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Materials and methods 

Metabolomic analysis 

Sample preparation 

On the day of analysis, plasma samples were placed in the refrigerator for gradual thawing. A 

pool of all study plasmas was prepared. Samples were vortexed for 30 s and a 50 μL aliquot 

was subjected to an in-plate hybrid extraction method consisting of deproteinization by acidic 

solvent precipitation (acetonitrile, 1% formic acid) followed by phospholipid solid phase 

extraction-mediated removal (OstroTM, Waters). Internal (IS) and external (ES) standards 

were added to the samples before and after the extraction procedure, respectively, to check 

for the extraction reproducibility and analytical stability during LC-MS data acquisition, and 

to prove the successful removal of phospholipids from all the samples (1-O-stearoyl-sn-

glycero-3-phosphocholine was used as negative control). The resulting solution was vortexed 

and placed into a 96-well plate for HPLC-ESI-QToF-MS analysis. No preservatives or 

stabilizers were used at any stage of the collection and manipulation of the samples. Samples 

were kept at low temperature using a CoolRack (Biocision, USA). 

 

HPLC-ESI-QToF-MS analysis and data acquisition 

The HPLC-ESI-QToF-MS analysis was performed using an Agilent 1200 Series Rapid 

Resolution HPLC system coupled to a hybrid quadrupole ToF QSTAR Elite (AB Sciex). 

Prepared samples (5 μL) were injected using a thermostatic auto-injector at 4 °C into a 

reversed phase Luna®C18 column (5 μm, 50 × 2.0 mm; Phenomenex, USA). The MS 

acquisition was performed in positive and negative modes using a TurboIonSpray source in 

full scan mode, within the m/z range 70–850. The parameters of chromatography and mass 

spectrometer used in the present study were developed previously by our group and have 



been reported elsewhere 1,2. To avoid possible bias, all extracts were analyzed in a unique 

batch-designed and randomized run sequence order.   

Throughout the whole data analysis process, five types of quality control (QC) were analyzed 

in order to monitor the system stability and functionality, besides the evaluation of the quality 

and the reproducibility of the acquired data 3–5. The quality control types analyzed were: 

QC1: LC-MS water samples; QC2:  standard mixture solution; QC3: reinjections of plasma 

samples in opposite position; QC4: pooled plasma samples prepared by mixing equal 

volumes from each of the samples; and QC5: reference human plasma. 

 

Data conversion and processing 

Data processing parameters are detailed in Supporting Table S2. These parameters were 

defined after taking the maximum deviation in retention time (RT) and mass accuracy in all 

types of QC samples into consideration 4.  

In order to focus on features with the lowest proportion of analytical variation, those features 

that presented a higher variation (according to the coefficient of variation) within QC4 

(pooled samples) than within-study samples (CVQC > CVS) were excluded since it was 

considered that they contained more analytical variation than biological variation. Moreover, 

the data filtering strategy “50% rule” was used to reduce the effect of zero values. Therefore, 

a variable was kept if it was present (i.e, intensity values >0) in at least 50% of all samples 

for at least one group. After this pretreatment step, a total of 3000 and 894 features were kept 

in the ESI(+) and ESI(–) data sets, respectively. 

The analytical variability across the runs was firstly evaluated by monitoring the standard 

compounds of QC2 samples; the compounds of IS and ES in study samples; as well as IS, ES 

and a subset of endogenous metabolites present in QC3 and QC5 samples. This enabled us to 

determine whether the RT, mass and peak intensities changed over time 4,5.   



Then, using an unsupervised multivariate analysis such as principal component analysis 

(PCA), possible alterations that occurred during data acquisition were evaluated. This method 

was used for the evaluation of the analytical variability of QCs across the data acquisition 6. 

 

Identification of metabolites 

First, clustering analysis with Pearson distance and Ward’s method to aggregate the 

observations (PermutMatrix 1.9.3.0 software) was applied in order to identify the mass 

features corresponding to the same metabolite: (de)protonated molecules, 13C isotopes, 

adducts, and in-source fragments mainly derived from the loss of the corresponding 

glucuronide moiety (−176 Da) or sulphate moiety (−80 Da). Then, metabolites were 

tentatively identified on the basis of their exact mass using an in-house database mainly 

focused on the metabolites expected from the intake of dietary phytochemicals using an 

automated identification algorithm implemented in an R package 7. Additionally, the 

databases HMDB, METLIN and MassBank were also queried. Each metabolite was 

associated with a specific level of identification according to the information used for its 

annotation. Level I was assigned to those metabolites identified by matching its accurate 

mass, fragmentation and retention time with authentic standards. Level II corresponded to 

those annotations based on a comparison of accurate mass and mass fragmentation between 

the discriminant metabolite and the information provided in the mentioned databases or in  

scientific bibliography. Level III was reserved for those annotations for which the accurate 

mass was the only information available 8. 

Statistical analysis 

Untargeted metabolomics data were analyzed by multivariate statistical methods using 

SIMCA-P+ 13.0 software (Umetrics, Umea, Sweden).  To achieve better results, prior to 



multivariate analyses, data was log-transformed and Pareto-scaled to make features more 

comparable. Initially, principal component analyses (PCA) were used for exploratory 

purposes: (i) to evaluate possible alterations that occurred throughout the data acquisition 

phase (if samples are placed in the “score plot” taking into account the order in which they 

were injected); (ii) to get an overview of the samples; and (iii) to detect any potential outlier 

sample. Successively, partial least squares discriminant analysis with orthogonal signal 

correction (OSC-PLS-DA) was used to examine between-groups differences using a 

multistep approach: firstly, all samples were included in one analysis to examine the overall 

pattern of the datasets; and then, further models were performed to analyze the separation of 

each group in pairwise analyses. For each model, the number of selected components was set 

K – 1, K being the number of included classes. The value of p(corr) was used to select the 

discriminant features. Only those features that presented a high stability in the p(corr) values 

within the leave-one-out procedure were kept in the list of discriminating variables. During 

this procedure, one sample at a time was left out from the original data set, an OSC-PLS-DA 

model was constructed with the rest of the samples, and the list of p(corr) values for that 

model was retrieved. This was repeated until all samples had been removed once. Therefore, 

only those features that had p(corr) values >0.75 in all the models were selected as the 

discriminant features. New models with raw data (non-OSC filtered; log-transformed and 

Pareto-scaled) were developed by including the selected features. 

 

 

 

 



Results 

Data acquisition quality 

The analytical variability across the runs was monitored using data from the standard 

compounds of QC2 samples; the compounds of IS and ES in study samples, as well as IS, ES 

and a subset of endogenous metabolites present in QC3 and QC5 samples were injected 

throughout all the data sets. These analyses covered the RT range from 0.35 min (the earlier-

eluting standard: L-carnitine) to 6.95 min (later-eluting standard: glycochenodeoxycholic 

acid).  

 

Supporting Table S3 shows that the maximum deviation in RT was 0.13 min, and the 

maximum mass accuracy deviation ranged from 0.3 mDa to 14.0 mDa. With regard to the 

peak intensities, the coefficient of variation ranged from 0% to 18%. 

Additionally, the unsupervised multivariate analyses performed by PCA indicated a clear 

spatial separation among the different sample classes (plasmas, QC1, and QC2) and replicates 

of each QC type were positioned strongly clustered among themselves. In addition, 

Supporting Figure S1 shows that among plasma samples there was a clear spatial separation 

between samples from the present study (obtained from rats) and commercially purchased 

reference human plasma samples, confirming the presence of relevant differences among the 

composition of human and murine plasma samples.   

Thus, data quality results from both univariate and multivariate data analyses of standard 

mixtures of compounds and plasma samples indicate that no major instrument failures related 

to a decline in signal intensity, RT shifts or changes in mass accuracy were observed. The 

data gave confidence both about the robustness of the HPLC-ESI-QToF-MS system 

operating conditions and the reliability of the data for further statistical analysis of the results 

to detect biomarkers according to the initial hypothesis 1. 



 

 

Metabolomic analysis 

The OSC-PLS-DA analysis, carried out only in samples from 7 days of diet, showed 

differences in the plasma metabolomics profiles between the RF, CC and TB groups after 7 

days of diet. To better select discriminating metabolites between groups, one-component 

OSC-PLS-DA models were further performed in a pairwise manner. As a result, all 

multivariate models resulted in one latent variable model characterized by good robustness 

and predictability to explain the differences between groups. Only features showing high 

correlation coefficients in all models developed during the leave-one-out procedure were 

considered as discriminating metabolites between groups. They were then submitted to the 

metabolite identification procedure. 
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Supporting Figure 1. PCA score plots (PC1 versus PC2) of global data set (biological 

and QC samples). Plasma samples from the first sub-batch are indicated in green; plasma 

samples from the second sub-batch in red; QC1 samples in blue; QC2 samples in orange; 

QC3 samples in pink; and QC5 samples in purple. Reinjected samples (QC4) are linked by 

the same black/grey color.  
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Supporting Table S1. Composition of the diets 

 

Components (%) RF diet CC diet TB diet 

Proteins 14.1 14.1 14.0 

Lipids 3.9 3.9 3.9 

Carbohydrates 72.1 71.0 72.0 

Insoluble fiber 5.0 5.1 5.0 

Soluble fiber - 0.9 - 

Micronutrients 4.9 4.4 4.9 

Theobromine - 0.25 0.25 

Phenolic compounds - 0.4 - 

RF, reference diet; CC, diet containing 10% cocoa; TB, diet containing 0.25% theobromine. 

 

 

 

 

 



Supporting Table S2. Data pre-processing parameters*. 

Parameter Description ESI(+) ESI(–) 

Peak finding Subtraction offset (scans) 5 5 

 Subtraction multiplication factor 1.5 1.5 

 Minimum spectral peak width (ppm) 1 1 

 Minimum retention time peak width (scans) 3 3 

 Noise threshold 5 5 

Peak alignment Retention time tolerances (min) 0.14 0.10 

 Mass tolerance (Da) 0.05 0.05 

 Intensity threshold 5 5 

 Number of peaks 10,260 4,387 

*MarkerViewTM 1.2.1 software (AB Sciex, Toronto, Ontario, Canada). 

 

  



Supporting Table S3. Variation in retention time, detected mass and intensity of IS, ES and a subset of endogenous metabolites present in QC5 

samples (commercially purchased reference human plasma). 

Compound 

RT (min) Detected mass (m/z) Intensity 

Mean Shift* Mean 
error 

(mDa) 

Shift* 

(Da) 

max error 

(mDa) 
Mean CV (%) 

ESI(+)         

Carnitine 0.37 0.00 162.1123 0.2 0.00 0.9 122 1 

Valine 0.44 0.02 207.1415 0.3 0.00 0.7 744 8 

Acetyl-d3-L-carnitine** 0.44 0.02 118.0841 2.1 0.00 3.4 6 4 

Tryptophan 4.64 0.08 205.0968 0.3 0.00 1.8 1 1 

Indole-3-acetic-2,2-d2 acid** 5.71 0.01 178.0828 0.3 0.00 0.6 229 1 

Glycocholic acid-(glycyl-1-13C)** 6.71 0.01 467.3179 1.7 0.00 2.2 194 1 

ESI(–)         

Tryptophan 4.61 0.01 203.0848 2.2 0.01 5.1 7 7 

Indole-3-acetic-2,2-d2 acid** 5.70 0.00 176.0707 2.1 0.00 3.9 168 3 

Dodecanedioic acid 6.42 0.02 229.1482 3.7 0.01 6.9 11 7 

Glycocholic acid-(glycyl-1-13C)** 6.71 0.01 465.3103 5.2 0.01 10.4 551 1 

*(max – min); **IS, ES. Abbreviations: CV, coefficient of variation; IS, internal standards; ES, external standards; RT, retention time. 

 

  



Supporting Table S4. Summary of parameters for assessing the OSC-PLS-DA models. RF, reference group; CC, cocoa group; TB, 

theobromine group; N, number of components in OSC and PLS-DA models, respectively; Â displays the angle between the component and the 

Y variable; SS, sum of squares, indicating the % of the original variance in the X-block that remains in the corrected X-matrix; R2X(cum) and 

R2Y(cum) are the cumulative modeled variation in the X and Y matrix, respectively; Q2(cum) is the cumulative predicted variation in the Y 

matrix; the p-value from CV-ANOVA, based on the cross-validated predictive residuals, is listed for each model (significant result indicates a 

valid model); R2 and Q2 displays the values of the regression lines obtained between the values of the original models and the values obtained in 

the permutation tests with 999 iterations. 

Model 

OSC Filter OSC-PLS-DA Model 
Permutation test 

(n=999) 

N Â 
remaining 

SS (%) 
eigen-
value 

N R2X 
(cum) 

R2Y 
(cum) 

Q2 (cum) p-value R2 Q2 

ESI(+) 

RF vs CC 3 90.00 50.28 1.06563 1 0.196 0.996 0.723 0.007 0.620 -0.132 

RF vs TB 3 90.00 48.35 1.07446 1 0.230 0.998 0.798 0.003 0.568 -0.170 

CC vs TB 3 90.00 43.42 1.04157 1 0.230 0.996 0.824 0.001 0.523 -0.179 

ESI(–) 

RF vs CC 2 90.00 65.60 1.13818 1 0.184 0.996 0.675 0.013 0.679 -0.110 

RF vs TB 2 90.00 70.80 1.28674 1 0.205 0.998 0.761 0.004 0.689 -0.142 

CC vs TB 4 90.00 51.18 1.09176 1 0.212 0.994 0.761 0.006 0.511 -0.154 
 

 

 

 



Supporting Table S5. Tentatively identified metabolites in plasma. RF, reference group; CC, cocoa group; TB, theobromine group.  

Group 
cluster 

ion 

mode 
RT m/z error assignation metabolite 

p(corr)

a 

p(corr)

b 
p(corr)c 

CC & TB 
(CC & TB) > 0 

1 + 0.38 176.1017 1.3 [M+H]+ Citrulline 0.849 0.865 - 

2 – 4.55 218.1059 2.5 [M-H]- Pantothenic acid 0.952 0.978 - 
3 + 4.71 181.0716 0.4 [M+H]+ Theobromine 0.941 0.962 - 

TB 

TB > (RF & CC) 
4 + 5.91 228.0523 2.0 [M+H]+ 5-(2'-Carboxyethyl)-4,6-

Dihydroxypicolinate 
- 0.914 0.862 

CC 
CC > RF 

5 + 6.70 466.3137 2.6 [M+H]+ Glycocholic acid 0.794 - - 

RF 6 – 5.36 190.0533 2.3 [M-H]- Hydroxyindoleacetic acid -0.990 -0.984 - 
RF > (CC & TB) 146.0626 1.5 [M-H-COO]- -0.975 -0.970 - 

 144.0477 2.2 [M-H-COO-H2]- -0.980 -0.963 - 
aMean of p(corr) values obtained in all OSC-PLS-DA models of RF group vs CC group developed during the leave-one-out procedure. 
bMean of p(corr) values obtained in all OSC-PLS-DA models of RF group vs TB group developed during the leave-one-out procedure. 
cMean of p(corr) values obtained in all OSC-PLS-DA models of CC group vs TB group developed during the leave-one-out procedure. 

 


