Supporting Information

Copper-Catalyzed Radical Selenodifluoromethylation of Alkenes: Access to CF_2 -Containing γ -Lactams

Kai Sun,*† Songnan Wang,‡ Ranran Feng,† Yixiao Zhang,† Xin Wang,† Zhiguo Zhang, *‡ and Bing Zhang§

†College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China ‡School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China §College of Chemistry and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China

Table of Contents

I. General Remarks	S2
II. Synthesis Procedure	S2
III. Analytical Data of Compounds 3, 4, 5 and 6	S4
IV. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra of Compounds 3, 4, 5 and 6	S12

I. General Remarks:

All reagents were purchased from commercial sources and used without further treatment, unless otherwise indicated. All reactions were run under air with no precautions taken to exclude moisture. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at 25 °C on a Varian (400 MHz, 100 MHz and 376 MHz). Melting points were obtained with a micro melting point XT4A Beijing Keyi electrooptic apparatus and are uncorrected. High resolution mass spectra were recorded on Bruck microtof. All reactions were monitored by TLC with Taizhou GF254 silica gel coated plates. Flash column chromatography was carried out using 200-300 mesh silica gel at increased pressure.

Attention: As the boiling point of dichloroethane (DCE) is 83 °C, reaction operation in DCE at 120 °C in a screw-capped test tube may have potential risk. However, in this reaction, we found the selenodifluoromethylation could proceed smoothly.

II. Synthesis Procedure

Synthesis procedure for compounds 1 (1a as an example):

In a round-bottomed flask (50 mL) equipped with a magnetic stirrer, a solution of 2-bromo-2,2-difluoro-*N*-phenylacetamide (1.25 g, 5.0 mmol) with CH₃CN (25 mL) was prepared. K₂CO₃ (2.07 g, 15 mmol) was added to the solution and the reaction mixture was stirred magnetically at 90 °C and monitored by TLC. After the amide was exhausted, the mixture was purified by silica gel column chromatography to give the corresponding product **1a** (87.9 mg, 75%).

Synthesis procedure for compounds 3 (3a as an example):

To a solution of the *N*-allyl-2-bromo-2,2-difluoro-*N*-phenylacetamide **1a** (87.1 mg, 0.3 mmol) in DCE (3.0 mL) was added the 1,2-diphenyldiselane **2a** (103.0 mg, 0.33 mmol), phenanthroline (5.4 mg, 0.03 mmol), CuI (5.7 mg, 0.03 mmol) in screw-cap test tube. The reaction mixture was stirred at 120 °C for 12 h under a N₂ atmosphere. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (5.0 mL×3), the combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The residue was purified by column chromatography to give the corresponding product **3a** (85.7 mg, 78%).

Synthesis procedure for compounds 4:

To a solution of **3d** (198.1 mg, 0.5 mmol) in benzene (2.0 mL), *m*-cholorperoxybenzoic acid (*m*-CPBA, 172.6 mg, 1.0 mmol) was added. The reaction mixture was stirred at 120 °C for 10 h under an air atmosphere. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (5.0 mL×3), the combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The residue was purified by column chromatography to give the corresponding product **4** (108.7 mg, 91%).

Synthesis procedure for compounds 5:

To a solution of **3h** (192.5 mg, 0.5 mmol) in benzene (2.0 mL), *m*-cholorperoxybenzoic acid (*m*-CPBA, 172.6 mg, 1.0 mmol) was added. The reaction mixture was stirred at 120 °C for 10 h under an air atmosphere. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (5.0 mL×3), the combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The residue was purified by column chromatography to give the corresponding product **5** (105.5 mg, 93%).

Synthesis procedure for compounds 6:

To a solution of 1a (145.0 mg, 0.5 mmol) in DCE (3.0 mL), 1,10-phenanthroline (9.0 mg, 0.05 mmol), CuI (9.5 mg, 0.05 mmol) in screw-cap test tube. The reaction mixture was stirred at 120 °C for 12 h under a N_2 atmosphere. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (5.0 mL×3), the combined organic phases were dried over anhydrous Na_2SO_4 and the solvent was evaporated under vacuum. The residue was purified by column chromatography to give the corresponding product 6 (76.9 mg, 53%).

.

III. Analytical Data of Compounds 3, 4, 5 and 6

3,3-Difluoro-1-phenyl-4-((phenylselanyl)methyl)pyrrolidin-2-one (3a).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (85.7 mg, 78%): mp: 103-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.56 (m, 4H), 7.26 (t, J = 7.9 Hz, 2H), 7.31 (dd, J = 5.8, 2.2 Hz, 4H), 4.01 (d, J = 9.6 Hz, 1H), 3.65 (t, J = 8.8 Hz, 1H), 4.41 (dd, J = 12.8, 4.0 Hz, 1H), 2.96 (t, J = 15.8 Hz, 1H), 2.85-2.81 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 161.7, 161.4, 133.6, 129.6, 129.4, 129.3, 129.2, 129.0, 128.1, 127.9, 126.2, 119.9, 48.9, 48.8, 40.5, 40.3, 40.0, 22.4, 22.3. ¹°F NMR (376 MHz, CDCl₃) δ -110.0 (d, J = 267.0 Hz, 1F), -116.9 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for C₁₇H₁₆F₂ONSe, [M+H]⁺ 368.0366; Found 368.0361.

3,3-Difluoro-4-((phenylselanyl)methyl)-1-(m-tolyl)pyrrolidin-2-one (3b).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white oil (71.9 mg, 63%); 1 H NMR (400 MHz, CDCl₃) δ 7.58 (t, J = 3.6 Hz, 2H), 7.44-7.38 (m, 2H), 7.35-7.27 (m, 4H), 7.07 (d, J = 7.6 Hz, 1H), 3.98 (t, J = 9.0 Hz, 1H), 3.62 (t, J = 8.6 Hz, 1H), 3.52 (dd, J = 12.8, 4.4 Hz, 1H), 2.93 (d, J = 12.4 Hz, 1H), 2.85-2.80 (m, 1H), 2.40 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 162.3, 162.0, 161.7, 139.2, 137.8, 133.6, 129.6, 129.0, 128.1, 128.0, 127.1, 120.7, 117.1, 49.0, 48.9, 40.5, 40.3, 40.1, 22.4, 22.3, 21.5. 19 F NMR (376 MHz, CDCl₃) δ -109.8 (d, J = 267.0 Hz, 1F), -116.9 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{18}H_{18}F_{2}$ ONSe, $[M+H]^{+}$ 382.0522; Found 382.0526.

3,3-Difluoro-4-((phenylselanyl)methyl)-1-(p-tolyl)pyrrolidin-2-one (3c).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (86.7 mg, 76%): mp: 90-92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 6.6, 3.0 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.34-7.27 (m, 3H), 7.21 (d, J = 8.4 Hz, 2H), 3.98 (t, J = 9.0 Hz, 1H), 3.64-3.59 (m, 1H), 3.40 (dd, J = 12.6, 4.2 Hz, 1H), 2.95 (t, J = 7.6 Hz, 1H), 2.85-2.79 (m, 1H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 161.6, 136.1, 135.3, 133.6, 129.7, 129.6, 128.5, 128.1, 128.0, 126.5, 120.0, 49.0, 48.9, 40.5, 40.3, 40.1, 22.4, 22.3, 20.9. ¹⁰F NMR (376 MHz, CDCl₃) δ -109.8 (d, J = 267.0 Hz, 1F), -116.8 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd

for C₁₈H₁₈F₂ONSe, [M+H]⁺ 382.0522; Found 382.0527.

3,3-Difluoro-1-(4-methoxyphenyl)-4-((phenylselanyl)methyl)pyrrolidin-2-one (3d).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white oil (97.5 mg, 82%); 1 H NMR (400 MHz, CDCl₃) δ 7.57 (t, J = 3.0 Hz, 2H), 7.52 (t, J = 10.8 Hz, 2H), 7.34-7.27 (m, 3H), 6.93 (d, J = 9.2 Hz, 2H), 3.95 (t, J = 9.0 Hz, 1H), 3.82 (s, 3H), 3.60 (t, J = 8.8 Hz, 1H), 3.39 (dd, J = 12.8, 4.0 Hz, 1H), 2.94 (t, J = 11.2 Hz, 1H), 2.85-2.81 (m, 1H). 13 C NMR (100 MHz, CDCl₃) δ 162.1, 161.7, 161.4, 157.7, 133.5, 130.9, 129.6, 128.1, 128.0, 121.6, 114.3, 77.4, 55.5, 49.2, 49.1, 40.5, 40.3, 40.1, 22.4, 22.3. 19 F NMR (376 MHz, CDCl₃) δ -109.5 (d, J = 267.0 Hz, 1F), -116.6 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{18}H_{18}F_{2}O_{2}NSe$, $[M+H]^{+}$ 398.0472; Found 398.0467.

1-(4-(Tert-butyl)phenyl)-3,3-difluoro-4-((phenylselanyl)methyl)pyrrolidin-2-one (3e).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (93.8 mg, 74%): mp: 69-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.52 (m, 4H), 7.43 (d, J = 8.8 Hz, 2H), 7.34 (dd, J = 5.4, 2.2 Hz, 3H), 3.98 (t, J = 9.0 Hz, 1H), 3.63 (t, J = 8.8 Hz, 1H), 3.40 (dd, J = 12.6, 4.2 Hz, 1H), 2.95 (t, J = 11.8 Hz, 1H), 2.84-2.80 (m, 1H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 161.9, 161.6, 149.4, 135.2, 133.6, 129.6, 128.1, 127.9, 126.2, 126.1, 119.9, 119.8, 119.7, 48.9, 48.8, 40.5, 40.3, 40.1, 34.5, 31.3, 22.4, 22.3. ¹°F NMR (376 MHz, CDCl₃) δ -109.9 (d, J = 267.0 Hz, 1F), -116.9 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{21}H_{24}F_{2}ONSe$, $[M+H]^{+}$ 424.0991; Found 424.0998.

1-([1,1'-Biphenyl]-4-yl)-3,3-difluoro-4-((phenylselanyl)methyl)pyrrolidin-2-one (3f).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (106.2 mg, 80%): mp: 143-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.58 (m, 8H), 7.47 (t, J = 7.4 Hz, 2H),

7.40-7.27 (m, 4H), 4.04 (t, J = 8.8 Hz, 1H), 3.68 (t, J = 8.8 Hz, 1H), 3.42 (dd, J = 12.8, 4.0 Hz, 1H), 2.97 (t, J = 11.4 Hz, 1H), 2.88-2.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 161.8, 140.0, 139.1, 137.0, 133.6, 129.6, 128.9, 128.1, 127.8, 127.6, 127.0, 120.1, 48.9, 48.8, 40.5, 40.3, 40.1, 22.4, 22.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.8 (d, J = 267.0 Hz, 1F), -116.8 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for C₂₃H₂₀F₂ONSe, [M+H]⁺ 444.0676; Found 444.0679.

1-(3-chlorophenyl)-3,3-difluoro-4-((phenylselanyl)methyl)pyrrolidin-2-one (3g).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1), white solid (84.1 mg, 70%): mp: 103-104 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 9.2, 3.6 Hz, 4H), 7.39-7.27 (m, 5H), 3.97 (t, J = 9.0 Hz, 1H), 3.61 (t, J = 8.4 Hz, 1H), 3.39 (dd, J = 12.4, 4.0 Hz, 1H), 2.95 (t, J = 11.8 Hz, 1H), 2.86-2.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 161.7, 136.4, 133.5, 131.5, 129.6, 129.3, 128.1, 127.9, 121.0, 48.8, 48.7, 40.4, 40.2, 40.0, 22.3, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.1 (d, J = 267.0 Hz, 1F), -119.4 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{17}H_{15}F_{2}OCINSe$, [M+H]⁺ 396.0029; Found 396.0035.

3,3-Difluoro-1-(4-fluorophenyl)-4-((phenylselanyl)methyl)pyrrolidin-2-one (3h).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1), white solid (84.2 mg, 73%): mp: 78-79 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.55 (m, 4H), 7.34-7.27 (m, 3H), 7.11 (t, J = 8.6 Hz, 2H), 3.99 (t, J = 8.4 Hz, 1H), 3.62 (t, J = 8.2 Hz, 1H), 3.40 (dd, J = 12.6, 4.2 Hz, 1H), 2.95 (t, J = 11.6 Hz, 1H), 2.91-2.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 162.0, 161.6, 159.2, 133.9, 133.8, 133.5, 129.6, 128.1, 127.9, 121.8, 121.7, 116.1, 115.9, 49.1, 49.0, 40.4, 40.2, 40.0, 22.3, 22.2. ¹°F NMR (376 MHz, CDCl₃) δ -109.8 (d, J = 267.0 Hz, 1F), -114.9 (s, 1F), -116.7 (t, J = 270.7 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{17}H_{15}F_3ONSe, [M+H]^+$ 386.0271; Found 386.0278.

1-(4-Bromophenyl)-3,3-difluoro-4-((phenylselanyl)methyl)pyrrolidin-2-one (3i).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (94.8 mg, 71%): mp: 102-104 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.51 (m, 6H), 7.34-7.27 (m, 3H), 3.96 (t, J = 9.0 Hz, 1H), 3.59 (t, J = 8.4 Hz, 1H), 3.39 (dd, J = 12.8, 4.0 Hz, 1H), 2.94 (t, J = 11.6 Hz, 1H), 2.85-2.79 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 162.1, 161.8, 136.9, 133.5, 132.2, 129.6, 128.2, 127.9, 121.2, 119.3, 48.7, 48.6, 40.3, 40.1, 39.9, 22.2, 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.9 (d, J = 267.0 Hz, 1F), -116.7 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{17}H_{15}F_{2}OBrNSe$, $[M+H]^{+}$ 445.9471; Found 445.9474.

3,3-Difluoro-4-((phenylselanyl)methyl)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (3j).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (97.7 mg, 75%): mp: 67-69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.55 (m, 4H), 7.34-7.27 (m, 3H), 7.11 (t, J = 8.4 Hz, 2H), 3.97 (t, J = 9.0 Hz, 1H), 3.62 (t, J = 8.6 Hz, 1H), 3.40 (dd, J = 12.6, 3.8 Hz, 1H), 2.95 (t, J = 11.6 Hz, 1H), 2.86-2.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 161.6, 159.1, 133.9, 133.5, 129.6, 128.1, 127.9, 121.8, 121.7, 116.1, 115.9, 49.1, 40.4, 40.2, 40.0, 22.3, 22.2. ¹°F NMR (376 MHz, CDCl₃) δ -109.8 (dd, J = 268.8, 13.2 Hz, 1F), -114.9 (d, J = 11.3 Hz), -116.7 (dd, J = 267.0, 11.3 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{18}H_{15}F_{5}ONSe$, $[M+H]^{+}$ 436.0239; Found 436.0244.

1-(2,4-Dimethylphenyl)-3,3-difluoro-4-((phenylselanyl)methyl)pyrrolidin-2-one (3k).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white oil (75.7 mg, 64%); 1 H NMR (400 MHz, CDCl₃) δ 7.57 (t, J = 3.6 Hz, 2H), 7.39 (s, 1H), 7.35-7.27 (m, 4H), 7.16 (d, J = 8.4 Hz, 1H), 3.96 (t, J = 9.0 Hz, 1H), 3.60 (t, J = 8.8 Hz, 1H), 3.39 (dd, J = 12.8, 4.4 Hz, 1H), 2.94 (t, J = 11.4 Hz, 1H), 2.84-2.78 (m, 1H), 2.29 (s, 3H), 2.27 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 162.2, 161.9, 161.6, 137.6, 135.5, 134.9, 133.6, 130.2, 130.1, 129.6, 128.1, 128.0, 121.3, 117.5, 114.5, 49.1, 49.0, 40.5, 40.3, 40.1, 26.9, 22.5, 22.4, 20.0, 19.3. 19 F NMR (376 MHz, CDCl₃) δ -109.7 (d, J = 267.0 Hz, 1F), -116.8 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{19}H_{20}F_{2}ONSe$, $[M+H]^{+}$ 396.0678; Found 396.0684.

1-(3,4-Dichlorophenyl)-3,3-difluoro-4-((phenylselanyl)methyl)pyrrolidin-2-one (3l).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (90.1 mg, 69%): mp: 70-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 2.8 Hz, 1H), 7.59-7.54 (m, 3H), 7.47 (d, J = 8.8 Hz, 1H), 7.35 (t, J = 2.6 Hz, 3H), 3.96 (t, J = 8.8 Hz, 1H), 3.60 (t, J = 8.6 Hz, 1H), 3.40 (dd, J = 12.8, 4.0 Hz, 1H), 2.94 (t, J = 11.8 Hz, 1H), 2.86-2.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 161.7, 161.4, 157.7, 137.8, 137.5, 133.6, 129.6, 129.2, 128.11, 127.9, 126.2, 119.9, 48.9, 48.8, 40.5, 40.3, 40.0, 22.4, 22.3. ¹°F NMR (376 MHz, CDCl₃) δ -110.1 (d, J = 267.0 Hz, 1F), -116.7 (d, J = 270.7 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{17}H_{14}F_{2}OCl_{2}NSe$, $[M+H]^{+}$ 435.9588; Found 435.9582.

1-Butyl-3,3-difluoro-4-((phenylselanyl)methyl)pyrrolidin-2-one (3m).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1), white oil (47.8 mg, 46%); 1 H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 6.2, 3.0 Hz, 2H), 7.33 (t, J = 3.0 Hz, 3H), 3.53 (t, J = 8.0 Hz, 1H), 3.51-3.17 (m, 4H), 2.84 (t, J = 11.8 Hz, 1H), 2.70-2.67 (m, 1H), 1.51 (dd, J = 15.2, 7.6 Hz, 2H), 1.30 (t, J = 7.6 Hz, 2H), 1.27 (d, J = 11.2 Hz, 3H). 13 C NMR (100 MHz, CDCl₃) δ 162.3, 162.3, 161.6, 137.5, 133.4, 129.5, 129.3, 128.1, 128.0, 47.8, 47.7, 43.2, 40.8, 40.6, 40.4, 28.8, 22.7, 22.6, 19.8, 13.6. 19 F NMR (376 MHz, CDCl₃) δ -110.5 (d, J = 267.0 Hz, 1F), -117.0 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{15}H_{20}F_{2}ONSe$, $[M+H]^{+}$ 348.0678; Found 348.0686.

$4-(((3-Bromophenyl)selanyl)methyl)-1-(4-chlorophenyl)-3, 3-difluoropyrrolidin-2-one\ (3n).$

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (105.0 mg, 73%): mp: 105-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.55 (m, 4H), 7.39-7.32 (m, 4H), 3.97 (t, J = 9.0 Hz, 1H), 3.60 (t, J = 8.8 Hz, 1H), 3.49 (dd, J = 12.6, 4.2 Hz, 1H), 2.95 (t, J = 11.8 Hz, 1H), 2.86-2.81 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 162.4, 162.1, 161.7, 136.4, 133.5, 131.5, 129.6, 129.3, 128.1, 127.9, 121.0, 48.8, 48.7, 40.4, 40.2, 40.0, 22.3, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.8 (d, J = 267.0 Hz, 1F), -116.7 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for C₁₇H₁₄F₂OClNBrSe, [M+H]⁺ 479.9081; Found 479.9075.

1-(4-Chlorophenyl)-3,3-difluoro-4-(((4-fluorophenyl)selanyl)methyl)pyrrolidin-2-one (30).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (94.2 mg, 75%): mp: 105-107 °C; 1 H NMR (400 MHz, CDCl₃) δ 7.61-7.55 (m, 4H), 7.40 (t, J = 2.4 Hz, 2H), 7.04 (t, J = 8.8 Hz, 2H), 3.98 (t, J = 9.0 Hz, 1H), 3.62 (t, J = 8.4 Hz, 1H), 3.34 (dd, J = 12.8, 4.4 Hz, 1H), 2.92 (t, J = 11.4 Hz, 1H), 2.83-2.77 (m, 1H). 13 C NMR (100 MHz, CDCl₃) δ 162.4, 162.0, 161.7, 136.3, 136.2, 136.1, 131.6, 129.3, 121.0, 117.0, 116.8, 48.8, 48.7, 40.3, 40.1, 39.9, 34.7, 34.5. 19 F NMR (376 MHz, CDCl₃) δ -109.7 (d, J = 270.7 Hz, 1F), -112.6 (s, 1F), -116.8 (d, J = 270.7 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{17}H_{14}F_3OCINSe$, [M+H]⁺ 419.9881; Found 419.9888.

1-(4-Chlorophenyl)-3,3-difluoro-4-((thiophen-2-ylselanyl)methyl)pyrrolidin-2-one (3p).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white oil (68.3 mg, 56%); 1 H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 5.2 Hz, 1H), 7.38 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 3.6 Hz, 1H), 7.03 (dd, J = 5.2, 3.6 Hz, 1H), 4.04 (t, J = 8.2 Hz, 1H), 3.63 (t, J = 7.8 Hz, 1H), 3.27 (d, J = 8.4 Hz, 1H), 2.86-2.81 (m, 2H). 13 C NMR (100 MHz, CDCl₃) δ 162.3, 162.0, 161.7, 136.9, 136.4, 132.0, 131.5, 129.3, 128.6, 121.2, 121.0, 48.7, 48.6, 40.1, 39.9, 39.7, 25.5, 25.4. 19 F NMR (376 MHz, CDCl₃) δ -109.4 (d, J = 270.7 Hz, 1F), -116.2 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{15}H_{13}F_{2}OSCINSe$, [M+H]⁺ 407.9541; Found 407.9537.

3,3-Difluoro-4-((methylselanyl)methyl)-1-phenylpyrrolidin-2-one (3q).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (73.0 mg, 80%): mp: 104-107 °C; 1 H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.27 (t, J = 6.2 Hz, 1H), 4.09 (t, J = 9.0 Hz, 1H), 3.67 (t, J = 8.8 Hz, 1H), 3.03 (dd, J = 8.6, 4.6 Hz, 1H), 2.93-2.89 (m, 1H), 2.67 (dd, J = 12.0, 10.8 Hz, 1H), 2.11 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 162.2, 161.9, 161.6, 137.8, 129.3, 129.2, 126.3, 120.0, 49.1, 49.0, 40.6, 40.4, 40.2, 19.4, 19.3, 4.9. 19 F NMR (376 MHz, CDCl₃) δ -109.7 (d, J = 267.0 Hz, 1F), -117.3 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{12}H_{14}F_{2}ONSe$, [M+H]⁺ 306.0209; Found 306.0217.

3,3-Difluoro-4-((methylselanyl)methyl)-1-(p-tolyl)pyrrolidin-2-one (3r).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white oil (78.3 mg, 82%); 1 H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 4.06 (t, J = 9.0 Hz, 1H), 3.64 (t, J = 8.8 Hz, 1H), 3.02 (dd, J = 12.4, 4.8 Hz, 1H), 2.90 (t, J = 2.8 Hz, 1H), 2.69-2.63 (m, 1H), 2.37 (s, 3H), 2.10 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 162.3, 162.0, 161.7, 136.4, 136.2, 135.4, 129.8, 129.7, 120.1, 120.0, 119.5, 117.0, 116.9, 114.5, 49.2, 49.1, 40.6, 40.4, 40.2, 21.0, 19.5, 19.4, 4.9. 19 F NMR (376 MHz, CDCl₃) δ -109.5 (d, J = 267.0 Hz, 1F), -117.2 (d, J = 267.0 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{13}H_{16}F_{2}ONSe$, [M+H] $^{+}$ 320.0365; Found 320.0369.

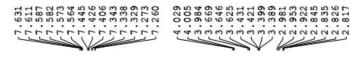
1-(4-Chlorophenyl)-3,3-difluoro-4-((methylselanyl)methyl)pyrrolidin-2-one (3s).

The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white oil (92.5 mg, 91%); 1 H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.2 Hz, 2H), 7.39 (dd, J = 7.2, 2.0 Hz, 2H), 4.06 (t, J = 8.8 Hz, 1H), 3.63 (t, J = 8.4 Hz, 1H), 3.01 (dd, J = 12.6, 4.6 Hz, 1H), 2.93-2.89 (m, 1H), 2.65 (dd, J = 11.8, 10.6 Hz, 1H), 2.10 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 162.5, 162.2, 161.9, 136.4, 131.5, 129.4, 129.3, 121.2, 121.1, 119.2, 116.8, 116.7, 114.2, 49.0, 48.9, 40.4, 40.2, 40.0, 19.3, 19.2, 4.90. 19 F NMR (376 MHz, CDCl₃) δ -109.7 (d, J = 270.7 Hz, 1F), -117.1 (d, J = 270.7 Hz, 1F). HRMS (ESI-TOF) Calcd for $C_{12}H_{13}F_{2}$ OCINSe, [M+H] $^{+}$ 339.9818;

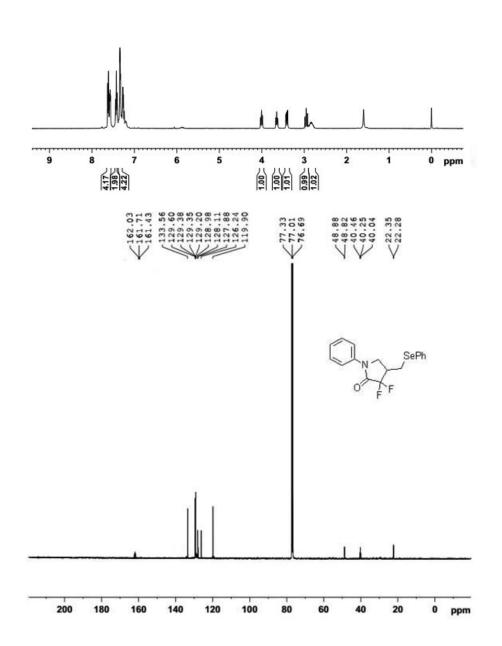
Found 339.9812.

3,3-Difluoro-1-(4-methoxyphenyl)-4-methylenepyrrolidin-2-one (4).

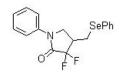
The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), white solid (108.7 mg, 91%): mp: 120-121 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 9.2 Hz, 2H), 6.05 (s, 1H), 5.75 (s, 1H), 4.46 (t, J = 2.0 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 161.6, 161.3, 157.8, 133.0, 132.8, 132.6, 130.6, 121.9, 118.1, 114.4, 113.4, 111.0, 108.5, 55.5, 48.7. ¹°F NMR (376 MHz, CDCl₃) δ -102.7 (s, 2F). HRMS (ESI-TOF) Calcd for C₁₂H₁₂F₂NO₂, [M+H]⁺ 240.0830; Found 240.0836.

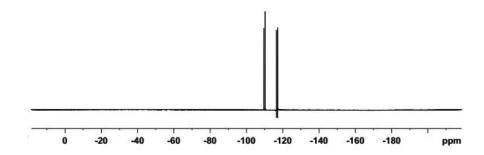

3,3-Difluoro-1-(4-fluorophenyl)-4-methylenepyrrolidin-2-one (5).

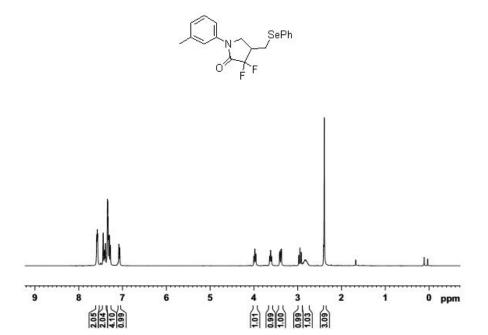
The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 9:1), white solid (105.5 mg, 93%): mp: 99-100 °C; 1 H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 4.8, 2.4 Hz, 2H), 7.17-7.11 (m, 2H), 6.09 (d, J = 2.4 Hz, 1H), 5.79 (d, J = 1.2 Hz, 1H), 4.49 (s, 2H). 13 C NMR (100 MHz, CDCl₃) δ 162.0, 161.9, 161.7, 161.6, 159.3, 133.7, 133.6, 132.6, 132.2, 122.1, 122.0, 118.5, 116.3, 116.0, 110.7, 48.7, 48.6, 48.5. 19 F NMR (376 MHz, CDCl₃) δ -102.8 (s, 2F), -114.6 (s, 1F). HRMS (ESI-TOF) Calcd for $C_{11}H_9F_3NO$, [M+H]⁺ 228.0630; Found 228.0626.

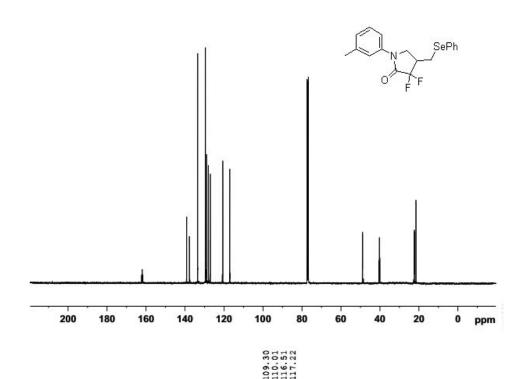

4-(Bromomethyl)-3,3-difluoro-1-phenylpyrrolidin-2-one (6).

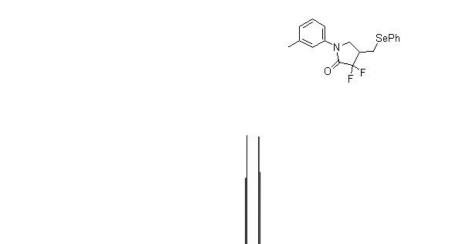
The product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1), white solid (76.9 mg, 53%): mp: 50-51 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.6 Hz, 2H), 7.43 (dd, J = 8.0, 6.4 Hz, 2H), 7.30-7.26 (m, 1H), 4.12 (d, J = 8.0 Hz, 1H), 3.96 (dd, J = 11.4, 5.0 Hz, 1H), 3.79-3.70 (m, 2H), 3.13-3.07 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 137.6, 129.3, 126.5, 120.1, 47.4, 47.3, 42.1, 41.9, 41.7, 39.3, 39.2. ¹°F NMR (376 MHz, CDCl₃) δ -107.4 (d, J = 274.5 Hz, 1F), -117.5 (d, J = 27.07 Hz, 1F). HRMS (ESI-TOF) Calcd for C₁₁H₁₁FBrNO₂, [M+H]* 286.9951; Found 286.9958.


IV. ^{1}H NMR and ^{13}C NMR Spectra Copies of Synthesized Compounds Compound 3a








Compound 3b

-100

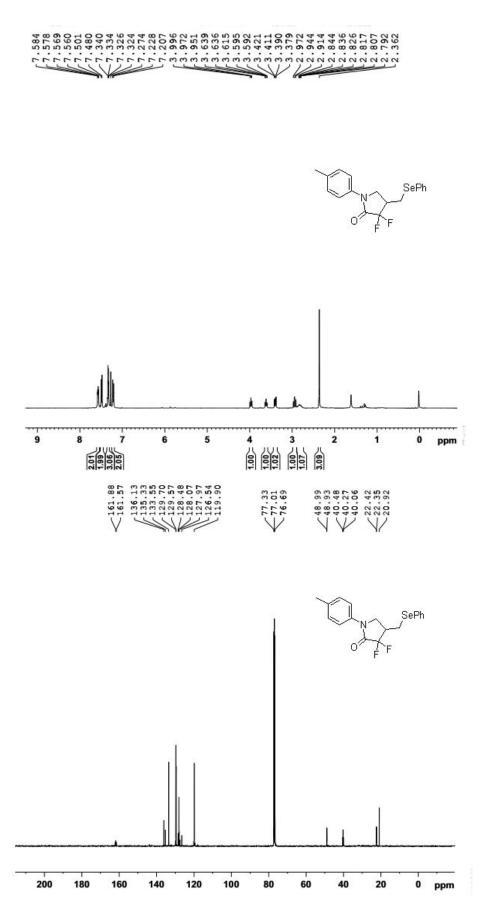
-120

-140

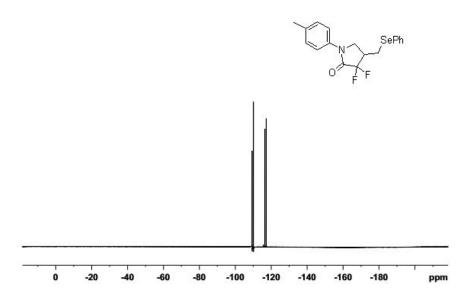
-160

-180

ppm

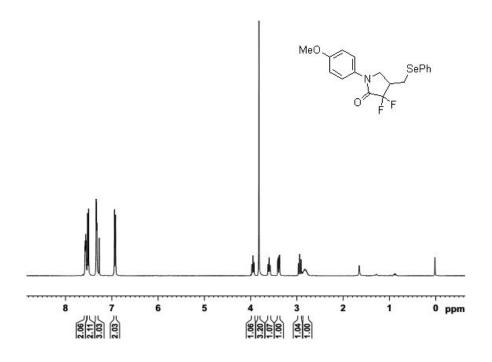

-20

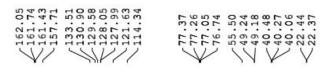
-40

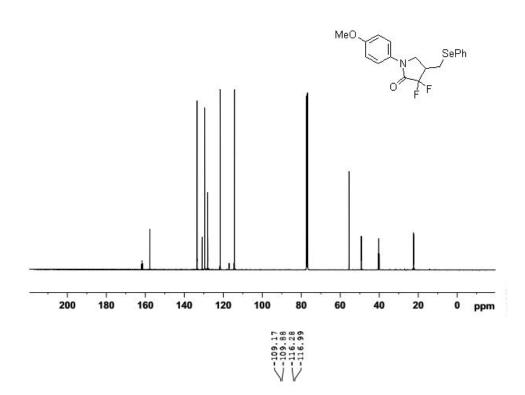

-60

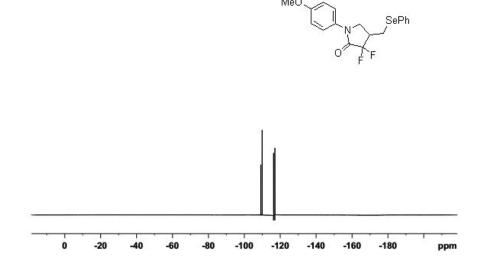
-80

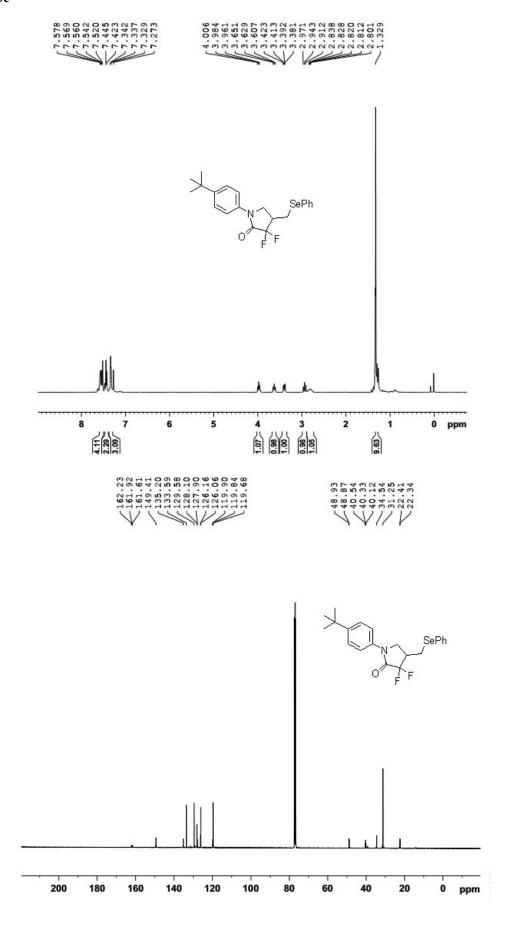
Compound 3c

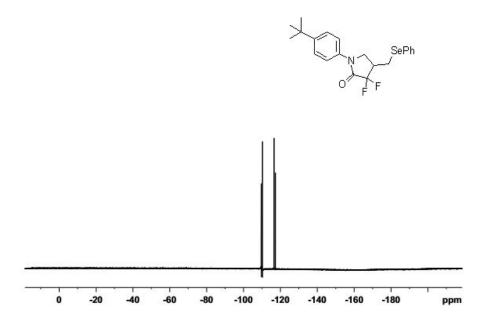




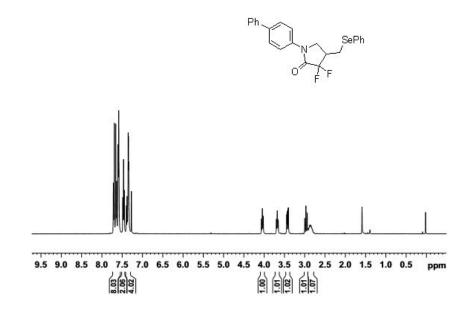


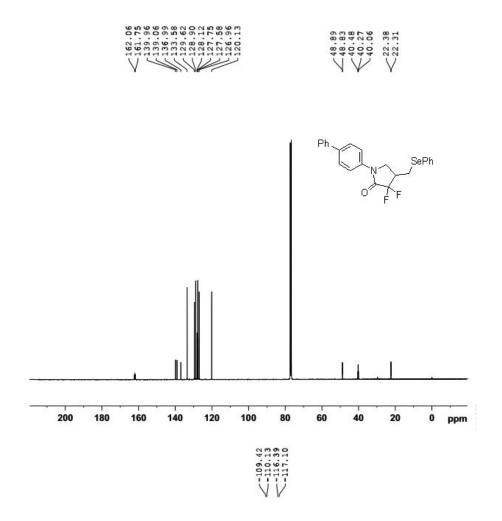

Compound 3d

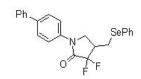


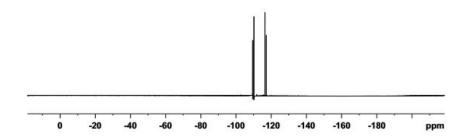


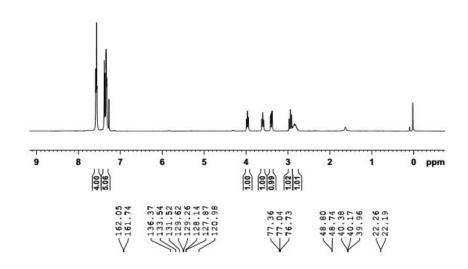
Compound 3e

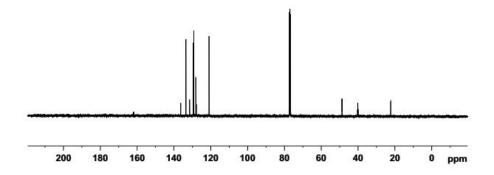


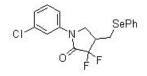


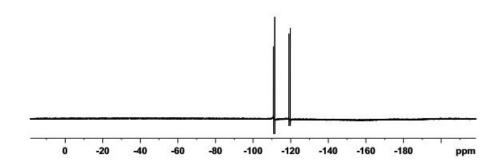


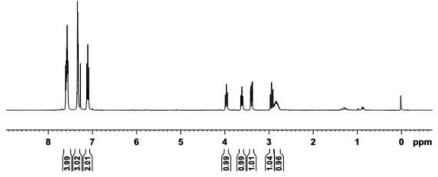

Compound 3f

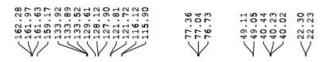


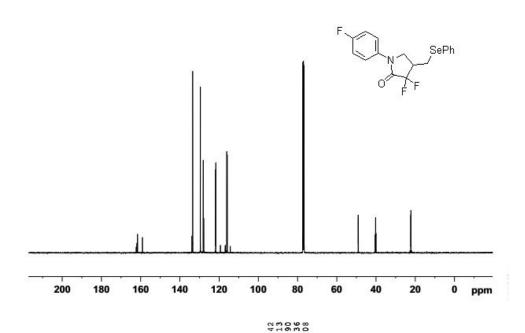

Compound 3g

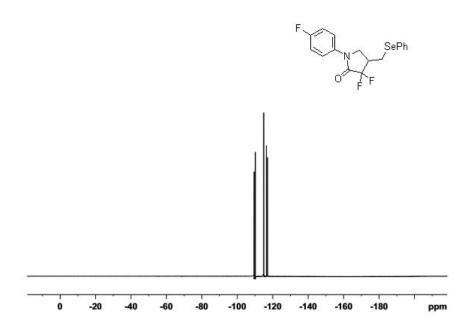


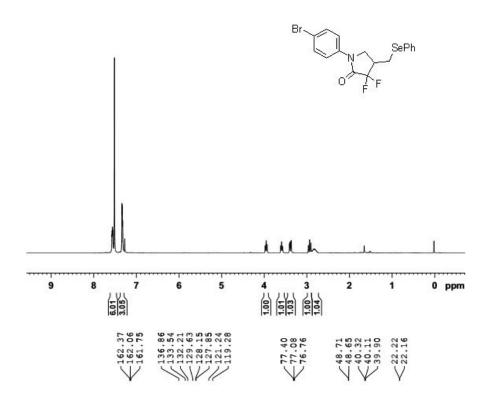


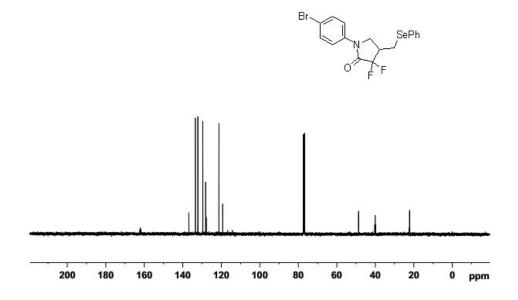


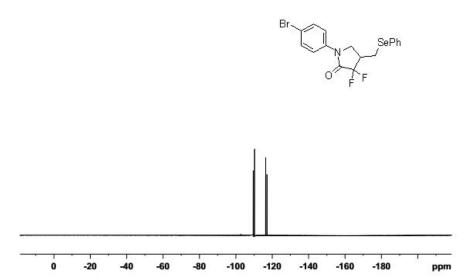


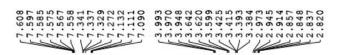

Compound 3h

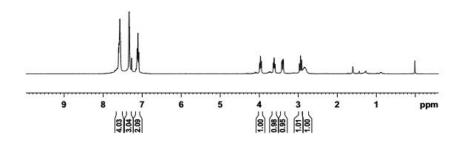


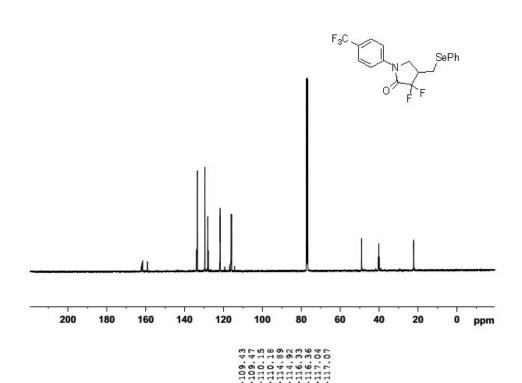


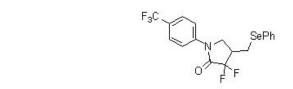


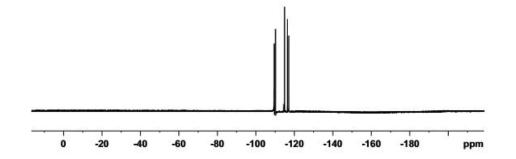

Compound 3i

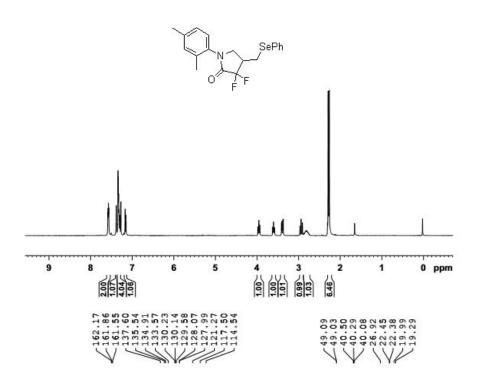


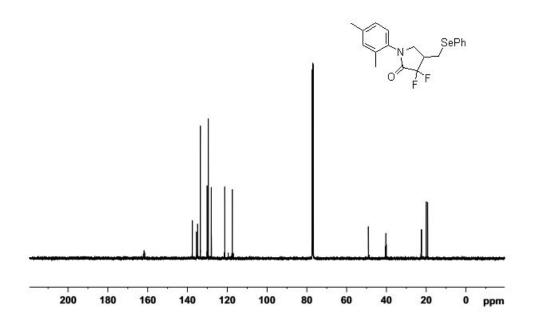


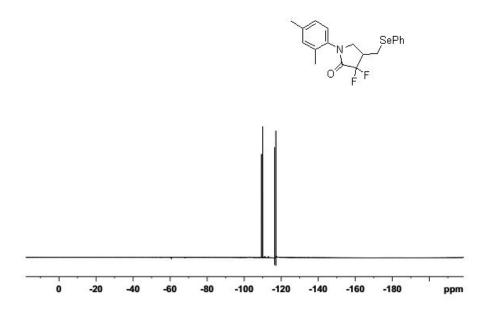

Compound 3j



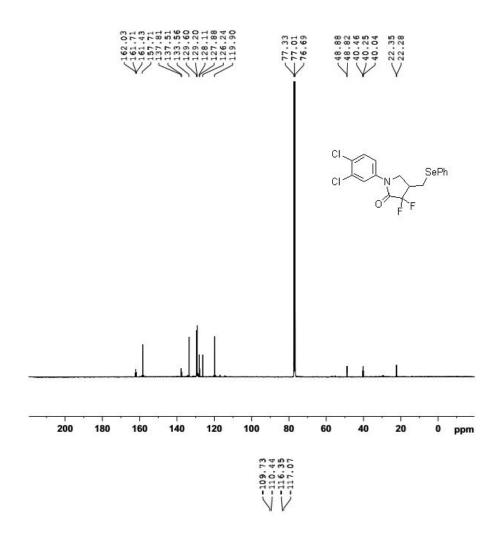


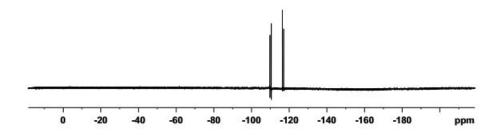


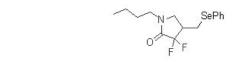


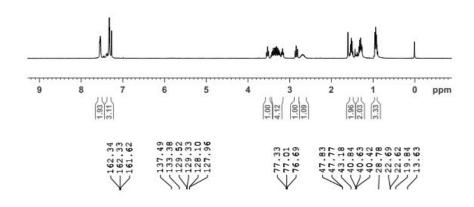

Compound 3k

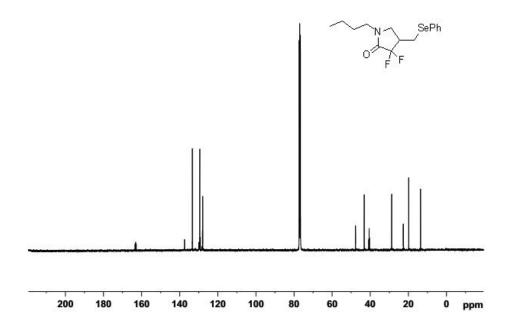




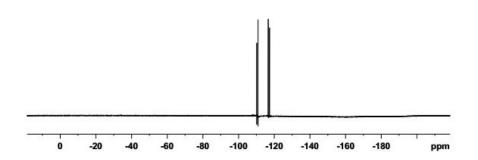


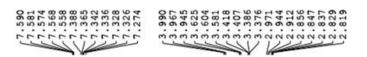


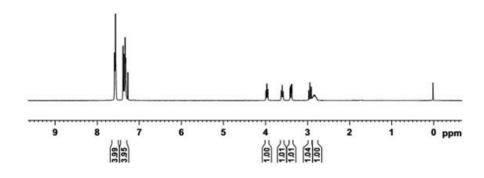


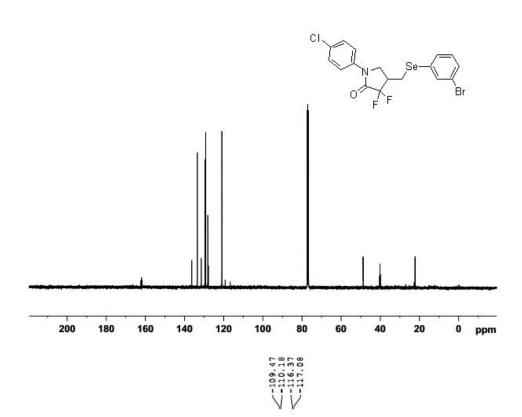


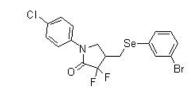
Compound 3m

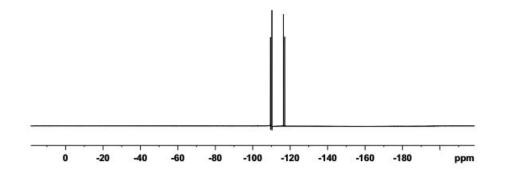


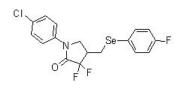


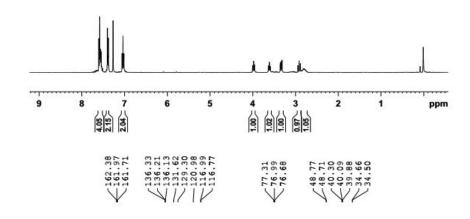


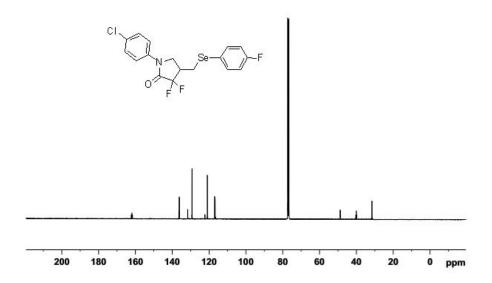


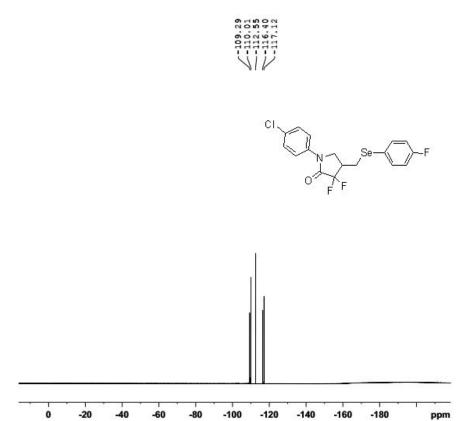

Compound 3n

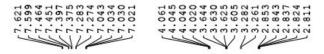




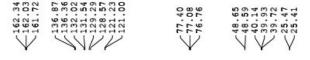


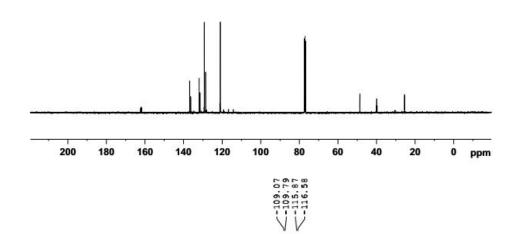


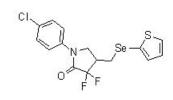

Compound 3o

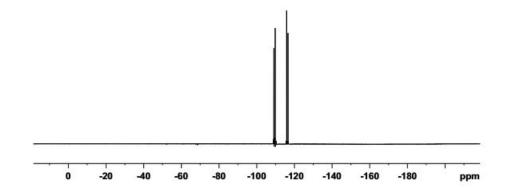


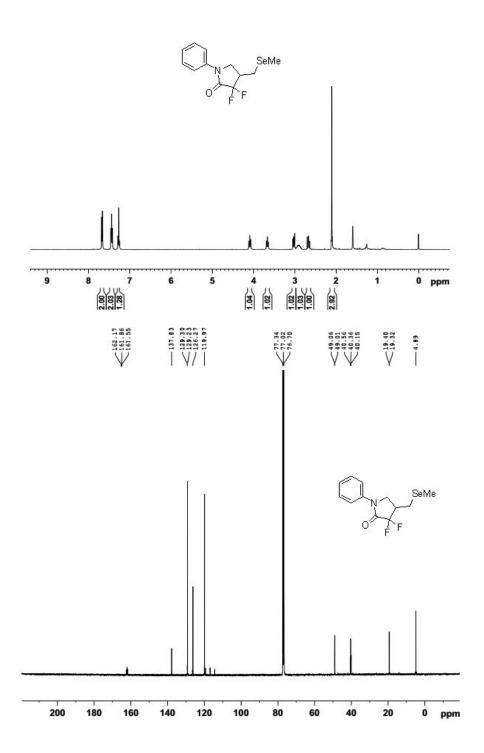


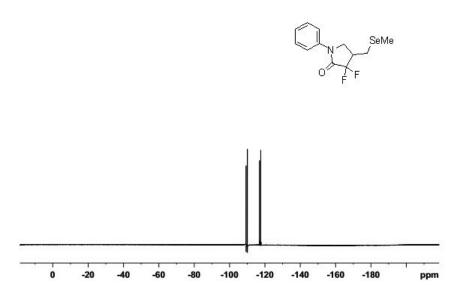




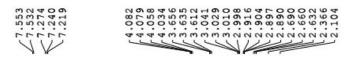

Compound 3p

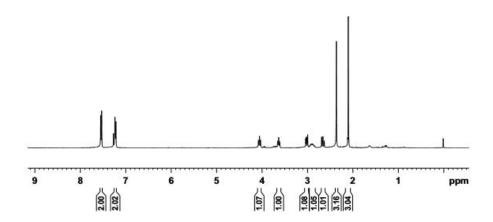


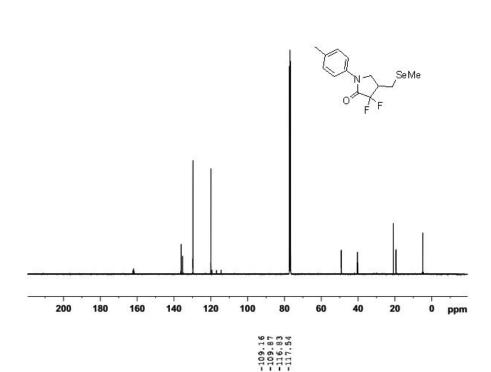


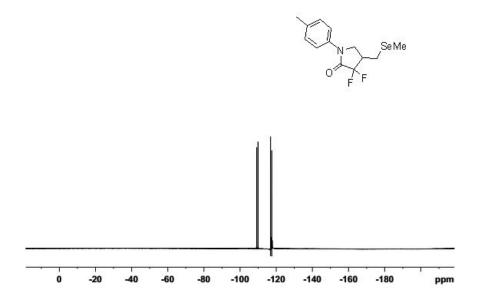


Compound 3q

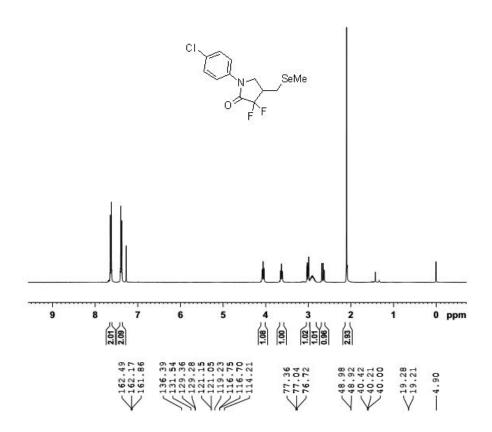


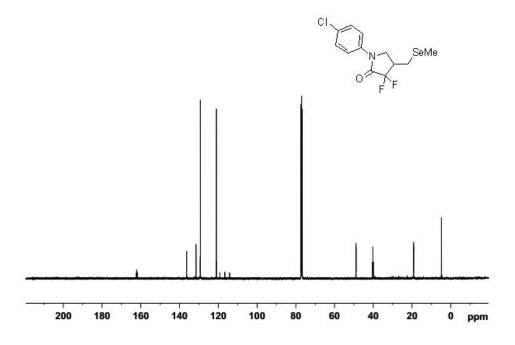


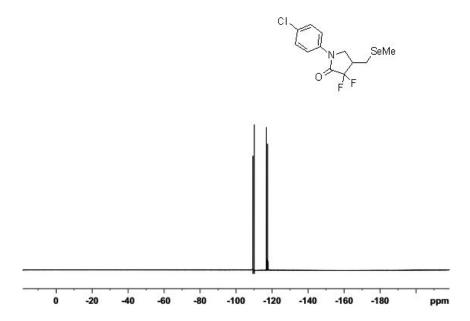

Compound 3r

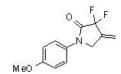


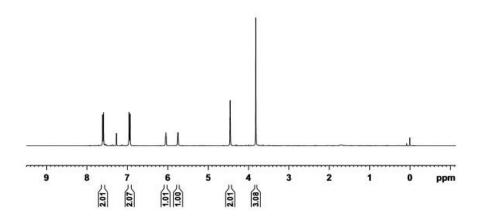


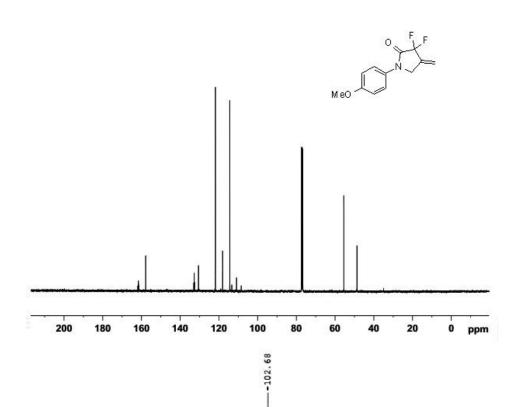


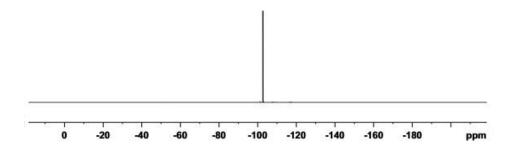



Compound 3s






7.593 7.593 6.959 6.959 6.947 6.947 6.947 6.947 6.947 6.947 7.593 6.947 7.4460 7.


-0.008

