Supporting Information

UV-driven anti-fouling paper fibers membranes for efficient

oil-water separation

Yangyang Chen^a, Atian Xie^a, Jiuyun Cui^b, Jihui Lang^c, Yongsheng Yan^a, Chunxiang Li^{a*}, Jiangdong Dai^{a*}

^aInstitute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, and ^bSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

^cCollege of Physics, Jilin Normal University, Siping 136000, China

*Corresponding Author

E-mail: lcx@mail.ujs.edu.cn; Daijd@mail.ujs.edu.cn

Tel: +86 0511-88790683; Fax: +86 0511-88791800

 $Table \ S1. \ Comparison \ of \ this \ paper \ and \ others.$

Materials	Separation efficiency	Cost	Cycles of use	Toxicity	Complexity	Ref.
Stainless steel	>97%	High	20	Non-toxicit	easy	Appl. Surf. Sci.
mesh		cost	times	у		2017, <i>416</i> , 344-352.
Stainless steel	/	High	5 times	Non-toxicit	easy	Sci. Rep. 2013, 3,
mesh		cost		у		2326
PVDF powder	>99.97%	High	10	Non-toxicit	complex	J. Mem. Sci. 2012, 401-402,
		cost	times	у		132-143
11 1/ 0		T	000	TT: 1		J. Mem. Sci.
Hard/soft	/	Low	800	High-toxici	complex	2011,385,
substrates		cost	times	ty		251-262
Cellulose				37		
acetate	/	Low	/	Non-toxicit	easy	Chem. Eng. J.
membrane		cost		у	-	2014, 237, 70-80
Paper	>99%	Low	80	Non-toxic	easy	This paper
		cost	times	ity		

Fig. S1. SEM images of TiO_2 nanowires.

Fig. S2. Photographs of PF and PF@PDA@TiO₂-X: (a) PF, (b) PF@PDA, (c) PF@PDA@TiO₂-2, (d) PF@PDA@TiO₂-4 and (e) PF@PDA@TiO₂-6.

Fig. S3. SEM images of PF.

Fig. S4. Separation efficiency and water flux for a series of oil-water mixtures: (a), (b)

PF@PDA@TiO₂-2, (c), (d) PF@PDA@TiO₂-6.

Fig. S5.Photographs of oil (colorless)-water (blue) cross-flow filtration device (a,b); Separation efficiency and water flux of PF@PDA@TiO₂ for different oil-water mixtures(c). (A-E represent hexane, petroleum ether, , toluene dichloroethane, soybean oil and water mixtures)

Fig. S6. An intuitive process diagram of OCAs underwater in 80 times oil-water separations.

Fig. S7. The flexibility of PF@PDA@TiO₂.

Fig. S8. The durability of PF and PF@PDA@TiO₂: (a) The original state and (a1) magnifying state of PF and PF@PDA@TiO₂ before stirring, (b) The original state and (b1) magnifying state after stirring 45 min.