Supporting Information for

From Compost to Colloids – Valorization of Spent Mushroom Substrate

Sebastian J. Beckers,^a Irantzu Alegria Dallo,^b Inés del Campo,^b Christine Rosenauer, ^a Katja

Klein,^a Frederik R. Wurm^{a,*}

^a Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

wurm@mpip-mainz.mpg.de

^b CENER, Avenida Ciudad de la Innovacion 7, 31621 Sarriguren, Spain. ialegria@cener.com

*corresponding author

List of tables

Table S1. Compositional analysis of carbohydrate-enriched extracts obtained after 4thermochemical pretreatments of SMS/WS mixtures.

Table S2. Compositional analysis of filter cake obtained after thermochemical 4pretreatments of SMS/WS mixtures.

Table S3. Compositional analysis of lignin enriched extracts obtained after organosolv**5**treatments of SMS alone or of a pretreated SMS-WS mixture.

Table S4. Interfacial tension measured by spinning drop tensiometry between $CHCl_3$ and **5** water at a concentration of 10.0 mg mL⁻¹.

Table S5. Destribution coefficient between milliQ water (pH7) and octanol at a **5** concentration of 2.5 mg mL^{-1} .

List of figures

Figure S1. 1H NMR spectra (DMSO-d6, 25°C, 300 MHz) of SMS extracts, obtained either **6** after thermochemical treatments (top) or after Organosolv extraction (bottom).

Figure S2. Overlay of FT-IR (KBr) spectra of lignin enriched SMS extracts obtained after 7Organosolv treatment (red) compared to a commercial lignin (black).

Figure S3. SEM images of polystyrene nanoparticles prepared by free-radical **7** miniemulsion polymerization of styrene, stabilized with the SMS-derived biobased surfactant.

Figure S4. TEM image of nanocarriers obtained from SMS-derived lignin (from **8** Organosolv process).

Figure S5. SEC elugrams using UV-detection (270 nm, left) or RI-detection (right) from **8** extracts obtained from thermochemical pretreatments under 160°C, 175°C or 190°C without catalyst.

Figure S6. SEC elugrams using UV-detection (270 nm, left) or RI-detection (right) from **9** extracts obtained from thermochemical pretreatments under 190°C using differet catalysts.

Figure S7. Composition of pristine SMS and a SMS-wheat straw mixture (ratio 4:6). All **9** fractions are given in weight % of dry mass. The carbohydrates include glucan, xylan, arabinan, glucose, xylose and arabinose. Exemplarily, a) the amount of lignin isolated using Organosolv extraction (EtOH-Water 50:50) or b) the amount of isolated carbohydrates applying a thermochemical pretreatment (190°C, catalyst: H₂SO₄) is showen.

Figure S8. SEC elugrams of "organosolv extract" obtained after extraction with an10EtOH-water mixture (50:50). (M = Monomer; D = Dimer; T = Trimer)

Table S1. Compositional analysis of carbohydrate-enriched extracts obtained afterthermochemical pretreatments of SMS/WS mixtures.

Temperature ^o C	1	60	1	75	1	90	1	90	1	90	1	92
Residence time (min)												
Catalyst							NaO	H 4%	Na2C	03 4%	H2SC	04 4%
Feedstock code	030/17	-031/17	030/17	-031/17	030/17	-031/17	030/17	-031/17	030/17	-031/17	062/13	+005/17
Sample code	EXP	2_LF	EXP	B_LF	EXP	4_LF	EXP	8-LF	EXP1	2_LF	EXP	5_LF
g/L	Avg.	SD										
	ars								100			
Glucose	7,2	0,2	8,1	0,5	6,2	0,0	7,2	0,3	5,0	0,2	3,5	0,0
Xylose	16,4	0,3	29,9	1,5	33,8	0,1	29,3	1,6	23,5	1,1	13,9	0,1
Arabinose	3,3	0,0	4,3	0,2	1,6	0,0	2,8	0,1	3,4	0,2	0,5	0,0
Succinic Acid	0,1	0,0	0,1	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0
Lactico acid	0,2	0,0	0,5	0,0	0,8	0,0	1,2	0,0	0,4	0,0	0,1	0,0
Acetic acid	1,5	0,0	3,1	0,0	4,8	0,0	9,6	0,0	8,3	0,0	3,4	0,1
Levulinic acid	0,3	0,0	0,2	0,0	0,0	0,0	0,2	0,0	0,1	0,0	0,1	0,0
5HMF	488,7	0,0	258,3	0,0	294,9	0,0	38,7	0,0	53,9	0,0	744,5	25,4
4-hydroxibenzoic	17,1	0,0	13,9	0,0	11,1	0,0	1,7	0,0	6,6	0,0	17,5	20,9
Vanillinic/syringic	71,1	0,0	83,3	0,0	63,7	0,0	54,2	0,0	69,9	0,0	99,7	4,4
p-Coumaric	24,5	0,0	14,8	0,0	6,0	0,0	12,9	0,0	7,7	0,0	7,9	0,7
Furfural	43,0	0,0	70,6	0,0	342,4	0,0	100,7	0,0	39,5	0,0	1411,7	15,0
Ferulic acid	6,5	0,0	10,7	0,0	16,4	0,0	4,4	0,0	12,5	0,0	11,7	1,2
Vainillin/syringaldehyde	40,1	0,0	42,9	0,0	56,0	0,0	20,2	0,0	24,4	0,0	90,1	3,8
5MethylFurfural	2,5	0,0	4,9	0,0	14,1	0,0	8,7	0,0	6,8	0,0	39,6	0,7
Phenol	0,0	0,0	0,0	0,0	12,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Benzoic	0,0	0,0	0,0	0,0	0,0	0,0	29,9	0,0	51,8	0,0	0,0	0,0
Syringol	0,0	0,0	0,0	0,0	0,0	0,0	23,3	0,0	0,0	0,0	0,0	0,0
Guayacol	0,0	0,0	0,0	0,0	0,0	0,0	10,4	0,0	16,4	0,0	0,0	0,0
Benzaldehyde	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

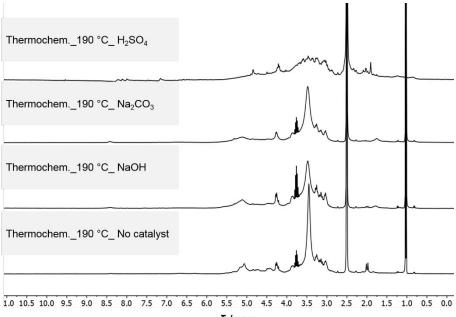
Table S2. Compositional analysis of filter cake obtained after thermochemical pretreatments

of SMS/WS mixtures.

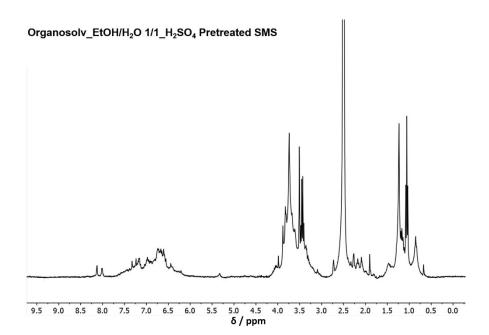
Temperature ºC	16					90	19	0		90		92
Residence time (min)				0		0	10			0		0
Catalyst							Na	он	Na2	C03	H250	4 4 %
Feedstock code	030/17-	031/17	030/17-	-031/17	030/17-	-031/17	30/17-031/1	13/062	030/17	-031/17	13/062-	-005/17
Sample code	EXP2	2_SF	EXPE	3_SF	EXP4	4_SF	EXP8	L-SF	EXP1	2_SF	EXPS	5_SF
%w/w	Avg.	SD	Avg.	SD	Avg.	SD	Avg.	SD	Avg.	SD	Avg.	SD
Moisture	7,7	0,0	8,6	0,0	8,7	0,1	10,5	0,1	9,8	0,1	59,3	0,3
Ashes	67,7	0,4	62,9	1,2	65,7	0,3	63,1	0,3	60,6	0,8	12,3	0,5
Insolubles												
Glucan	31,8	0,0	32,3	0,7	35,4	0,1	34,0	0,7	34,2	0,3	34,0	0,4
Xylan	18,7	0,0	14,8	0,1	6,2	0,0	8,8	0,0	13,3	0,0	2,8	0,1
Arabinan	1,3	0,0	0,7	0,0	0,2	0,0	0,3	0,0	0,6	0,0	0,0	0,0
Al Lignin	18,4	0,0	19,6	0,4	24,4	0,1	24,4	0,5	21,7	0,3	31,9	0,1
AS Lignin	0,8	0,0	0,7	0,0	0,9	0,0	1,2	0,0	0,8	0,0	1,2	0,0
Al Ash	1,8	0,0	2,0	0,1	2,4	0,0	2,6	0,0	2,1	0,1	3,0	0,1

Table S3. Compositional analysis of lignin enriched extracts obtained after organosolvtreatments of SMS alone or of a pretreated SMS-WS mixture.

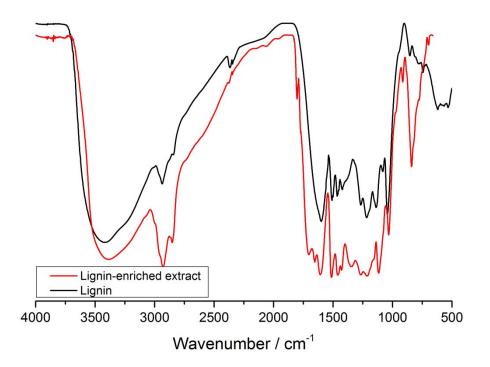
Temperatura (°C) Etanol:H2O Tsolids (%w/w)	SMS alone (before Organosolv)		250 50:50 10		250 60:40 10		250 70:30 10		
Code	(015/18) SM	(015/18) SMS_EXT 28-SF		SMS_Ext26_RAC-01		SMS_EXT28_RAC-02		SMS_EXT28_RAC-03	
	Avg.	SD	Avg.	SD	Avg.	SD	Avg.	SD	
Glucan	8,2	0,8	5,3	0,2	4,4	0,1	5,6	0,5	
Xylose	0,4	0,1	0,2	0,0	0,2	0,0	0,3	0,0	
Arabinan	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Al Lignin	27,0	0,0	17,1	0,5	18,3	0,2	18,3	0,0	
AS Lignin	0,4	0,0	0,9	0,0	0,4	0,0	0,3	0,0	
Al Ash	9,2	0,2	5,3	0,0	5,8	0,0	6,2	0,1	

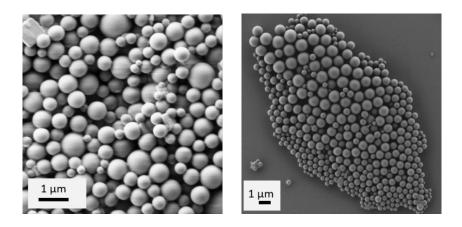

Table S4. Interfacial tension measured by spinning drop tensiometry between $CHCl_3$ and water at a concentration of 10.0 mg mL⁻¹.

Samula anda	Catalant	Interfacial Tension / Nm m ⁻¹	
Sample code	Catalyst		
030/17-031/17 Exp 4 LF	-	7.3 ± 0.45	
030/17-031/17 Exp 8 LF	NaOH (4%)	10.00 ± 0.03	
030/17-031/17 Exp 12 LF	Na ₂ CO ₃ (4%)	11.11 ± 0.46	
062/13-005/17 Exp 5 LF	H ₂ SO ₄ (4%)	11.36 ± 0.01	


Table S5. Destribution coefficient between milliQ water (pH7) and octanol at a concentration of 2.5 mg mL⁻¹.

Sample code	Catalyst	$LogD = log(c_{octanol}) - log(c_{water})$
030/17-031/17 Exp 4 LF	-	-0.42
030/17-031/17 Exp 8 LF	NaOH (4%)	-0.92


030/17-031/17 Exp 12 LF	Na ₂ CO ₃ (4%)	-0.98
062/13-005/17 Exp 5 LF	H ₂ SO ₄ (4%)	-0.66


δ/ppm

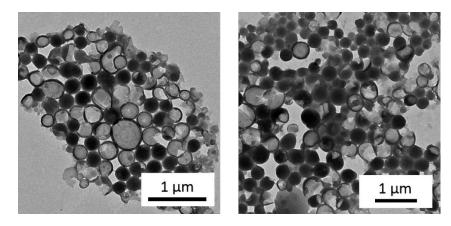
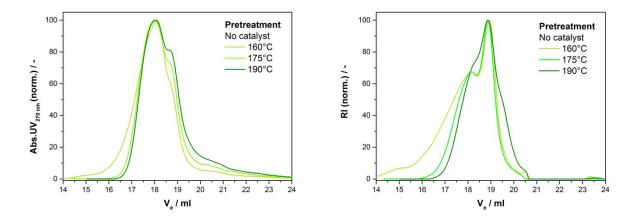
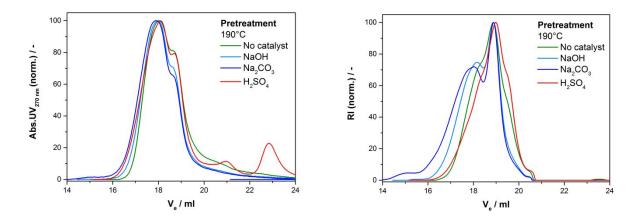
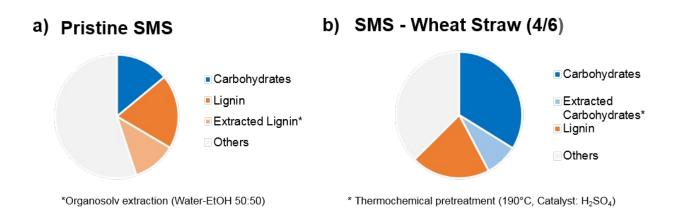

Figure S1. 1H NMR spectra (DMSO-d6, 25°C, 300 MHz) of SMS extracts, obtained either after thermochemical treatments (top) or after Organosolv extraction (bottom).

Figure S2. Overlay of FT-IR (KBr) spectra of lignin enriched SMS extracts obtained after Organosolv treatment (red) compared to a commercial lignin (black).

Figure S3. SEM images of polystyrene nanoparticles prepared by free-radical miniemulsion polymerization of styrene, stabilized with the SMS-derived biobased surfactant.

Figure S4. TEM image of nanocarriers obtained from SMS-derived lignin (from Organosolv process).

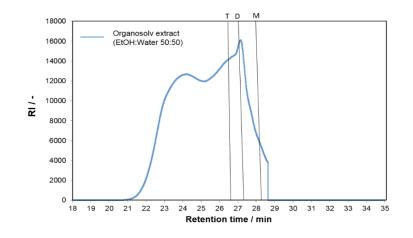

Figure S5. SEC elugrams using UV-detection (270 nm, left) or RI-detection (right) from extracts obtained from thermochemical pretreatments under 160°C, 175°C or 190°C without catalyst.

Figure S6. SEC elugrams using UV-detection (270 nm, left) or RI-detection (right) from extracts obtained from thermochemical pretreatments under 190°C using differet catalysts.

Figure S7. Composition of pristine SMS and a SMS-wheat straw mixture (ratio 4:6). All fractions are given in weight % of dry mass. The carbohydrates include glucan, xylan, arabinan, glucose, xylose and arabinose. Exemplarily, a) the amount of lignin isolated using Organosolv extraction (EtOH-Water 50:50) or b) the amount of isolated carbohydrates applying a thermochemical pretreatment (190°C, catalyst: H₂SO₄) is shown.

Figure S8. SEC elugram of "organosolv extract" obtained after extraction with an EtOHwater mixture (50:50). (M = Monomer; D = Dimer; T = Trimer)