Supporting Information

Exploiting CD22 to Selectively Tolerize Autoantibody Producing B-cells in Rheumatoid Arthritis

Kyle J. Bednar^{1,2}, Corwin M. Nycholat³, Tadimeti S. Rao¹, James C. Paulson^{2,3}, Wai-Ping Fung-Leung^{1*}, and Matthew S. Macauley^{2,4*}

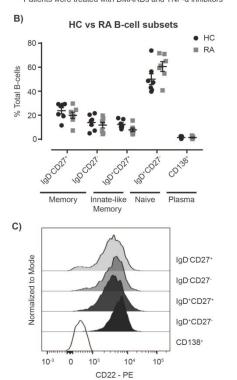
* Authors with equal contributions

Institutional Addresses:

¹Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC. 3210 Merryfield Road, San Diego CA 92121

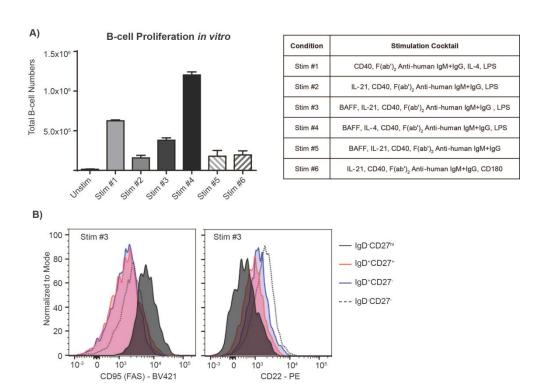
²Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, CA 92037

³Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, CA 92037

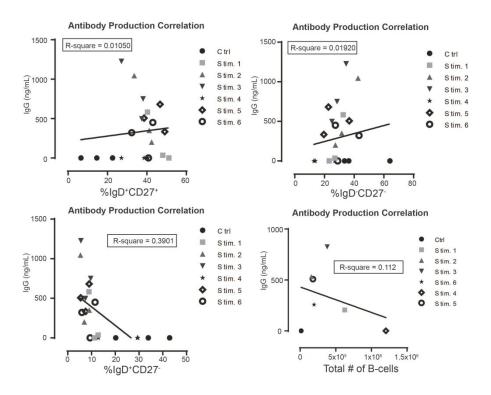

⁴Current Address: Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Alberta, Canada

Corresponding Authors: Matthew S. Macauley (macauley@ualberta.ca)

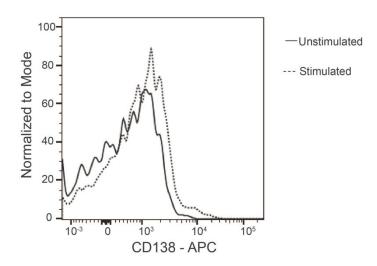
Wai-Ping Fung-Leung (wleung@its.jnj.com)

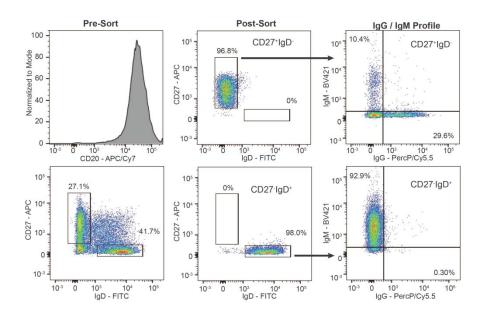

Patient ID	Sex	Age	RF Titer	CCP	HAQ
RA12Jun21D	М	61	16	94	11.1
BHR1243015*	М	57		300	
RA120912D*	F	81	0	36	2.7
RA120912E	М	47	16	100	25.4
RA12Jun12M*	F	82	12	154	5.3
RA12Jun15J*	F	75	0	250	17.5
RA12Jun15H*	F	72	81	172	4

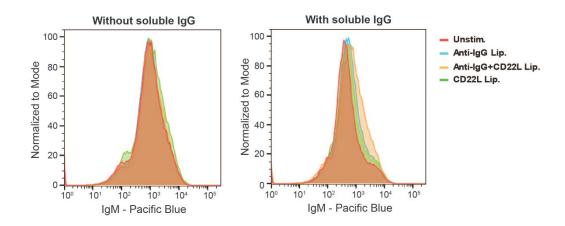
Patients were treated with DMARDs
* Patients were treated with DMARDs and TNF-α inhibitors

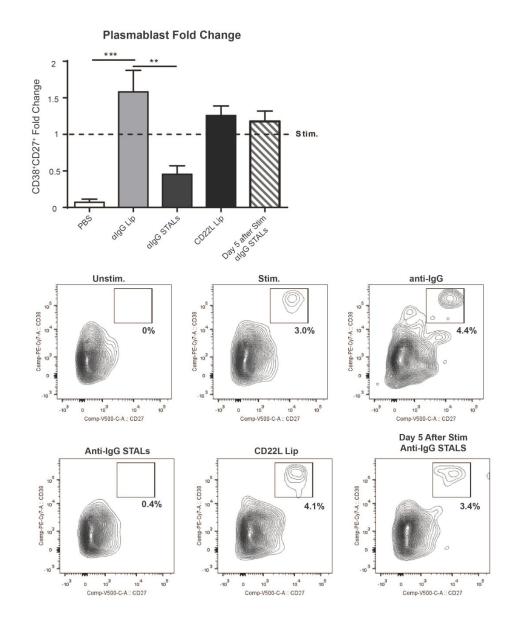


Supplemental Figure 1. RA patient clinical characterization and B-cell subsets. A) Demographics of RA patients and their clinical characteristics, including sex, age, Rheumatoid Factor (RF, IU/mL), anti-citrullinated antibody (ACPA) titer (IU/mL), and health assessment questionnaire disability index (HAQ) (N=7 from 7 individual RA patients). B) Healthy control (HC) and Rheumatoid Arthritis (RA) patient B-cells were isolated from total PBMCs and assessed for differences in B-cell subsets by flow cytometry (IgD, CD22, IgG, CD38, CD138, CD20, IgM, CD27) (N=7 individual donors for RA and 7 matched HC donors, 7 independent experiments,

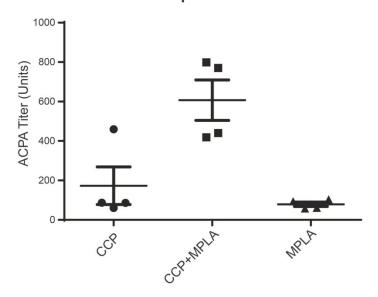

pooled data, unpaired t-test). **C)** A representative histogram for CD22 expression in B-cell subsets from an RA patient.


Supplemental Figure 2. B-cell proliferation upon activation and further plasmablast B-cell characterization. A) B-cells isolated from healthy control PBMCs were plated at 2x10⁴ cells/well and stimulated under a variety of stimulating conditions for 7 days using the following factors: F(ab')₂ anti-human IgG/IgM, BAFF, anti-human CD40, IL-4, IL-21, LPS, and CD180 as indicated in the table to the right. B-cell proliferation was measured by CellTiter-Glo (N=3 independent experiments from 3 individual healthy control donors, pooled data). **B)** B-cells were treated with Stim-3 and characterized further for a B-cell plasmablast phenotype by flow cytometry, CD95 and CD22 are shown (IgD, CD22, IgG, CD38, CD138, CD20, CD95 (FAS), and CD27) (N=3 independent experiments with 3 individual health donors).


Supplemental Figure 3. No positive linear correlation was found between antibody production and generation of B-cell subsets other than the subset IgD-CD27⁺ **B cells.** Total IgG antibody production was determined from culture supernatants of each of the above conditions (**Figure 1B**), each symbol represents a different healthy control sample (N=3 independent experiments from 3 individual healthy control donors, pooled data, linear regression). B-cells were also stained on day 7 for naïve (CD20⁺IgD⁺CD27⁻) and memory (CD20⁺IgD⁻CD27⁺) B-cell subsets and correlated to IgG production for the subsets shown above (Linear regression analysis) (N=3 independent experiments from 3 individual healthy control donors, pooled data, linear regression) and correlation to total B-cell proliferation.


Supplemental Figure 4. Unstimulated and Stimulated Cells do not express the surface marker CD138 after 7 days in culture. B-cells isolated from healthy control PBMCs were plated at 2x10⁵ cells/well and were left unstimulated or stimulated under standard stimulating conditions for 7 days and characterized for analysis of B-cell plasmablast subset markers by flow cytometry (IgD, CD22, IgG, CD38, CD138, CD20, CD95 (FAS), and CD27) (N=3 independent experiments with 3 individual health donors). Plasma B cells were identified by cell surface marker CD138 in FACS analysis.

Supplemental Figure 5. Sorting purity for naïve and memory B-cells. B-cells were isolated from healthy control PBMCs and sorted using BDFacsAria[™] for naïve or memory B-cells as described in Methods and Materials. Sorted naïve and memory B-cells were monitored for purity based on cell surface markers CD27, IgD, IgM and IgG. FACS analysis of purify B cells from a representative healthy donor was shown.


Supplemental Figure 6. IgM expressing B-cells are unaffected by anti-human IgG STALs in the absence and presence of soluble IgG. Human B-cells were isolated from healthy control PBMCs and plated at 1x10⁵/well in 96-well plates under one of the following conditions: unstimulated (PBS), anti-human IgG-liposomes (αIgG Lip), anti-human IgG+hCD22L (αIgG STALs), or CD22L liposomes alone (CD22L Lip) for 24 hrs with or without soluble IgG (5ng/mL) as indicated in the figure. After 24hrs cells were stained for B-cell subsets, including IgM as shown above (Representative figure from N=10 or N=4 independent experiments).

Supplement Figure 7. Plasmablast-like B-cells are not inhibited by anti-IgG STALs after formation on Day 5. Human B-cells were isolated from healthy control PBMCs and plated at 1x10⁵/well in 96-well plate stimulated under standard stimulating conditions for 7 days and under one of the following conditions: unstimulated (PBS), anti-human IgG-liposomes (αIgG Lip), anti-human IgG+hCD22L (αIgG STALs), or CD22L liposomes alone (CD22L Lip) for the entirety of the study or anti-human IgG+hCD22L liposomes were added to the culture on day 5 when

generation of plasmablast-like B-cells in cultures were detectable (N=6 each an independent experiment, pooled data, one-way ANOVA with multiple comparisons). On day 7, each well was harvested for flow cytometry analysis of B-cell subsets as previously described (IgD, CD22, IgG, CD38, CD138, CD20, IgM, and CD27), representative plots are shown (N=6 each an independent experiment, pooled data, one-way ANOVA with multiple comparisons).

SJL/J ACPA Response with and without MPLA

Supplemental Figure 8. MPLA is necessary for ACPA titers in SJL/J mice. SJL/J mice were immunized with liposomes decorated with CCP, CCP+MPLA or MPLA alone (N=4 mice from 2 independent experiments). ACPA titers in mouse serum were measured 7 days post-immunization using a CCP ELISA kit as described in Materials and Methods.