Supporting Information

Chitosan derived carbon matrix encapsulated CuP₂ nanoparticles for sodium-ion storage

Jian Duan, Shengyuan Deng, Wangyan Wu, Xiang Li, Haoyu Fu, Yunhui Huang, and Wei Luo*

Institute of New Energy for Vehicles, School of Materials Science and Engineering,
Tongji University, Shanghai 201804, China

*Corresponding author. E-mail: weiluo@tongji.edu.cn

Figure S1. XRD pattern of the Cu/C monolith.

Figure S2. (a) Thermogravimetric and differential thermal analysis (TG/DTA) curves of the Cu/C composite testing in air atmosphere at temperature in the range of 30 to 800 °C. (b) XRD pattern of Cu/C composite after TG/DTA test, which reveals that the Cu/C composite turns to CuO after test. Carbon content is calculated to be 30.4%.

Figure S3. (a-d) SEM and corresponding EDX images of the Cu/C composite. Elemental Cu is uniformly dispersed in the carbon matrix. Nitrogen (N) is also detected since chitosan is a linear polysaccharide composed a substantial amount of acetylated units.

Figure S4. N₂ adsorption isotherm of CuP₂/C composite.

Figure S5. A schematic graph of the interaction between the chitosan and Cu^{2+} .

For lithium-ion half cell evaluation, lithium foil is used as both counter and reference electrode, 1 M solution of LiPF $_6$ in a mixture of EC and Diethyl carbonate (DEC) (1:1 by volume) with 5 vol% addition of FEC as electrolyte and with celgard 2400 as separator.

Figure S6. (a) charge/discharge profiles and (b) CV curve of the CuP₂/C composite as anode in lithium-ion batteries.

Figure S7. XRD result of the NVP cathode.

Figure S8. SEM images of the NVP cathode.

Figure S9. Charge/discharge profiles of NVP electrode in NVP | Na half cell at different current rates at voltage ranging from 2.2-4.0 V.