Supporting information of "Material Design of Green-Light-Emitting Semiconductors: Perovskite-Type Sulfide SrHfS₃"

Kota Hanzawa,¹ Soshi Iimura,¹ Hidenori Hiramatsu,^{1,2,*} and Hideo Hosono^{1,2}

¹Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Mailbox R3-3, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

²Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-1, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

Correspondence and requests for materials should be addressed to H. Hiramatsu.

*H. Hiramatsu, e-mail: h-hirama@mces.titech.ac.jp

Text S1.

The *Pnma* superstructure has a $\sqrt{2} \times \sqrt{2}$ times larger *ac*-plane and 2 times longer b-axis compared with the Pm3m structure. The structural transformation in the ac-plane is illustrated in Fig. S1(a) and the corresponding reciprocal lattice folding is shown in (b). In real space, the primitive cubic lattice (black) has a lattice translation vector $\mathbf{T}_{2D} = u_1 \mathbf{a} + u_3 \mathbf{c}$, where \mathbf{a} and \mathbf{c} are primitive translation vectors, and u_1 and u_3 are integers. Through the change of the unit cell size (orange), each primitive translation vector rotates 45° in the *ac*-plane and becomes $\sqrt{2}$ times longer. As a result, the lattice translation vector changes to $\mathbf{T'}_{2D} = u'_{1}a' + u'_{3}c'$, where a' = a + c, c' = -a + c, and u'_{1} and u'_3 are integers. In reciprocal space, the reciprocal lattice vector is denoted as G_{2D} = $v_1 x + v_3 z$, where x and z are primitive reciprocal lattice vectors, and v_1 and v_3 are integers. Reflecting the unit cell size change in real space, each primitive reciprocal lattice vector also rotates 45° in the *ac*-plane and becomes $1/\sqrt{2}$ times shorter (blue). This changes G_{2D} to $G'_{2D} = v'_1 x' + v'_3 z'$, where x' = (x + z)/2, z' = (-x + z)/2, and v'_1 and v_{3} are integers. Because of the shortening of the reciprocal lattice vector, some bands are left outside the first BZ defined by the x and z. Consequently, those bands have to be folded along the G'_{2D} to the first BZ defined by the x' and z', and the number of bands becomes double. This indicates that bands at the R point are folded to the Y point. This unit cell transformation in real space corresponds to structural transformation from *Pm3m* to *P4/mbm*.

Next, we consider the structural transformation to *Pnma* along the *b*-axis. In real space, the *b*-axis of *Pnma* is 2 times longer than before the structural transformation, as shown in (c, green). The lattice translation vector $\mathbf{T} = u'_1 a' + u_2 b + u'_3 c'$ changes to **T**'

= $u'_1a' + u'_2b' + u'_3c'$, where **b** and **b**' are primitive lattice translation vectors before and after the structural transformation (**b**' = 2**b**), and u_2 and u'_2 are integers. The corresponding BZ size becomes half, as displayed in (d, red). The reciprocal lattice vector $\mathbf{G} = n'_1x' + n_2y + n'_3z'$ changes to $\mathbf{G}' = n'_1x' + n'_2y' + n'_3z'$, where y and y' are primitive lattice translation vectors before and after the structural transformation (y' = y/2), and n_2 and n'_2 are integers. This represents that bands at the Y point are folded to the Γ point through a translation operation in reciprocal space. In the inset in (e), BZ of

Pm3m is shown. Here, blue and red arrows represent how the VBM at the R point transfers to the Γ point through the structural transformations in the *ac*-plane and along the *b*-axis. The resultant band folding is shown in (e). The VBM at the R point is folded first to the Y point, and finally to the Γ point.

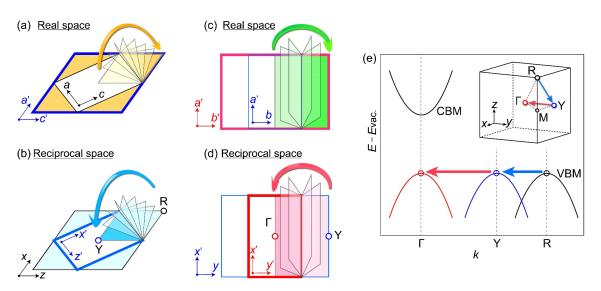
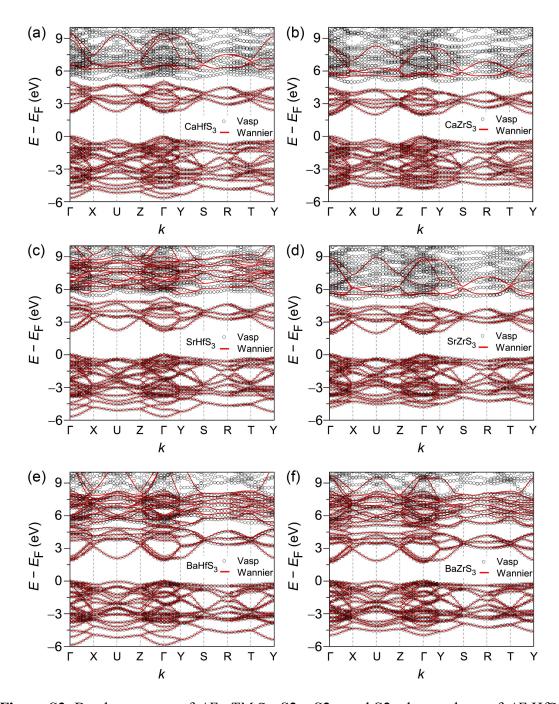
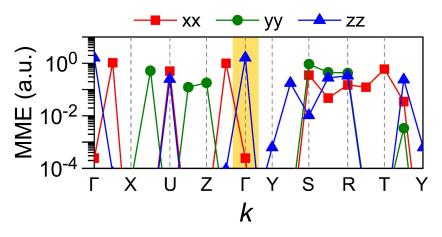
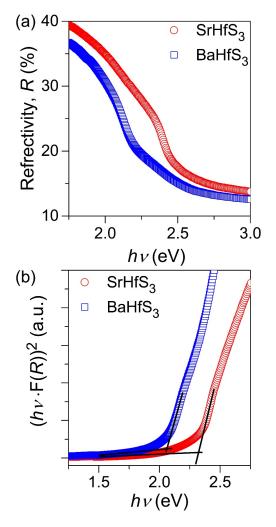
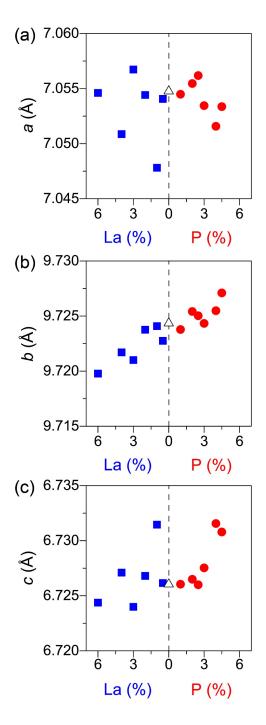


Figure S1. Band folding through structural transformation in perovskite from cubic *Pm*

3*m* to orthorhombic *Pnma*.


Figure S2. Band structures of AE-eTM-S₃. S2a, S2c, and S2e denote those of AE-HfS₃, where AE = Ca, Sr and Ba, respectively; whereas S2b, S2d, and S2f correspond to AE-ZrS₃ (AE = Ca, Sr, and Ba, respectively). Black circles are results of band structure calculations of AE-eTM-S₃ using VASP code, while red lines are computed using Wannier interpolation.


Figure S3. Calculated momentum matrix elements (MME) from the valence band edge to conduction band edge of SrHfS₃ at each k point.

		$m_{\rm e}^*(m_0)$			$m_{\mathrm{h}}^{*}(m_{0})$		$E_{\rm g}\left({ m eV} ight)$
	Г–Х	Г–Ү	Γ–Ζ	Г–Х	Г–Ү	Γ–Ζ	
CaHfS ₃	0.30	0.51	0.46	0.78	0.18	0.62	2.21
SrHfS ₃	0.40	0.26	0.43	0.70	0.19	0.61	2.18
BaHfS ₃	0.31	0.19	0.39	0.19	0.69	0.56	1.90
CaZrS ₃	0.31	0.60	0.48	0.85	0.18	0.61	1.95
SrZrS ₃	0.41	0.26	0.44	0.75	0.19	0.61	1.94
BaZrS ₃	0.33	0.20	0.41	0.19	0.70	0.52	1.72

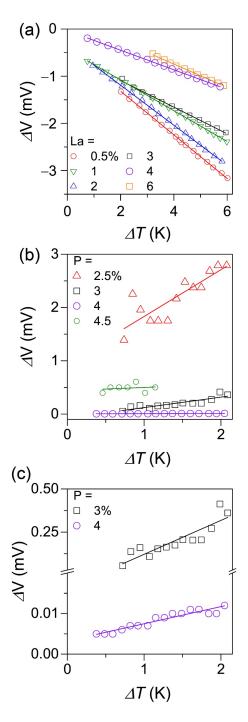

Table S1. Calculated effective masses and band gaps of AE-eTM-S3.

Figure S4. (a) Diffuse reflectance spectra and (b) the Kubelka–Munk plot of SrHfS₃ (red circles) and BaHfS₃ (blue squares). For the plot, we performed a transformation using the following equation; $F(R) = (1-R)^2/2R = K/S$, where K and S indicate optical absorption and scattering coefficients, respectively. Linear lines in (b) are results of the least-squares fittings.

Figure S5. (a) *a*-, (b) *b*- and (c) *c*-axes lattice parameter variations in SrHfS₃ through La- (blue squares) and P-dopings (red circles). The horizontal axis denotes nominal La- and P-doping concentrations.

Figure S6. Thermopower measurement of (a) La- and (b) P-doped SrHfS₃ as a function of nominal doping concentrations. (c) The enlarged plots for the 3% and 4% P-doped samples shown in (b). The least-squares fitting results are delineated as straight lines.

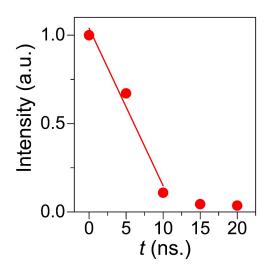
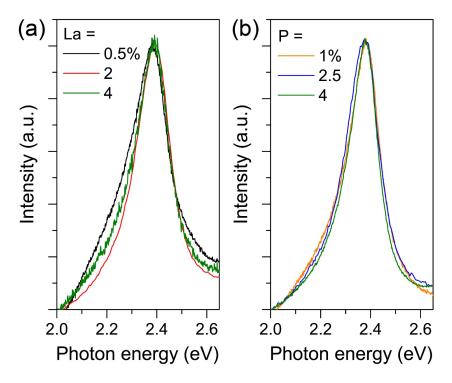



Figure S7. Decay curve of undoped $SrHfS_3$ at 30 K. Red line is a result of the least-squares fitting for the single-decay model emission lifetime.

Figure S8. Photoluminescence (PL) spectra of (a) La- and (b) P-doped SrHfS₃ taken at 300 K. Black, red, and green lines in (a) correspond to PL spectra at La-doping concentrations of 0.5%, 2%, and 4%, respectively. Orange, blue, and green lines denote PL spectra of 1%, 2.5%, and 4% P-doped SrHfS₃.