Supporting Information

Soft and Hard Interactions between Polystyrene Nanoplastics and Human Serum Albumin Protein Corona

Shinji Kihara^{1, 2}, Nadine J. van der Heijden^{1, 2}, Chris K. Seal^{1, 2}, Jitendra P. Mata³, Andrew E. Whitten³, Ingo Köper⁴, and Duncan J. McGillivray^{*1, 2}

¹ School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand

² The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand

³ Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia

⁴ Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042, Australia

Relevant properties

Name	Formula	Molecular	Density /	Isoelectric	SLD _n / 10 ⁻⁶ Å ⁻
		weight / g mol ⁻¹	g cm ⁻³	point	2
HSA	$C_{2916}H_{4624}N_{760}O_{889}S_{41}$	66500	1.360	5.5 ^a	1.84-3.14 ^{b,1}
PS ⁻ s	C_8H_8 (monomer)	104	1.040	<2	1.30
PS_{L}	C_8H_8 (monomer)	104	1.040	<2	1.30
H_2O	H_2O	18	0.997	NA	-0.56
D_2O	D_2O	20	1.100	NA	6.25

Table S1. Physical properties of HSA, PS⁻_s, and PS⁻_L.

^a based on a theoretical calculation (SI Figure S9)

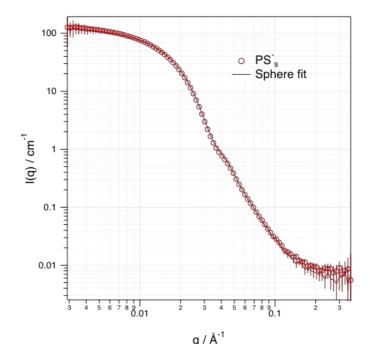
^b The lower limit of the SLD_n occurs when there is no hydrogen-deuterium (H/D) exchange for exchangeable hydrogens, occurs while the upper limit assumes the 100% H/D exchange.

Circular dichroism (CD) spectroscopy

Table S2. Secondary structure of HSA resolved by spectra deconvolution of CD spectra collected at pH 7.4.

Sample	α-helix	β -sheet	Random coil
Native HSA	51% ± 2%	21% ± 2%	28% ± 1%
With $PS_{s}^{-}(0.1 \text{ mg} \text{mL}^{-1})$	52% ± 2%	20% ± 3%	29% ± 2%
With PS_{L}^{-} (0.1 mg mL ⁻¹)	52% ± 1%	21% ± 2%	28% ± 2%

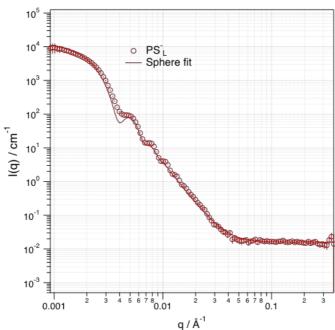
Table S3. Secondary structure of HSA resolved by spectra deconvolution of CD spectra collected at pH 7.4.


Sample	α-helix	β -sheet	Random coil
Native HSA	51% ± 2%	20% ± 1%	29% ± 2%
With $PS_{s}^{-}(0.1 \text{ mg} \text{mL}^{-1})$	46% ± 2%	12% ± 2%	42% ± 3%
With PS ⁻ _L (0.1 mg mL ⁻¹)	52% ± 1%	19% ± 3%	29% ± 2%

Zeta potential values Table S4. Zeta potential values of PS particles, HSA, and PS/HSA complexes at pH 7.4 and 5.0.

Sample	рН 7.4	рН 5.0
HSA	$-12.2 \pm 3.2 \text{ mV}$	-4.4 ± 4.5 mV
PS_{s}^{-}	-50.2 ± 12.0 mV	-45.3 ± 6.8 mV
PS_{L}^{-}	-58.2 ± 7.0 mV	-46.8 ± 11.6 mV
HSA/ PS ⁻ s	-15.5 ± 3.0 mV	-15.8 ± 9.8 mV
HSA/ PS ⁻ L	-43.4 ± 7.1 mV	-9.0 ± 6.8 mV

Small angle neutron scattering (SANS)


Polystyrene nanoparticles

q / Å $^{\text{-1}}$ Figure S1. SANS curve of PS $_{s}$ at 9.0 mg mL $^{\text{-1}}$ in 100% d-buffer, fitted with sphere model

Table S5. Fitting	parameters	for SA	NS curve	shown it	n Figure S	S1

Scale	Background / cm ⁻¹	SLD _n / 10 ⁻⁶ Å ⁻²	$\frac{SLD_n \text{ solvent } /}{10^{-6} \text{ Å}^{-2}}$	Radius / Å
$\begin{array}{r} 0.00681 \pm \\ 0.000150 \end{array}$	0.00683 ± 0.000300	1.34	6.35	115 ± 0.100

 $q / Å^{-1}$ Figure S2. SANS curve for PS-_L at 9.0 mg mL-¹ in 100% d-buffer (pH 7.4), fitted with a sphereical model.

Scale	Background / cm ⁻¹	SLD _n / 10 ⁻⁶ Å ⁻²	SLD _n solvent / 10 ⁻⁶ Å ⁻²	Radius /	Å
0.000820 \pm 0.0000650	0.0160 ± 0.000420	1.34	6.35	1187	± 1.8ª

^a The optimised polydispersity was 2%

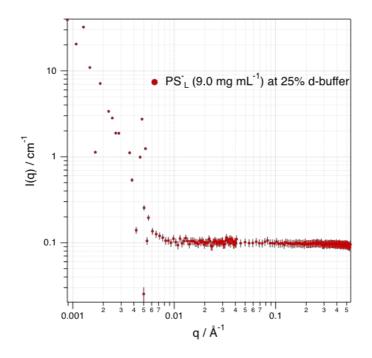
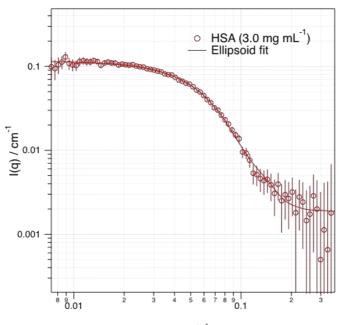
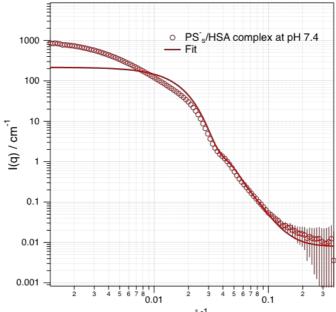



Figure S3. SANS curve of PS⁻_L at 9.0 mg mL⁻¹ in 25% d-buffer.

Human serum albumin (HSA)

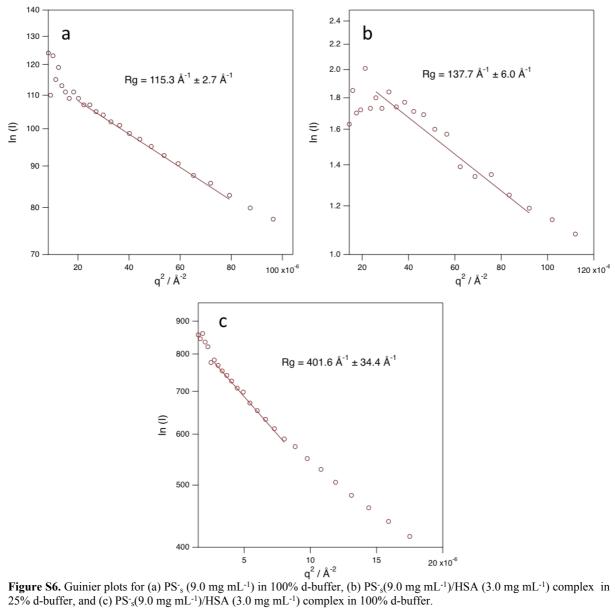


q / ${\rm \AA}^{-1}$ Figure S4. SANS curve for HSA at 3.0 mg mL $^{-1}$ in 100% d-buffer (pH 7.4), fitted with elliposoidal model.

Table S7. Fitting parameters	rs for SANS curve shown in Figur	e S4.
------------------------------	----------------------------------	-------

SLD _n / 10 ⁻⁶ Å ⁻²	SLD _n solvent / 10 ⁻⁶ Å ⁻²	Radius polar / Å	Radius equatorial / Å
2.40	6.35	15.6 <u>+</u> 1.90	43.7 ± 0.700

PS/HSA complex



 $q / Å^{-1}$ **Figure S5.** SANS curve for PS⁻_s (9.0 mg mL⁻¹)/HSA (3.0 mg mL⁻¹) complex in 100% d-buffer (pH 7.4). The scattering intensity was fitted with a combination of spherical and ellipsoidal models.

Table S8. Fitting parameters for SANS curve shown in Figure S5. The radius of PS-s, and dimensions of HSA were fixed with the values that were obtained in single components (Table S5 and Table S7).

-	Radius / Å	Radius polar / Å	Radius equatorial / Å	SLD _n solvent / 10 ⁻⁶ Å ⁻²		SLD _n HSA / 10 ⁻⁶ Å ⁻²
	135 ^a	15.6	43.7	6.35	1.34	2.40
_						

^a The optimised polydispersity was 17%

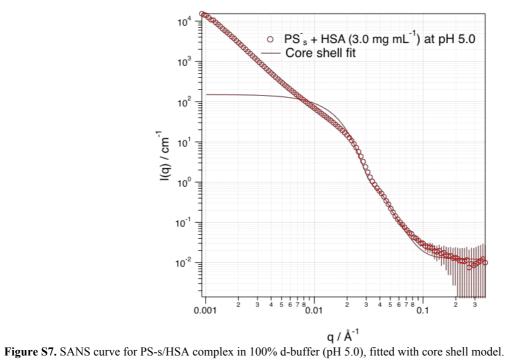


Table S9. Fitting parameters for Figure S7

Radius / Å	Thickness / Å	SLD _n solvent / 10 ⁻⁶ Å ⁻²	SLD _n core / 10 ⁻ ⁶ Å ⁻²	SLD _n shell / 10 ⁻⁶ Å ⁻²
135 ^a	15.6 <u>+</u> 1.90	6.35	1.34	2.40

Table S10. Fitting parameters for Figure 9, PS⁻_L/HSA complex at pH 7.4.

Radius / Å		Radius equatorial / Å		SLD _n PS / 10 ⁻⁶ Å ⁻²	SLD _n HSA/10 ⁻⁶ Å ⁻²	
1187ª	15.6	43.7	6.35	1.34	2.40	
The entimized polydignergity was fitted to be 20/						

The optimised polydispersity was fitted to be 2%

Table S11. Fitting parameters for Figure 9, PS_{L}^{-}/HSA complex at pH 5.0.

Radius / Å	polar /	Radius equatorial / Å	solvent	PS /	HSA / 10 ⁻⁶	Perturb	Stickiness
1187 ^a	15.6	43.7	6.35	1.34	2.40	$\begin{array}{c} 0.0620 \pm \\ 0.00085 \end{array}$	

The optimised polydispersity was fitted to be 2%

Representation of fractal dimension in colloidal system

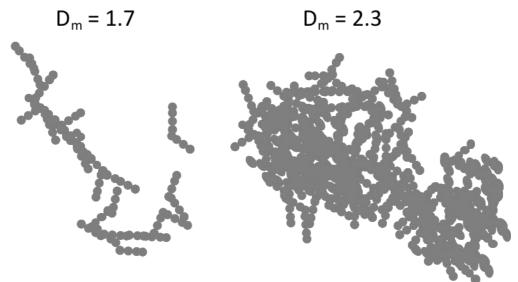


Figure S8. Graphical representation of fractals with different fractal dimensions.

Theoretical calculation of HSA net charge

The net charge of human serum albumin (HSA) was calculated with the following equation:

net charge (positive charge) = $\frac{10^{-pKa}}{10^{-pKa} + 10^{-pH}}$	Equation S1
net charge (negative charge) = $\frac{10^{-pH}}{10^{-pH} + 10^{-pKa}}$	Equation S2

The number and the pKa values of each amino acid used in the calculation is found in Table S11.

Amino acid	pKa of side group ²	Number ³
Arginine	12.8	24
Histidine	6.0	16
Lysine	10.1	59
Aspartic acid	3.7	36
Glutamic acid	4.3	62
Cysteine*	8.2	1

Table S12. Relevant properties of HSA for calculatig net charges at various pH.

*One cysteine that does not form disulfide bridge is used in this calculation.³

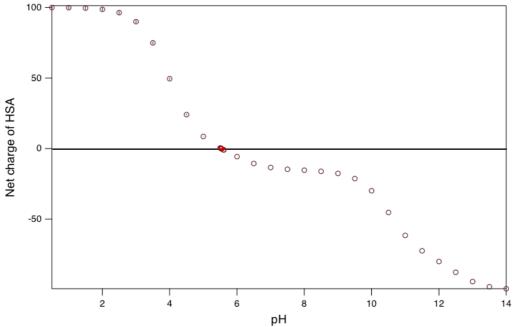


Figure S9. Theoretically calculated net charge of HSA as a function of pH.

References

1. Berts, I.; Fragneto, G.; Porcar, L.; Hellsing, M. S.; Rennie, A. R., Controlling adsorption of albumin with hyaluronan on silica surfaces and sulfonated latex particles. *J. Colloid Interface Sci.* **2017**, *504*, 315-324.

2. Lide, D., DR 1991-1992. Handbook of chemistry and physics. 72nd edition, CRC Press, Boca Raton, FL, 17.

3. Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K., Crystal structure of human serum albumin at 2.5 Å resolution. *Protein Eng.* **1999**, *12* (6), 439-446.