , but some systems show the best results at $40^{\circ} \mathrm{C}$. The glass reaction vessel is placed on a heating plate with a temperature set of $40^{\circ} \mathrm{C}$.

7.2.3 Isolated tetracycle $\mathrm{c5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{C} / \mathrm{O}}$

Peptide $\mathrm{C5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O})(5.35 \mathrm{mg}, 1.96 \mu \mathrm{~mol})$ was suspended in 1.95 ml of MeCN , followed by the addition of 1.95 ml of MilliQ, to fully dissolve the peptide (0.50 mM). $87.75 \mu \mathrm{~L}$ (1.05 equiv, uncorrected) of scaffold $\mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)$ solution (1.44 mg in $100 \mu \mathrm{~L}$) was added to the peptide. $100 \mu \mathrm{~L}$ of a of $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ solution was added, with the resulting pH of 8.5. Analysis of the CLIPS mixture showed full conversion to the desired product $\mathrm{c}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \bullet \mathrm{T4}-\mathbf{2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{C}}$, with some excess scaffold present (Figure 10). The solution was lyophilized, yielding a white powder. To remove the Boc-groups of the scaffold, 4 ml of TFA was added, followed by 2 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was stirred for 2 h at rt , resulting in a slightly yellowish solution. Under a stream of nitrogen, the volatiles were evaporated, yielding a sticky residue. This residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the volatiles were removed once more, yielding a sticky white residue film on the vial. This residue was dissolved in 1 ml DMSO, followed by the addition of 3 ml water. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ over the weekend. The mixture was analyzed, showing 2 products with identical mass, at 1.30 and 1.34 min .

Preparative HPLC purification of the peptides, on a Supelco column (C5-C10) flow $8 \mathrm{ml} / \mathrm{min}$, with phase A: water+ 0.05% (v / v) TFA, and phase B: water MeCN+ $0.05 \%(\mathrm{v} / \mathrm{v})$ TFA. Purification is performed at rt (no column heater).
The reaction mixture was diluted with water to a final volume of $80 \mathrm{ml}(2.5 \%$ DMSO). The peptide was loaded onto the column via a dilution method, where the reaction solution is taken as the mobile phase ($4 \mathrm{ml} / \mathrm{min}$). Once the loading peak of DMSO is completely off the column, the gradient is started ($8 \mathrm{ml} / \mathrm{min}, 0$ to $38 \% \mathrm{MeCN}$, over 35 min). Products start to elute after approximately 27 min . The fractions ($\sim 3 \mathrm{ml}$) were collected in 10 ml glass vials, analyzed on UPLC and lyophilized.

$$
\mathrm{c} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O})^{\bullet} \cdot \mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}
$$

Figure 10. The chromatograms of the cyclization and isolation of $\mathrm{c} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathbf{T 4} \mathbf{- 2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$, where a) the cyclic peptide $\mathrm{c}_{4444}{ }^{-}$ $\mathrm{F}(\mathrm{C}=\mathrm{O})$, b) the CLIPSed product $\left.\mathrm{C5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-\mathrm{N}^{\mathrm{c}}, \mathrm{c}\right)$ the two products obtained for $\left.\mathrm{C5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0} \mathrm{~d}\right)$ isolated tricycle of $\mathrm{C}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T4}-\mathbf{2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{C/O}}$

Product 1 (tr 1.30 min) was present in fr. 10 and 11, but not pure.
HR-MS (ESI+), for $\mathrm{C}_{139} \mathrm{H}_{209} \mathrm{~N}_{43} \mathrm{O}_{25} \mathrm{~S}_{2}, \mathrm{mw}_{\text {calc }} 2945.5924$,
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc 1473.8015, found 1473.8158 .
$[\mathrm{M}+3 \mathrm{H}]^{3+}$ calc 982.8703, found 982.8719 .
$[\mathrm{M}+4 \mathrm{H}]^{4+}$ calc 737.4047 , found 737.4042 .

Product 2 (tr 1.34 min) was present in fr. 12 to 15 , in pure form (1.85 mg total).
HR-MS: ESI-QTOF for [$\left.\mathrm{C}_{139} \mathrm{H}_{209} \mathrm{~N}_{43} \mathrm{O}_{25} \mathrm{~S}_{2}\right]^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc 2945.5919, found 2945.8657. HR-MS (ESI+), for $\mathrm{C}_{139} \mathrm{H}_{209} \mathrm{~N}_{43} \mathrm{O}_{25} \mathrm{~S}_{2}$, $\mathrm{mw}_{\text {calc }} 2945.5924$

HR-MS (ESI+), for $\mathrm{C}_{139} \mathrm{H}_{209} \mathrm{~N}_{43} \mathrm{O}_{25} \mathrm{~S}_{2}$, $\mathrm{mw}_{\text {calc }} 2945.5924$,
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc 1473.8015, found 1473.8117 .
$[\mathrm{M}+3 \mathrm{H}]^{3+}$ calc 982.8703, found 982.8701 .
$[\mathrm{M}+4 \mathrm{H}]^{4+}$ calc 737.4047, found 737.4029.
Product 2 was used for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

7.3 NMR analysis of c54444-F(C=O)•T4-2(ONH2)C/O

7.3.1 Materials and methods

The NMR sample of $\mathrm{c}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathbf{T 4}-\mathbf{2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$ was prepared as a 1.07 mM solution in $540 \mu \mathrm{l}$ total volume (5 mm NMR tube) containing $25 \mathrm{mM} \mathrm{NaAc-d}{ }^{3}$ buffer (pH 4.45), 0.1 mM EDTA, 0.2 mM sodium azide, $2 \mu \mathrm{M}$ DSS- d^{6} as chemical shift reference and $2 \%(v / v) D_{2} O$ for deuterium lock. NMR spectra ($1{ }^{1}{ }^{1} \mathrm{H}$, DIPSI 80 ms mixing time, NOESY 350 ms mixing time, ROESY 150 ms mixing time, natural abundance ${ }^{13} \mathrm{C}^{-}{ }^{1} \mathrm{H}$ HSQC, ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H} \mathrm{HMBC}$, and ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQC ${ }^{10}$ of $1.07 \mathrm{mM} \mathrm{c}_{4444-}$ F(C=O)•T4-N2 ${ }^{\text {c/O }}$ were recorded on a Bruker Avance III HD 700 MHz spectrometer, equipped with a TCI cryoprobe. Spectra were recorded at various temperatures varying between $25^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$, Temperature-dependent exchange processes of $\mathrm{C} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathbf{T 4 - 2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$ were studied in both NOESY and ROESY spectra. Processing and analysis was carried out by Topspin 3.2 (Bruker, Rheinstetten, Germany).

Figure 11. Topology and atom numbering in the NMR analysis of $\mathbf{c} 5_{4444}-\mathbf{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-\mathbf{2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$.

7.3.2 Results

Molecule $\mathrm{c5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T4}-\mathbf{2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$ has been studied by NMR spectroscopy to determine the conformational characteristics and dynamics of the peptide part and scaffold system, the latter schematically shown in Figure 11. A systematic study of concentration and temperature shows that the system adopts a complex ${ }^{1} \mathrm{H}$ NMR spectrum that corresponds to multiple conformational ensemble in slow exchange. Figure 12 shows the 1D proton spectrum recorded at 25,30 and $37^{\circ} \mathrm{C}$. At all three temperatures a broad envelop at 8.1 ppm is observed that contains most amino acid amide resonances. In contrast, aromatic protons from $\mathrm{F}(\mathrm{C}=\mathrm{O}) 15, \mathrm{~F}(\mathrm{C}=\mathrm{O}) 20$ and the ring protons of Linker group TL (grouped at 7.25 ppm) adopt sharp resonances, but these overlapping signals are rather divided up in numerous peaks. In the end, the conformational set of structures considered is too complex to structurally elucidate by NMR. In order to estimate the number of distinct conformers present in the conformational mixture, different types of additional 2D NMR spectra were recorded. Figure 13 displays the region in the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HSQC spectrum in which part the oxime methyl resonances, denoted $\mathrm{Me}-15$ and $\mathrm{Me}-25$, are observed. At least twelve individual large methyl cross peaks can be separated in this 2D region, while one expects only a maximum of four peaks that would correspond to the syn and anti orientation of Methyl C15 and C25 with respect to the $\mathrm{C}=\mathrm{N}$ double bond in both linkers Oxime1 and Oxime2 (Fig S1). ROESY spectra on the scaffold clearly demonstrate the existence of various equilibrium states in this conformational ensemble, with many off-diagonal exchange peaks visible for methyl resonances $\mathrm{Me}-15$ and $\mathrm{Me}-25$ (Figure 14). In addition, other regions of the 13C-1H HSQC spectrum are consistent with a global equilibrium ensemble affecting the entire scaffold and the protein segments. The large number of individual Leu methyl resonances present (Figure 15), many more than the expected eight ($4 \times \mathrm{H} \delta 1 / \mathrm{H} \delta 2$ Leu) peaks, shows that the protein loops do not adopt a well-defined,
single low-energy state in solution. Based on these NMR results we did not attempt to assign individual resonances. The small ${ }^{1} \mathrm{H}$ chemical shift dispersion observed for amino acid backbone resonances together with the similarity of groupbased resonances in the linker region of $\mathrm{c} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathbf{T 4}-\mathbf{2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$ however agree with a lack of structural rigidity.

Figure 12. $700 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum of $\mathrm{c} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathbf{T 4}-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$ recorded at three different temperatures, using excitation sculpting to selectively suppress the water resonance positioned in the spectrum at the pointer annotated H 2 O .

Figure 13. Part of the alifatic methyl region of the $\mathrm{HSQC}{ }^{13} \mathrm{C}-1 \mathrm{H}$ spectrum of $\mathrm{c} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathbf{T 4 - 2}\left(\mathrm{ONH}_{2}\right)^{\mathrm{C} / 0}$ at $37^{\circ} \mathrm{C}$. This region contains the cross peaks corresponding to oxime methyl peaks $\mathrm{Me}-15$ and $\mathrm{Me}-25$ positioned in the two oxime linkers (Scheme Fig. 11). Multiple peaks are observed in slow to medium exchange, the complexity of the spectrum prevents unambiguous assignment of these multiple peaks.

Figure 14. Part of the ROESY spectrum (150 ms mixing time) of $\mathrm{c} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{C} / 0}$ at $37^{\circ} \mathrm{C}$, containing the methyl peaks $\mathrm{Me}-15$ and $\mathrm{Me}-25$ that are positioned in the two oxime linkers of the scaffold (Scheme Fig 11). Discrimination between NOE and exchange follows from the sign of off-diagonal cross peaks relative to the diagonal intensity, negative for NOE peaks and positive for ROE exchange peaks. In this region only positive exchange peaks are observed, and strongest pair-wise ROE correlations are indicated by rectangles and with horizontal bars in the corresponding 1D ${ }^{1} \mathrm{H}$ reference spectrum.

Figure 15. Part of the aliphatic methyl region of the HSQC ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ spectrum of $\mathrm{c} 5_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathbf{T 4}-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{C} / \mathrm{O}}$ at $37{ }^{\circ} \mathrm{C}$. This region contains the cross peaks corresponding to Leu methyl pairs Hס1\#-CD1 and Hס2\#-CD2 in amino acid residues Leu3, Leu8, Leu13 and Leu18 of the peptide loops. The complexity of the spectrum prevents unambiguous assignment of these methyl peaks.

8 UPLC graphs of the synthesized tetracycles

$8.1 \mathrm{hS}\left(\mathrm{ONH}_{2}\right)$ peptides

8.1.1 $\mathrm{c1}_{3333}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right) \cdot \mathrm{T} 4-2(\mathrm{C}=\mathrm{O})^{c / 0}$

cyc-CYKQhS $\left(\mathrm{ONH}_{2}\right) \mathrm{SIKhS}\left(\mathrm{ONH}_{2}\right)$ AKGCSKL with the $\mathbf{T 4 - 2}(\mathrm{C}=\mathrm{O})$ scaffold

8.1.2 $\mathrm{cl}_{3333}-1 \mathrm{hS}\left(\mathrm{ONH}_{2}\right) \cdot \mathrm{T} 4-3(\mathrm{C}=\mathrm{O})^{c / 0}$

cyc-CYKQhS $\left(\mathrm{ONH}_{2}\right)$ SIKhS $\left(\mathrm{ONH}_{2}\right)$ AKGCSKL with he T4-3(C=O) scaffold

8.1.3 $\mathrm{C4}_{4444}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right) \cdot \mathrm{T} 4-2(\mathrm{C}=\mathrm{O})^{\mathrm{c} / \mathrm{O}}$

cyc-RhS $\left(\mathrm{ONH}_{2}\right)$ FRLPCRQLRCFRLPhS $\left(\mathrm{ONH}_{2}\right)$ RQL with T4-2(C=O) scaffold
a) Cyclic

Peptide

b) CLiPS

30 min
1.30

Entry	Reaction	Compound	tr	m/z found	calc	Ionized species
a		Monocylic peptide	1.04	859.04	859.18	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				644.76	644.63	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				516.13	515.91	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
b	CLIPS reaction	CLIPSed	1.30	984.82	985.01	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				738.96	739.01	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				583.60	582.40	$[\mathrm{M}-\mathrm{OEt}+5 \mathrm{H}]^{5+}$
c	Oxime ligation	Unknown	1.08			
		Tetracycle	1.13			$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				692.91	692.95	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				554.68	554.56	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
		Tetracycle	1.15	923.47	923.59	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				692.92	692.95	$[\mathrm{M}+4 \mathrm{H}]^{++}$
				554.53	554.56	$[\mathrm{M}+5 \mathrm{H}]^{5+}$

8.1.4 $\mathrm{C4}_{4444}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right) \cdot \mathrm{T} 4-3(\mathrm{C}=\mathrm{O})^{\mathrm{c} / \mathrm{O}}$

cyc-RhS $\left(\mathrm{ONH}_{2}\right)$ FRLPCRQLRCFRLPhS $\left(\mathrm{ONH}_{2}\right)$ RQL with T4-3(C=O) scaffold

Entry	Reaction	Compound	tr	$\begin{aligned} & \mathrm{m} / \mathrm{z} \\ & \text { found } \end{aligned}$	calc	Ionized species
a		Monocylic peptide	1.04	859.04	859.18	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				644.76	644.63	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				516.13	515.91	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
b	CLIPS reaction	CLIPSed	1.24	1533.48	1533.56	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1023.00	1023.04	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				767.61	767.54	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
		scaffold	1.73	608.53	608.10	[M-OEt+H] ${ }^{+}$
c	Oxime ligation	Scaffold	0.56			
		Unknown	0.73			
		Tetracycle	1.07	961.65	961.62	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				721.41	721.47	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				578.00	577.57	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
		Tetracycle	1.09	961.57	961.62	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				721.64	721.47	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				576.88	577.57	$[\mathrm{M}+5 \mathrm{H}]^{5+}$

8.1.5 c6 5555 $-\mathrm{hS}\left(\mathrm{ONH}_{2}\right) \cdot \mathrm{T} 4-2(\mathrm{C}=\mathrm{O})^{\mathrm{c} / \mathrm{O}}$

cyc-CYKGKQhS(ONH_{2})SIKAShS(ONH_{2})AKVRGCKFSKL with T4-2(C=O) scaffold
a)

b) CLiPS

30 min
1.04

c) Oxime ligation 0.78
15% TFA, 24 h , rt

Entry	Reaction	Compound	tr	\mathbf{m} / \mathbf{z} found	calc	lonized species
a		Monocylic	0.69		2645.62	$[\mathrm{M}+\mathrm{H}]^{+}$
	peptide		1325.27	1325.31	$[\mathrm{M}+2 \mathrm{H}]^{2+}$	
				883.49	883.54	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				662.91	662.66	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
b	CLIPS reaction	CLIPSed	1.04	1512.38	530.12	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
				1512.56	$[\mathrm{M}+2 \mathrm{H}]^{2+}$	
				722.46	722.49	$\left.[\mathrm{M}-2 \mathrm{OEt}]^{3+} \mathrm{H}_{2} \mathrm{O}+3 \mathrm{H}\right]^{3+}$
				578.45	578.19	$\left[\mathrm{M}-2 \mathrm{OEt}-\mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}\right]^{4+}$
c	Oxime ligation	Tetracycle	0.78	1420.45	1420.43	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				947.62	947.29	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				710.99	710.72	$[\mathrm{M}+4 \mathrm{H}]^{4+}$

8.1.6 c6 ${ }_{5555}-\mathrm{hS}\left(\mathrm{ONH}_{2}\right) \cdot \mathrm{T} 4-3(\mathrm{C}=\mathrm{O})^{\mathrm{c} / \mathrm{O}}$

cyc-CYKGKQhS $\left(\mathrm{ONH}_{2}\right)$ SIKAShS $\left(\mathrm{ONH}_{2}\right)$ AKVRGCKFSKL with $\mathbf{T 4 - 3}(\mathrm{C}=\mathrm{O})$ scaffold

8.2 Tetracycles of $\mathrm{F}(\mathrm{C}=\mathrm{O})$ Peptides

8.2.1 $\quad \mathrm{C2}_{3333}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-1\left(\mathrm{ONH}_{2}\right)^{\mathrm{C} / \mathrm{O}}$

сус-CYKQF(C=O)SIKF(C=O)AKGCSKL with T4-1 $\left(\mathrm{ONH}_{2}\right)$ scaffold

\bullet = isomers

Entry	Reaction	Compound	tr	m/z found	calc	Ionized species
a		Monocyclic peptide	0.97	1918.32	1918.64	$[\mathrm{M}+\mathrm{H}]^{+}$
				959.70	959.32	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				640.26	639.88	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
b	CLIPS reaction	CLIPSed	1.18	1191.02	1191.11	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				794.39	794.07	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				760.94	760.72	$[\mathrm{M}-\mathrm{Boc}+2 \mathrm{H}]^{3+}$
				727.49	727.37	$[\mathrm{M}-2 \mathrm{BoC}+3 \mathrm{H}]^{3+}$
c	Oxime ligation	Tetracycle	0.83	1072.88	1073.04	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				715.49	715.70	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
		Tetracycle	0.88	1072.58	1073.04	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				715.49	715.70	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
		Tetracycle	0.92	1072.50	1073.04	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				715.64	715.70	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
		Tetracycle	0.98	1072.73	1073.04	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				715.41	715.70	$[\mathrm{M}+3 \mathrm{H}]^{3+}$

8.2.2 $\mathbf{c 2}_{3333}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$

сус-CYKQF(C=O)SIKF(C=O)AKGCSKL with T4-2 $\left(\mathrm{ONH}_{2}\right)$ scaffold

8.2.3 $\mathbf{c 2}_{3333}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-3\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$

cyc-CYKQF(C=O)SIKF(C=O)AKGCSKL with T4-3(ONH 2) scaffold

8.2.4 $\mathrm{c5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-1\left(\mathrm{ONH}_{2}\right)^{\mathrm{C} / \mathrm{O}}$

cyc-RF(C=O)FRLPCRQLRCFRLPF(C=O)RQL with T4-1 $\left(\mathrm{ONH}_{2}\right)$ scaffold
a) Monocyclic
Peptide

\bullet = isomers

Entry	Reaction	Compound	tr	$\begin{aligned} & \mathrm{m} / \mathrm{z} \\ & \text { found } \end{aligned}$	calc	Ionized species
a		Monocyclic peptide	1.29	907.80	907.90	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				681.21	681.18	$[\mathrm{M}+4 \mathrm{H}] 4^{+}$
b	CLIPS reaction	Disulfide	1.29	906.97	907.90	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				681.06	681.18	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
		CLIPSed	1.39	1061.78	1061.43	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				796.64	796.88	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				597.58	597.84	[M-2Boc+5H] ${ }^{5+}$
C	Oxime ligation	Tetracycle	1.05	983.09	983.05	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				737.58	737.85	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				590.47	590.24	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
		Tetracycle	1.06	982.70	983.05	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				737.51	737.85	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				589.76	590.24	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
		Tetracycle	1.07	982.77	983.05	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				737.58	737.85	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				590.54	590.24	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
		Tetracycle	1.11	982.90	983.05	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				737.71	737.85	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				589.82	590.24	$[\mathrm{M}+5 \mathrm{H}]^{5+}$

8.2.5 $\mathrm{c5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / \mathrm{o}}$

cyc-RF(C=O)FRLPCRQLRCFRLPF(C=O)RQL with T4-2 $\left(\mathrm{ONH}_{2}\right)$ scaffold

8.2.6 $\quad \mathrm{C5}_{4444}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-3\left(\mathrm{ONH}_{2}\right)^{\mathrm{C} / \mathrm{O}}$

cyc-RF(C=O)FRLPCRQLRCFRLPF(C=O)RQL with T4-3(ONH_{2}) scaffold

8.2.7 $\quad 7_{5555}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-1\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / \mathrm{O}}$

сус-CYKGKQF(C=O)SIKASF(C=O)AKVRGCKFSKL with T4-1 $\left(\mathrm{ONH}_{2}\right)$ scaffold

8.2.8 $\quad \mathrm{c7}_{5555}-\mathrm{F}\left(\mathrm{C}=\mathrm{O} \cdot \mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / \mathrm{O}}\right.$

сус-CYKGKQF(C=O)SIKASF(C=O)AKVRGCKFSKL with T4-2 $\left(\mathrm{ONH}_{2}\right)$ scaffold

\bullet = isomers

Entry	Reaction	Compound	tr	$\begin{array}{l}\mathrm{m} / \mathbf{z} \\ \text { found }\end{array}$	calc	Ionized species
a		Monocyclic peptide	0.90		2791.80	$[\mathrm{M}+\mathrm{H}]^{+}$
			1397.57	1397.40	$[\mathrm{M}+2 \mathrm{H}]^{2+}$	
			931.95	931.60	$[\mathrm{M}+3 \mathrm{H}]^{3+}$	
b	CLIPS	CLIPSed		1.15	1699.21	699.20

8.2.9 $\quad 7_{5555}-\mathrm{F}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-3\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / \mathrm{O}}$

сус-CYKGKQF(C=O)SIKASF(C=O)AKVRGCKFSKL with T4-3($\left(\mathrm{ONH}_{2}\right)$ scaffold

8.3 Cyclization results for $D(C=0)$ peptides

8.3.1 $\mathrm{c3}_{3333^{-}} \mathrm{D}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-1\left(\mathrm{ONH}_{2}\right)^{\mathrm{c/O}}$

cyc-CYKQD(C=O)SIKD(C=O)AKGCSKL with T4-1 $\left(\mathrm{ONH}_{2}\right)$ scaffold

- = mono-oxime

8.3.2 $\mathrm{c3}_{3333}-\mathrm{D}(\mathrm{C}=\mathrm{O}) \cdot$ •T4-2($\left.\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$

cyc-CYKQD(C=O)SIKD(C=O)AKGCSKL with T4-2 $\left(\mathrm{ONH}_{2}\right)$ scaffold

8.3.3 $\mathrm{c3}_{3333}-\mathrm{D}\left(\mathrm{C}=\mathrm{O} \cdot \mathrm{T} 4-3\left(\mathrm{ONH}_{2}\right)^{\mathrm{c/o}}\right.$

cyc-CYKQD(C=O)SIKD(C=O)AKGCSKL with T4-3 $\left(\mathrm{ONH}_{2}\right)$ scaffold
a) Monocyclic
Peptide

b) CLiPS
30 min

c) Oxime Ligation
20h, 40 deg

Entry	Reaction	Compound	tr	$\begin{aligned} & \mathrm{m} / \mathrm{z} \\ & \text { found } \end{aligned}$	calc	Ionized species
a		Monocyclic peptide	1.01		1964.71	$[\mathrm{M}+\mathrm{H}]^{+}$
				983.02	983.85	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				655.86	655.90	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
b	CLIPS reaction	Disulfide	0.98	982.42	982.36	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				655.33	655.24	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
		Monocycle	1.00	982.95	982.86	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				655.71	655.91	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
		CLIPSed	1.33	1271.79	1271.68	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				848.32	848.12	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				814.87	814.77	$[\mathrm{M}-\mathrm{Boc}+3 \mathrm{H}]^{3+}$
				781.56	781.42	$[\mathrm{M}-2 \mathrm{Boc}+3 \mathrm{H}]^{3+}$
c	Oxime ligation	Mono-Oxime	0.93	1162.58	1163.12	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				775.56	775.42	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
		Monocycle	1.00	981.90	982.36	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				655.11	655.24	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
		Tetracycle	1.20	1153.51	1153.61	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				769.56	769.74	$[\mathrm{M}+3 \mathrm{H}]^{3+}$

8.3.4 $\quad \mathrm{c}_{5555}-\mathrm{D}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-1\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / \mathrm{o}}$

cyc-CYKGKQD(C=O)SIKASD(C=O)AKVRGCKFSKL with $\mathbf{T 4 - 1}\left(\mathrm{ONH}_{2}\right)$ scaffold

\bullet = mono-oxime

Entry	Reaction	Compound	tr	$\begin{aligned} & \hline \mathrm{m} / \mathrm{z} \\ & \text { found } \end{aligned}$	calc	Ionized species
a		Monocyclic peptide	0.96		2837.86	$[\mathrm{M}+\mathrm{H}]^{+}$
				1420.30	1420.43	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				947.25	947.29	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				710.69	710.72	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				567.95	568.17	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
b	CLiPS reaction	CLiPSed	1.12	1650.86	1650.72	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1101.16	1101.15	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				826.19	826.17	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				801.07	801.15	$[\mathrm{M}-\mathrm{Boc}+4 \mathrm{H}]^{4+}$
				775.79	775.89	$[\mathrm{M}-2 \mathrm{Boc}+4 \mathrm{H}]^{4+}$
c	Oxime ligation	Mono-Oxime	0.88	1541.35	1541.66	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1028.25	1028.11	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				771.51	771.64	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				618.06	617.67	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
		Mono-Oxime	0.92	1541.95	1541.66	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1028.18	1028.11	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				771.89	771.64	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
		Mono-Oxime	0.93	1542.63	1541.66	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1028.25	1028.11	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				771.89	771.64	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
		Tetracycle	0.98	1533.33	1533.15	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1022.15	1022.44	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				767.01	767.13	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				613.63	613.87	$[\mathrm{M}+5 \mathrm{H}]^{5+}$

8.3.5 $\quad \mathrm{c}_{5555}-\mathrm{D}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-2\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / \mathrm{o}}$

cyc-CYKGKQD(C=O)SIKASD(C=O)AKVRGCKFSKL with $\mathbf{T 4 - 2}\left(\mathrm{ONH}_{2}\right)$ scaffold

Entry	Reaction	Compound	tr	m/z found	calc	Ionized species
a		Monocyclic peptide	0.96		2837.86	$[\mathrm{M}+\mathrm{H}]^{+}$
				1420.30	1420.43	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				947.25	947.29	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				710.69	710.72	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				567.95	568.17	$[\mathrm{M}+5 \mathrm{H}]^{5+}$
b	CLIPS reaction	CLIPSed	1.22	1651.69	1651.70	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1101.76	1101.14	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				826.64	826.41	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				801.59	801.40	$[\mathrm{M}-\mathrm{Boc}+4 \mathrm{H}]^{4+}$
				776.61	776.38	$[\mathrm{M}-2 \mathrm{Boc}+4 \mathrm{H}]^{4+}$
c	Oxime ligation	Mono-Oxime	0.93	1543.30	1028.77	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1028.93	771.88	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				771.96	617.87	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
		Tetracycle	1.18	1533.78	1533.63	$[\mathrm{M}+2 \mathrm{H}]^{2+}$
				1022.93	1022.76	$[\mathrm{M}+3 \mathrm{H}]^{3+}$
				767.54	767.38	$[\mathrm{M}+4 \mathrm{H}]^{4+}$
				614.01	614.26	$[\mathrm{M}+5 \mathrm{H}]^{5+}$

8.3.6 $\quad \mathrm{c8}_{5555}-\mathrm{D}(\mathrm{C}=\mathrm{O}) \cdot \mathrm{T} 4-3\left(\mathrm{ONH}_{2}\right)^{\mathrm{c} / 0}$

cyc-CYKGKQD(C=O)SIKASD(C=O)AKVRGCKFSKL with T4-3 $\left(\mathrm{ONH}_{2}\right)$ scaffold

9 NMR spectra

(

${ }^{13} \mathrm{C}$ NMR
100 MHz
CDCl_{3}

(

10 References

(1) Larroque, A.-L.; Dubois, J.; Thoret, S.; Aubert, G.; Chiaroni, A.; Guéritte, F.; Guénard, D. Bioorg. Med. Chem. 2007, 15 (1), 563-574.
(2) Thieme, K.; Schnell, I. J. Am. Chem. Soc. 2003, 125 (40), 12100-12101.
(3) Jamieson, A. G.; Boutard, N.; Beauregard, K.; Bodas, M. S.; Ong, H.; Quiniou, C.; Chemtob, S.; Lubell, W. D. J. Am. Chem. Soc. 2009, 131 (22), 7917-7927.
(4) Jayasekara, P. S.; Jacobson, K. A. Synth. Commun. 2014, 44 (16), 2344-2347.
(5) Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47 (10), 2946.
(6) Takasu, A.; Kondo, S.; Ito, A.; Furukawa, Y.; Higuchi, M.; Kinoshita, T.; Kwon, I. Biomacromolecules 2011, 12 (10), 3444-3452.
(7) Banfi, L.; Bagno, A.; Basso, A.; De Santis, C.; Riva, R.; Rastrelli, F. European J. Org. Chem. 2013, 2013 (23), 5064-5075.
(8) Nuijens, T.; Toplak, A.; Van De Meulenreek, M. B. A. C.; Schmidt, M.; Goldbach, M.; Quaedflieg, P. J. L. M. Tetrahedron Lett. 2016, 57 (32), 3635-3638.
(9) Pan, Y.; Ford, W. T. J. Polym. Sci. Part A Polym. Chem. 2000, 38 (9), 1533-1543.
(10) Kwan, E. E.; Huang, S. G. Eur. J. Org. Chem. 2008, No. 16, 2671-2688.

