Supporting Information

Enantioselective Epoxidation of β, β-Disubstituted Enamides with a Manganese Catalyst and Aqueous Hydrogen Peroxide

Carlota Clarasó, Laia Vicens, Alfonso Polo* and Miquel Costas*

1) Experimental Section S3
1.1) Materials S3
1.2) Instrumentation S3
2) Synthesis of substrates S4
2.1) General procedure A for the synthesis of α, β-unsaturated esters S4
2.2) General procedure B for the synthesis of α, β-unsaturated acids. S7
2.3) General procedures C and D for the synthesis of α, β-unsaturated amides S10
3) Synthesis of complexes S21
3.1) Synthesis of the Ohq backbone S21
3.2) Synthesis of pyridine synthons S21
3.3) Synthesis and characterization of ${ }^{\mathrm{Me} 2 \mathrm{~N}} \mathrm{Ohq}$ S21
3.4) Synthesis and characterization of ${ }^{\mathrm{Me} 2 \mathrm{~N}} \mathrm{Ohq}-\mathrm{Mn}$ S24
3.5) Synthesis of ${ }^{\mathrm{Me} 2 \mathrm{~N}} \mathrm{Ohq-Fe}$ S25
4) Catalytic studies S27
4.1) Reaction conditions (Table 1) S27
4.2) Optimization of epoxidation of S1 S28
4.3) Reaction conditions (Tables 2 and 3) S28
4.4) General procedure for epoxide isolation (Tables 2 and 3) S29
5) Characterization of isolated epoxide products S29
6) Substrates and products characterization S36
6.1) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of synthetized substrates S36
6.2) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of isolated products S59
6.3) HPLC of products S81
7) References S111

1) Experimental Section

1.1) Materials

Reagents and solvents used were of commercially available reagent quality unless stated otherwise. Solvents were purchased from SDS and Scharlab. Solvents were purified and dried by passing through an activated alumina purification system (MBraun SPS-800). HPLC quality acetonitrile was employed in epoxidation reactions.

1.2) Instrumentation

IR spectra were taken in a Mattson-Galaxy Satellite FT-IR spectrophotometer using a MKII Golden Gate single reflection ATR system. NMR spectra were taken on a Bruker Ultrashield DPX300 MHz or Bruker Ultrashield AVANCE III400 spectrometer using standard conditions. Elemental analyses of C, H, and N were performed using a CHNS-O EA-2400 elemental analyser from Perkin Helmer. High resolution mass spectra (HRMS) were recorded on a Bruker MicroTOF-Qll instrument with an ESI source and a quadrupole analyser at Serveis Tècnics of the University of Girona. Samples were introduced into the mass spectrometer ion source by direct infusion through a syringe pump and were externally calibrated using sodium formate. The X-Ray measurement of (S, S)-Me2NOhq-Mn was carried out on a BRUKER SMART APEX CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda=0.71 \AA$) . Oxidation products were identified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR analyses. Chromatographic resolution of enantiomers was performed on HPLC 1200 series Agilent technologies using CHIRALPAK-IA and CHIRALPAK-IC columns using crude reaction mixtures to avoid possible enantiomeric enrichment during purification. Racemic epoxides have been prepared using standard epoxidation conditions using mCPBA, ${ }^{1}\left[\mathrm{Mn}(\mathrm{OTf})_{2}\left({ }^{\mathrm{H}, \mathrm{Me}}{ }^{(1)} \mathrm{PyTACN}\right)\right]^{2}$ or the racemic version of the catalyst ${ }^{\text {Me2N }}$ Ohq-Mn.

The absolute configuration of the major enantiomer of the epoxide resulting from epoxidation of $\mathbf{S 6}$ with ($\boldsymbol{S}, \mathbf{S}$)-Me2NOhq-Mn (Table 2, Entry 4) was determined by singlecrystal X-Ray diffraction. The X-Ray measurement was carried out on an AGILENT SUPERNOVA diffractometer equipped with an Atlas CCD detector using graphitemonochromate $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54 \AA$) from an X -Ray tube.

2) Synthesis of substrates

A literature procedure was used to prepare $\mathbf{S 1} \mathbf{.}^{3}$

2.1) General procedure A for the synthesis of α, β-unsaturated esters

A literature procedure was used to prepare α, β-unsaturated esters. ${ }^{4}$

To a suspension of $\mathrm{NaH}(480 \mathrm{mg}, 60 \%$ in mineral oil, 12 mmol) in THF (10 mL), a solution of triethyl phosphonoacetate ($2.5 \mathrm{~mL}, 12 \mathrm{mmol}$) in THF (5 mL) was slowly added. The mixture was stirred at room temperature for 30 min . Then, ketone (10 mmol) in THF (5 mL) was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature. After confirmation of consumption of ketone by TLC, a solution of saturated aqueous sodium bicarbonate (15 mL) was added. The mixture was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), washed with brine (15 mL) and dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. After concentration of the organic phase, the residue was purified by silica-gel column chromatography (hexane/EtOAc as eluent) to give (E)-ester and/or (Z)-ester.

(E)-ethyl 3-phenylbut-2-enoate (S2)

Prepared according to General Procedure A. Hexane/EtOAc 9:1, 80% yield. Spectral data match those previously reported. ${ }^{5}$

Ethyl 3-phenylpent-2-enoate

Prepared according to General Procedure A. Hexane/EtOAc 98:2, a 51% yield of $E, 21 \%$ yield of Z. Spectral data match those previously reported. ${ }^{5}$
(E)-ethyl 4-methyl-3-phenylpent-2-enoate

Prepared according to General Procedure A. Hexane/EtOAc 95:5, 28% yield. Spectral data match those previously reported. ${ }^{6}$
(E)-ethyl 2-(3,4-dihydronaphthalen-1(2H)-ylidene)acetate

(E)-Ethyl 3-(o-tolyl)but-2-enoate

(E)-ethyl 3-(m-tolyl)but-2-enoate

(E)-ethyl 3-(p-tolyl)but-2-enoate

(E)-ethyl 3-(4-(trifluoromethyl)phenyl)but-2-enoate

(E)-ethyl 3-(4-methoxyphenyl)but-2-enoate

Prepared according to General Procedure A. Hexane/EtOAc 9:1, 77\% yield. Spectral data match those previously reported. ${ }^{9}$

(E)-ethyl 3-(4-chlorophenyl)but-2-enoate

Prepared according to General Procedure A. Hexane/EtOAc 9:1, 77\% yield. Spectral data match those previously reported. ${ }^{5}$

(E)-ethyl 3-(naphthalen-2-yl)but-2-enoate

(E)-ethyl 3-cyclohexylbut-2-enoate

Ethyl 3,6-dimethylhept-2-enoate

Prepared according to General Procedure A, an inseparable mixture of E and Z isomers was obtained. Hexane/EtOAc 9:1, 70\% yield, E:Z 81:19. Spectral data match those previously reported. ${ }^{11}$

(E)-ethyl 3-methyl-4-phenylbut-2-enoate

Prepared according to General Procedure A. Hexane/EtOAc 9:1, 63% yield. Spectral data match those previously reported. ${ }^{12}$

2.2) General procedure B for the synthesis of α, β-unsaturated acids

A slightly modified literature procedure was used to prepare α, β-unsaturated acids. ${ }^{13}$

The α, β-unsaturated ester was placed in a 50 mL round-bottom flask, then EtOH (0.5 M) was added, the reaction mixture was stirred, and $\mathrm{NaOH}(10 \%, 10$ equiv.) was added. The reaction mixture was stirred at room temperature or at reflux until no starting material was detected by TLC. Then the pH was adjusted to 1.0 with $\mathrm{HCl}(1 \mathrm{M})$. The mixture was extracted with diethyl ether. The combined organic layer was washed with saturated $\mathrm{NaCl}_{\mathrm{aq}}$ solution, dried over MgSO_{4}, and concentrated in vacuum. If needed, the crude residue was subjected to flash chromatography (hexane/EtOAc) to afford the corresponding α, β-unsaturated acid.

(E)-3-phenylbut-2-enoic acid

Prepared according to General Procedure B. Hexane/EtOAc 5:1, 90% yield. Spectral data match those previously reported. ${ }^{13}$

3-phenylpent-2-enoic acid

Prepared according to General Procedure B. No further purification is needed for $\mathbf{E}, 72 \%$ yield \mathbf{E}. Hexane/EtOAc 5:2 for \mathbf{Z}, 90% yield Z. Spectral data match those previously reported. ${ }^{13}$

(E)-4-methyl-3-phenylpent-2-enoic acid

 Prepared according to General Procedure B. No further purification is needed, 98% yield. Spectral data match those previously reported. ${ }^{13}$
(E)-2-(3,4-dihydronaphthalen-1(2H)-ylidene)acetic acid

Prepared according to General Procedure B. No further purification is needed, 96% yield. Spectral data match those previously reported. ${ }^{7}$
(E)-3-(o-tolyl)but-2-enoic acid

Prepared according to General Procedure B. No further purification is needed, 94% yield. Spectral data match those previously reported. ${ }^{13}$
(E)-3-(m-tolyl)but-2-enoic acid

Prepared according to General Procedure B, 95% yield. No further purification is needed, 95% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$: 7.35-7.27 (m, 3H), $7.20(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, 2.39 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 172.2,158.8,142.1$, 138.2, 130.1, 128.5, 127.1, 123.6, 116.2, 21.5, 18.4. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]:$: 175.0754 , found: 175.0747.
(E)-3-(p-tolyl)but-2-enoic acid

(E)-3-(4-(trifluoromethyl)phenyl)but-2-enoic acid

Prepared according to General Procedure B. No further purification is needed, 96% yield. Spectral data match those previously reported. ${ }^{14}$
(E)-3-(4-methoxyphenyl)but-2-enoic acid

Prepared according to General Procedure B. No further purification is needed, 95% yield. Spectral data match those previously reported. ${ }^{15}$

(E)-3-(4-chlorophenyl)but-2-enoic acid

Prepared according to General Procedure B. No further purification is needed, 98% yield. Spectral data match those previously reported. ${ }^{13}$

(E)-3-(naphthalen-2-yl)but-2-enoic acid

Prepared according to General Procedure B. No further purification is needed, 94% yield. Spectral data match those previously reported. ${ }^{14}$

(E)-3-cyclohexylbut-2-enoic acid

Prepared according to General Procedure B. No further purification is needed, 90% yield. Spectral data match those previously reported. ${ }^{13}$

3,6-Dimethylhept-2-enoic acid

Prepared according to General Procedure B, an inseparable mixture of E and Z isomers ($E: Z$ 87:13) was obtained as a white solid. Hexane/EtOAc 9:1-8:2, 86\% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta \mathrm{ppm}$: 12.19 (s, Ha E and Z isomers), 5.69 ($\mathrm{q}, \mathrm{J}=1.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}} E$ isomer), 5.65 ($\mathrm{d}, \mathrm{J}=$ $1.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}} \mathrm{Z}$ isomer), 2.68-2.55 ($\mathrm{m}, \mathrm{H}_{\mathrm{f}} \mathrm{Z}$ isomer), 2.23-2.08 ($\mathrm{m}, \mathrm{H}_{\mathrm{e}}$ and $\mathrm{H}_{\mathrm{f}} E$ isomer), 1.90 (d, $\mathrm{J}=1.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}} \mathrm{Z}$ isomer), 1.62-1.48 (m, $\mathrm{H}_{\mathrm{h}} E$ and Z isomers), 1.41-1.29 ($\mathrm{m}, \mathrm{H}_{\mathrm{g}} E$ and Z isomers), 0.90 ($\mathrm{m}, \mathrm{H}_{\mathrm{i}} E$ and Z isomers). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 172.7\left(\mathrm{C}_{\mathrm{b}} E\right.$ isomer), 172.2 ($C_{b} Z$ isomer), 164.5 ($C_{d} Z$ isomer), 163.8 ($C_{d} E$ isomer), 115.4 ($C_{c} Z$ isomer), 115.0 ($C_{c} E$ isomer), 39.2 ($C_{f} E$ isomer), 37.3 ($C_{g} Z$ isomer), 36.6 ($C_{g} E$ isomer), 31.7 ($C_{f} Z$ isomer), 28.4 ($C_{h} Z$ isomer), 27.7 ($C_{h} E$ isomer), 25.5 ($C_{e} E$ isomer), 22.4 ($H_{i} E$ and Z isomers), 19.1 ($\mathrm{H}_{\mathrm{e}} E$ isomer). HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$: 155.1067, found: 155.1060.

(E)-3-methyl-4-phenylbut-2-enoic acid

2.3) General procedures C and D for the synthesis of α, β-unsaturated amides

Procedure C

A slightly modified literature procedure was used to prepare S4-S6, S8-S12 and S14-S27 α, β-unsaturated amides. ${ }^{17}$

To a suspension of the indicated acid (1.0 equiv.) in dichloromethane (0.3 M) was added DMF ($0.1 \mathrm{~mL} / \mathrm{mmol}$). At ambient temperature, oxalyl chloride (1.5 equiv.) was added dropwise over a period of 0.5 h , forming a homogenous solution. The resulting solution was kept at room temperature for 3 h . Then the solvent was removed under reduced pressure. The residue was dissolved in dry dichloromethane and slowly added dropwise to a solution of the appropriate amine (1.0 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (2.5 equiv.) in dichloromethane (0.25 M). The reaction mixture was maintained at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic phase was washed with $\mathrm{NH}_{4} \mathrm{Cl}(1 \times 80 \mathrm{~mL})$ and brine ($1 \times 80 \mathrm{~mL}$), dried over anhydrous MgSO_{4}. The solvent was evaporated under reduced pressure and the crude residue was purified by flash column chromatography on silica gel (hexane/EtOAc/CH2Cl2) afforded the desired amides.

Procedure D

A literature procedure was used to prepare $\mathbf{S 3}, \mathbf{S 7}$ and $\mathbf{S 1 3} \alpha, \beta$-unsaturated amides. ${ }^{18}$

A mixture of the indicated acid (1.0 equiv.) and BBDI (1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.4 M) was stirred at room temperature for 30 min . After addition of the corresponding amine (1.2 equiv.) to the mixture, the whole was refluxed 5 h . Ethyl acetate (40 mL) was added to the reaction mixture and then the whole was washed with $5 \% \mathrm{HCl}$ solution ($2 \times 10 \mathrm{~mL}$)
and brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel.

(E)-N,N-dimethyl-3-phenylbut-2-enamide (S3)

Prepared from (E)-3-phenylbut-2-enoic acid ($200 \mathrm{mg}, 1.23 \mathrm{mmol}$) and dimethylamine 2 M in THF ($738 \mu \mathrm{~L}, 1.48 \mathrm{mmol}$) using the general procedure D that provided $\mathbf{S 3}$ after purification by flash column chromatography (hexane/EtOAc 1:1) as a white solid ($218.4 \mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.27(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$: 168.5, 145.6, 141.9, 128.4, 128.2, 126.0, 119.9, 37.8, 34.8, 17.9. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 190.1226$, found: 190.1226.

(E)-N,N-diethyl-3-phenylbut-2-enamide (S4)

Prepared from (E)-3-phenylbut-2-enoic acid (200 mg, 1.23 mmol) and diethylamine ($128 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 4}$ after purification by flash column chromatography (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 3: 1$) as an orange oil ($194.9 \mathrm{mg}, 73 \%$ yield). Spectral data match those previously reported. ${ }^{19}$

(E)-N,N-diisopropyl-3-phenylbut-2-enamide (S5)

Prepared from (\boldsymbol{E})-3-phenylbut-2-enoic acid ($200 \mathrm{mg}, 1.23 \mathrm{mmol}$) and diisopropylamine ($161 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 5}$ after purification by flash column chromatography (hexane/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 20: 3: 1$) as a pale yellow oil ($162.1 \mathrm{mg}, 54 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.45(\mathrm{dt}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H})$, $6.26(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (hept, J = 6.5 Hz, 1H), 3.56 (hept, J = $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.21(\mathrm{~s}, 3 \mathrm{H})$, $1.47(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 168.0$, 141.9, 141.7, 128.4, 127.9, 125.8, 122.6, 49.7, 45.5, 21.1, 20.7, 17.6. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 268.1672 , found: 268.1684 .

Prepared from (E)-3-phenylbut-2-enoic acid ($940.7 \mathrm{mg}, 5.8$ mmol) and dibenzylamine ($1.2 \mathrm{~mL}, 5.8 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 6}$ after purification by flash column chromatography (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 2: 1$) as a pale yellow solid ($1.71 \mathrm{~g}, 86 \%$ yield). Spectral data match those previously reported. ${ }^{20}$

(E)-3-phenyl-1-(piperidin-1-yl)but-2-en-1-one (S7)

 Prepared from (E)-3-phenylbut-2-enoic acid ($474 \mathrm{mg}, 2.92 \mathrm{mmol}$) and piperidine ($343 \mu \mathrm{~L}, 3.51 \mathrm{mmol}$) using the general procedure D that provided $\mathbf{S 7}$ after purification by flash column chromatography (hexane/EtOAc 3:2) as an orange oil ($596.8 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: \delta 7.50-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.69-3.57 (m, 2H), 3.52-3.42 (m, 2H), $2.23\left(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$), 1.71-1.47 (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 167.1, 143.9, 141.6, 128.4, 128.1, 125.9, 120.4, 47.5, 42.3, 26.7, 25.7, 24.6, 17.8. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 230.1539$, found: 230.1544.

(E)-N,N-diphenyl-3-phenylbut-2-enamide (S8)

Prepared from (E)-3-phenylbut-2-enoic acid ($200 \mathrm{mg}, 1.23$ mmol) and diphenylamine ($252.3 \mathrm{mg}, 1.48 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 8}$ after purification by flash column chromatography (hexane/EtOAc 9:1) as a brown solid ($83.3 \mathrm{mg}, 22 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$: 7.42-7.34 (m, 4H), 7.31$7.20(\mathrm{~m}, 11 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 167.2,150.9$, 142.9, 142.7, 129.2, 128.4, 128.4, 126.2, 120.4, 18.1. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.1539$, found: 314.1554.

(E)-N-cyclohexyl-N,3-diphenylbut-2-enamide (S9)

Prepared from (E)-3-phenylbut-2-enoic acid (400 mg, 2.46 mmol) and N-cyclohexylaniline ($420.5 \mathrm{mg}, 2.46 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 9}$ after purification by flash column chromatography (hexane/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 20:3:1) as a waxy orange solid ($114.9 \mathrm{mg}, 15 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.45-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{tt}, \mathrm{J}=12.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.71$ $(\mathrm{m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{qt}, \mathrm{J}=13.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{qd}, \mathrm{J}=12.4,3.3 \mathrm{~Hz}$, 2 H), 0.94 (qt, J = 13.1, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.8,147.9,142.9$, 139.4, 130.4, 129.0, 128.2, 128.1, 128.0, 126.0, 120.9, 53.9, 31.8, 25.9, 25.5, 18.0. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 320.2009, found: 320.2018.

(E)-N-isopropyl-3-phenylbut-2-enamide (S10)

Prepared from (E)-3-phenylbut-2-enoic acid ($200 \mathrm{mg}, 1.23 \mathrm{mmol}$) and isopropylamine ($106 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) using the general procedure C that provided $\mathbf{S 1 0}$ after purification by flash column chromatography (hexane/EtOAc/CH2Cl2 3:1:1) as a bright white solid ($136.9 \mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{q}, \mathrm{J}$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dhept}, J=8.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.1,150.3,142.8$, 128.4, 128.4, 126.1, 120.3, 41.2, 22.9, 17.6. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 204.1383$, found: 204.1380.

(E)-N-benzyl-3-phenylbut-2-enamide (S11)

Prepared from (E)-3-phenylbut-2-enoic acid ($200 \mathrm{mg}, 1.23$ mmol) and benzylamine ($136 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 1 1}$ after purification by flash column chromatography (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1: 1$) as a waxy orange solid ($178.1 \mathrm{mg}, 58 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.42(\mathrm{dd}, \mathrm{J}=7.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38-7.24 (m, 8H), $6.15(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{q}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}$
$=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.8,151.3,142.7,128.7,128.6,128.5$, 127.9, 127.5, 126.2, 119.7, 43.5, 17.7. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 252.1383$, found: 252.1374.

(E)-N-phenyl-3-phenylbut-2-enamide (S12)

Prepared from (E)-3-phenylbut-2-enoic acid ($200 \mathrm{mg}, 1.23$ mmol) and phenylamine ($113 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 1 2}$ after purification by flash column chromatography (hexane/EtOAc 9:1-9:3) as a waxy white solid (84.9 mg , 29% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.58(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H})$, 7.35 (tdd, J = 14.0, 6.4, 1.7 Hz, 6H), 7.11 (t, J = 7.4 Hz, 1H), $6.15(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (d, J = $1.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 164.9,153.1,142.6,138.1,129.0$, 128.8, 128.5, 126.2, 124.2, 120.0, 119.8, 17.9. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 238.1226$, found: 238.1234 .

(E)-N-(adamantan-1-yl)-3-phenylbut-2-enamide (S13)

Prepared from (E)-3-phenylbut-2-enoic acid (404.5 mg , 2.49 mmol) and 1-adamantylamine ($388.9 \mathrm{mg}, 2.99$ mmol) using the general procedure D that provided $\mathbf{S 1 3}$ after purification by flash column chromatography (hexane/EtOAc 9:1) as a white solid ($383.1 \mathrm{mg}, 52 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta \mathrm{ppm}$: 7.45-7.38 (m, 2H), 7.38-7.27 $(\mathrm{m}, 3 \mathrm{H}), 5.93(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 9 \mathrm{H})$, 1.73-1.664 (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.3,149.7,143.0,138.4,128.3$, 126.1, 121.4, 52.1, 41.8, 36.4, 29.5, 17.4. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}$ [M+H] ${ }^{+}$: 296.2009, found: 296.2000.

(E)-N,N-dibenzyl-3-phenylpent-2-enamide (S14)

Prepared from (E)-3-phenylpent-2-enoic acid (636.9 mg , 3.6 mmol) and dibenzylamine ($717 \mu \mathrm{~L}, 3.6 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 1 4}$ after purification by flash column chromatography (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 2: 1$) as a pale yellow oil ($954.1 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.43-7.27$
$(\mathrm{m}, 13 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.10(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 168.6,154.1,140.8,137.4$, 136.5, 128.9, 128. 7, 128.5, 128.4, 128.2, 127.7, 127.5, 126.9, 126.7, 119.4, 50. 6, 47.3, 25.0, 13.5. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 378.1828 , found: 378.1828.
(E)-N,N-dibenzyl-4-methyl-3-phenylpent-2-enamide (S15)

Prepared from (E)-4-methyl-3-phenylpent-2-enoic acid ($400 \mathrm{mg}, 2.1 \mathrm{mmol}$) and dibenzylamine ($417 \mu \mathrm{~L}, 2.1 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided S15 after purification by flash column chromatography (hexane/EtOAc 9:1) as a pale yellow oil ($707.1 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ ppm: 7.38-7.28 (m, 11H), 7.19-7.15 (m, 4H), $5.98(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.54$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 168.5$, $158.1,140.8,137.3,136.6,128.9,128.6,128.4,128.1,127.8,127.7,127.5,127.2,126.9$, 121.0, 50.7, 47.2, 31.3, 21.5. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 392.1985, found: 392.1992.
(E)-N,N-dibenzyl-2-(3,4-dihydronaphthalen-1(2H)-ylidene)acetamide (S16)

Prepared from (E)-2-(3,4-dihydronaphthalen-1(2H)ylidene) acetic acid (126.5 $\mathrm{mg}, 0.7 \mathrm{mmol}$) and dibenzylamine (133 $\mu \mathrm{L}, 0.7 \mathrm{mmol})$ using the general procedure C that provided S16 after purification by flash column chromatography (hexane/EtOAc 9:1) as a pale yellow solid ($214.6 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.49-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.21(\mathrm{td}$, $J=8.4,7.6,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.12(\mathrm{dq}, \mathrm{J}=6.9,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H})$, $4.54(\mathrm{~s}, 2 \mathrm{H}), 2.99-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: 169.0, 147.1, 139.1, 137.4, 136.7, 134.3, 129.3, 128.9, 128.7, 128.77, 128.5, 127.7, 127.4, 126.9, 126.2, 124.4, 114.8, 50.6, 47.4, 30.2, 28.6, 23.1. HRMS (ESIMS) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 390.1828, found: 390.1822.

(E)-N,N-dibenzyl-3-(o-tolyl)but-2-enamide (S17)

Prepared from (E)-3-(o-tolyl)but-2-enoic acid ($400 \mathrm{mg}, 2.3$ mmol) and dibenzylamine ($450 \mu \mathrm{~L}, 2.3 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 1 7}$ after purification by flash column chromatography (hexane/EtOAc 8:2) as a white solid ($668.0 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta \mathrm{ppm}$: 7.39-7.29 (m, 8H), 7.20-7.13 (m, 5H), 7.08-7.05 (m, 1H), 6.07 (d, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H})$, $2.35(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 168.3,151.0$, $143.8,137.4,136.6,134.2,130.4,128.9,128.7,128.5,127.7,127.5,127.5,126.7,125.8$, 121.2, 50.3, 47.4, 20.8, 19.8. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 378.1828, found: 378.1828.

(E)-N,N-dibenzyl-3-(m-tolyl)but-2-enamide (S18)

Prepared from (E)-3-(m-tolyl)but-2-enoic acid (400 mg , 2.3 mmol) and dibenzylamine ($450 \mu \mathrm{~L}, 2.3 \mathrm{mmol}$) using the general procedure C that provided $\mathbf{S 1 8}$ after purification by flash column chromatography (hexane/EtOAc 8:2) as a white solid ($512.6 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: 7.40-7.31 (m, 8H), 7.23-7.20 (m, 5H), 7.13 (d, J = $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, 1H), 4.68 (s, 2H), 4.54 (s, 2H), 2.42 (d, J = $1.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.35 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ (ppm: 168.9, 147.8, 142.0, 138.0, 137.4, 136.6, 129.1, 129.0, 128.7, 128.5, 128.4, 127.7, 127.5, 126.9, 126.8, 123.2, 119.3, 50.6, 47.3, 21.5, 18.4. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 378.1828$, found: 378.1815.

(E)-N,N-dibenzyl-3-(p-tolyl)but-2-enamide (S19)

Prepared from (E)-3-(m-tolyl)but-2-enoic acid (400 mg , 2.3 mmol) and dibenzylamine ($450 \mu \mathrm{~L}, 2.3 \mathrm{mmol}$) using the general procedure C that provided S19 after purification by flash column chromatography (hexane/EtOAc 8:2) as a white solid ($595.5 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: 7.39-7.27 (m, 10H), 7.21-7.16 (m, 2H), 7.13 (d, J = 8.0 Hz, 2H), $6.39(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}$,

1H), 4.66 (s, 2H), $4.52(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ ppm: $168.9,147.6,139.1,138.3,137.4,136.6,129.1,128.9,128.6,128.4,127.7$, 127.42, 126.9, 125.9, 118.6, 50.5, 47.4, 21.1, 18.2. HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 378.1828$, found: 378.1824 .

(E)-N,N-dibenzyl-3-(4-(trifluoromethyl)phenyl)but-2-enamide (S20)

Prepared from (E)-3-(4-(trifluoromethyl)phenyl)but-2-enoic acid ($400 \mathrm{mg}, 1.7 \mathrm{mmol}$) and dibenzylamine ($345 \mu \mathrm{~L}, 1.7 \mathrm{mmol}$) using the general procedure C that provided S2O after purification by flash column chromatography (hexane/EtOAc 9:1) as a beige oil ($613.3 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.57(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 8 \mathrm{H})$, 7.22-7.15 (m, 2H), 6.43 (d, J = 1.2 Hz, 1H), 4.67 (s, 2H), 4.51 (s, 2H), $2.40(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 168.3,146.0,145.4,137.1,136.3,129.0,128.7$, 128. 5, 127.8, 127.6, 126.8, 126.4, 125.5, 125.5, 125.4, 121.4, 50.5, 47.5, 18.2. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 432.1546$, found: 432.1550.

(E)-N,N-dibenzyl-3-(4-methoxyphenyl)but-2-enamide (S21)

Prepared from (E)-3-(4-methoxyphenyl)but-2-enoic acid ($400 \mathrm{mg}, 2.1 \mathrm{mmol}$) and dibenzylamine ($413 \mu \mathrm{~L}$, 2.1 mmol) using the general procedure C that provided S21 after purification by flash column chromatography (hexane/EtOAc 8:2) as a white solid ($577.4 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 7.39-7.28 (m, 10H), $7.20(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 2 \mathrm{H})$, $6.37(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCl 3) δ ppm: 169.0, 159.9, 147.2, 137. 5, 136.7, 134.3, 128.9, 128.6, 128.4, 127.7, 127.4, 127.3, 126.9, 117.7, 113. 8, 55.3, 50. 6, 47.4, 18.2. HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 394.1778$, found: 394.1776 .

(E)-N,N-dibenzyl-3-(4-chlorophenyl)but-2-enamide (S22)

Prepared from (E)-3-(4-chloroyphenyl)but-2-enoic acid ($400 \mathrm{mg}, 2.0 \mathrm{mmol}$) and dibenzylamine ($403 \mu \mathrm{~L}$, 2.0 mmol) using the general procedure C that provided $\mathbf{S 2 2}$ after purification by flash column chromatography (hexane/EtOAc 9:1) as a white solid ($487.0 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: 7.37-7.27 (m, 12H), 7.19-7.17 (m, 2H), 6.38 (q, J = $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.51$ (s, $2 \mathrm{H}), 2.38$ (d, J = $1.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 168.5,146.2,140.3,137.2$, $136.5,134.3,129.0,128.7,128.6,128.4,127.8,127.5,127.3,126.8,119.9,50.5,47.4$, 18.2. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{CINNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 398.1282, found: 398.1281.

(E)-N,N-dibenzyl-3-(naphthalen-2-yl)but-2-enamide (S23)

Prepared from (E)-3-(naphthalen-2-yl)but-2-enoic acid ($400 \mathrm{mg}, 1.9 \mathrm{mmol}$) and dibenzylamine ($374 \mu \mathrm{~L}, 1.9$ mmol) using the general procedure C that provided $\mathbf{S 2 3}$ after purification by flash column chromatography (hexane/EtOAc/CH2Cl $2: 1: 1$) as a waxy white solid ($587.7 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.87-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{dd}, \mathrm{J}=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.29 (m, 8H), 7.22 (d, J = 7.0 Hz, 2H), 6.57 (d, J = $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.71(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{~s}$, 2 H), 2.57-2.50 (m, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 168.8,147.2,139.1,137.4$, $136.6,133.2,133.2,129.0,128.7,128.5,128.3,128.1,127.7,127.6,127.5,126.9,126.4$, 126.4, 125.3, 123.9, 120.0, 50.6, 47.5, 18.2. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 414.1828$, found: 414.1841.

(E)-N,N-dibenzyl-3-phenylpent-2-enamide (S24)

Prepared from (E)-3-cyclohexylbut-2-enoic acid (400 mg , 2.4 mmol) and dibenzylamine ($471 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 2 4}$ after purification by flash column chromatography (hexane/EtOAc 9:1) as a pale yellow oil ($596.1 \mathrm{mg}, 72 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$: 7.38-7.24 (m, 8H), 7.16 (d, J = 7.0 Hz, 2H), 5.93-5.89 (m, 1H), 4.59 (s, 2H), 4.44 (s, 2H), 1.98 (d, J = 1.2 Hz , 3 H), 1.92 (ddd, J = 13.8, 10.0, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.80-1.62 (m, 5H), 1.28-1.08 (m, 5H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$
(101 MHz, CDCl_{3}) δ ppm: 169.4, 155.6, 137.6, 136.9, 128.8, 128.6, 128.4, 127.6, 127.3, 126.9, 115.8, 50.4, 47.5, 47.1, 31.5, 26.5, 26.2, 17.2. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 370.2141$, found: 370.2153.

N, N-dibenzyl-3,6-dimethylhept-2-enamide (S25)

Prepared from 3,6-dimethylhept-2-enoic acid (400 mg , 2.6 mmol) and dibenzylamine ($508 \mu \mathrm{~L}, 2.6 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 2 5}$ after purification by flash column chromatography (hexane/EtOAc 9:1-8:2) as a pale yellow oil ($720.0 \mathrm{mg}, 84 \%$ yield, $\mathrm{E}: \mathbf{Z} \mathbf{7 8 : 2 2) .}{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: \delta 7.55-7.22(\mathrm{~m}, 8 \mathrm{H}, E$ and Z isomers), $7.17(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, E$ and Z isomers), 5.94 (s, $0.56 \mathrm{H}, E$ isomer), 5.90 (s, $0.15 \mathrm{H}, Z$ isomer), 4.61 (s, $2 \mathrm{H}, E$ and Z isomers), 4.46 (s, $2 \mathrm{H}, E$ and Z isomers), 2.48-2.40 ($\mathrm{m}, 0.32 \mathrm{H}, Z$ isomer), 2.14-2.05 (m, $1.28 \mathrm{H}, E$ isomer), $2.03(\mathrm{~s}, 1.55 \mathrm{H}, E$ isomer), $1.81(\mathrm{~s}, 0.48 \mathrm{H}, Z$ isomer), $1.77(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}$, $0.29 \mathrm{H}, Z$ isomer), 1.62-1.44 (m, $1 \mathrm{H}, E$ and Z isomers), 1.40-1.36 (m, $0.38 \mathrm{H}, Z$ isomer), $1.35-1.26$ ($\mathrm{m}, 1.24 \mathrm{H}, E$ isomer), 0.93 (d, J = $6.6 \mathrm{~Hz}, 0.98 \mathrm{H}, Z$ isomer), $0.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3.22 \mathrm{H}, E$ isomer), 0.82 (d, J $=6.6 \mathrm{~Hz}, 0.80 \mathrm{H}, Z$ isomer). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$: 169.0 (E isomer), 168.8 (Z isomer), 151.9 (E isomer), 151.7 (Z isomer), 137.6 (E isomer), 137.5 (Z isomer), 136.9 (E isomer), 136.8 (Z isomer), 129.0, 128.9, 128.6, 128.56, 128.5, $128.4,127.6,127.3,126.8,126.4,117.9,117.0,50.4,49.7,47.2,47.0,37.9,37.2,36.6$, 31.9, 28.4, 27.7, 23. 9, 22.5, 18.9. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NNaO}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 358.2141$, found: 358.2144.

(E)-N,N-dibenzyl-3-methyl-4-phenylbut-2-enamide (S26)

Prepared from (E)-3-methyl-4-phenylbut-2-enoic acid ($200.0 \mathrm{mg}, 1.1 \mathrm{mmol}$) and dibenzylamine ($225 \mu \mathrm{~L}, 1.1$ mmol) using the general procedure C that provided $\mathbf{S 2 6}$ after purification by flash column chromatography (hexane/EtOAc 5:1) as a pale yellow oil ($329.0 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ ppm: 7.38-7.29 (m, 5H), 7.27-7.17 (m, 6H), 7.14-7.11 (m, 2H), 7.09-7.07 (m, 2H), 5.91
($\mathrm{q}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.62(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 168.7,150.1,138.2,137.4,136.7,129.1,128.9$, 128.6, 128.5, 128.4, 127.6, 127.4, 126.8, 126.5, 119.2, 50.4, 47.4, 46.2, 18.8. HRMS (ESIMS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 378.1828$, found: 378.1836 .

(Z)-N,N-dibenzyl-3-phenylpent-2-enamide (S27)

Prepared from (Z)-3-phenylpent-2-enoic acid ($322.0 \mathrm{mg}, 1.8$ mmol) and dibenzylamine ($362 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$) using the general procedure \mathbf{C} that provided $\mathbf{S 2 7}$ after purification by flash column chromatography (hexane/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 2: 1$) as a pale orange oil ($974.5 \mathrm{mg}, 38 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: 7.35-7.29 (m, 8H), 7.23-7.16 (m, 3H), 7.05-7.02 (m, 2H), $6.84(d d, J=7.6,1.7 \mathrm{~Hz}$, 2H), 6.09 (t, J = $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.46(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{qd}, \mathrm{J}=7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.05$ (t, J = 7.4 Hz, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta \mathrm{ppm}: 169.6,149.7,139.8,136.7,128.8$, $128.5,128.4,128.3,127.8,127.6,127.2,119.3,50.6,46.3,31.3,12.4$. HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 356.2009$, found: 356.2017.

3) Synthesis of complexes

Bipyrrolidine based ${ }^{\mathbf{N M e 2}} \mathbf{p d p - M n},{ }^{21} \quad{ }^{\mathbf{N M e 2}} \mathbf{p d p - F e},^{22} \quad$ tips $p d p-\mathbf{M n}^{23}$ and ${ }^{\text {tips }} \mathbf{p d p - F e}{ }^{24}$ complexes were synthesized following previously described procedures.

3.1) Synthesis of the Ohq backbone

The (S,S)-1,1',2,2',3,3',4,4'-octahydro-1,4'-biisoquinoline ((S,S)-Ohq) was synthesized according to a described procedure. ${ }^{25}$

3.2) Synthesis of pyridine synthons

Pyridine synthons 2-chloromethyl-4-dimethylaminopyridine hydrochloride, ${ }^{M e 2 N}{ }^{2} \mathrm{PyCH}_{2} \mathrm{Cl} \cdot \mathrm{HCl}^{26}$ and 2-chloromethyl-5-triisopropylpyridine hydrochloride, ${ }^{\text {tips }} \mathrm{PyCH}_{2} \mathrm{Cl} \cdot \mathrm{HCl},{ }^{23}$ were synthesized following previously described procedures.

3.3) Synthesis and characterization of ${ }^{\mathrm{Me} 2 \mathrm{~N}} \mathrm{Ohq}$

Scheme S1. Synthesis and nomenclature of the new ligands used in this work.
2-chloromethyl-4-dimethylaminopyridine hydrochloride, ${ }^{\mathrm{Me} 2 \mathrm{~N}} \mathrm{PyCH}_{2} \mathrm{Cl} \cdot \mathrm{HCl}(400 \mathrm{mg}, 1.93$ $\mathrm{mmol}),(S, S)$-Ohq ($243.1 \mathrm{mg}, 0.92 \mathrm{mmol}$) and anhydrous acetonitrile (45 mL) were mixed in a 100 mL flask. $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.56 \mathrm{~g})$ and tetrabutylammonium bromide, $\operatorname{TBABr}(20 \mathrm{mg})$ were added directly as solids and the resulting mixture was heated at reflux under N_{2} for 18 hours. After cooling to room temperature, the resulting brown mixture was filtered and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were evaporated under reduced pressure. To the resulting residue, $1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4} and the solvent was removed under reduced
pressure. After, the residue was purified by flash column chromatography (silica $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{3} 96: 3: 1$) to provide 334.4 mg (68% yield) of a brown oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: $8.15\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{H}_{\mathrm{p}}\right), 7.28\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{H}_{f}\right), 6.99-6.96$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{d}}\right), 6.92-6.86\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{c}, \mathrm{e}, \mathrm{I}}\right), 6.42\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.7,6.0, \mathrm{H}_{\mathrm{o}}\right), 4.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 4.07(2 \mathrm{H}$, d, J 14.3, H_{j}), $3.76\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.2, H_{j}\right), 3.41-3.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{i}}\right), 2.99\left(12 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{n}}\right), 2.69(6 \mathrm{H}$, apparent $\left.\mathrm{m}, \mathrm{H}_{\mathrm{i}, \mathrm{h}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 133 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta, \mathrm{ppm}: 159.7\left(\mathrm{C}_{\mathrm{m}}\right), 155.1\left(\mathrm{C}_{\mathrm{k}}\right), 148.6$ $\left(C_{p}\right), 136.30\left(C_{g \text { or }} C_{b}\right), 136.25\left(C_{g}\right.$ or $\left.C_{b}\right), 128.8\left(C_{f}\right), 127.8\left(C_{e}\right), 125.6\left(C_{d}\right), 124.6\left(C_{c}\right), 105.36$ $\left(\mathrm{C}_{\text {l or }} \mathrm{C}_{\mathrm{o}}\right), 105.32\left(\mathrm{C}_{\text {l or }} \mathrm{C}_{\mathrm{o}}\right), 67.2\left(\mathrm{C}_{\mathrm{a}}\right), 61.51\left(\mathrm{C}_{\mathrm{j}}\right), 46.8\left(\mathrm{C}_{\mathrm{i}}\right), 39.15\left(\mathrm{C}_{\mathrm{n}}\right), 27.3\left(\mathrm{C}_{\mathrm{h}}\right)$. HRMS (ESI$\mathrm{MS}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 533.3387$, found: 533.3373. FT-IR (ATR) $\mathrm{v}, \mathrm{cm}^{-}$ ${ }^{1}$: $3057-2808(\mathrm{C}-\mathrm{H}) \mathrm{sp} 3,1595,1542,1504,1431,1372,1268,1220,1126,1091,1061$, 999, 939, 805, 726, 579, 453.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of ${ }^{\mathrm{Me} 2 \mathrm{~N}} \mathrm{Ohq}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of ${ }^{\mathrm{Me2N}} \mathrm{Ohq}$ in CDCl_{3}

IR of ${ }^{\mathrm{Me2N}} \mathbf{O h q}$

3.4) Synthesis and characterization of ${ }^{\mathrm{Me} 2 \mathrm{~N}} \mathrm{Ohq}-\mathrm{Mn}$

Scheme S2. Synthesis and nomenclature of new manganese triflate complexes used in this work.
${ }^{\text {Me2N }}$ Ohq-Mn was synthesized following a similar procedure described in literature. Under a N_{2} atmosphere, a suspension of $\mathrm{Mn}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}(68.3 \mathrm{mg}, 194 \mu \mathrm{~mol})$ in anhydrous THF (1 mL) was added drop-wise to a vigorously stirred solution of Me2NOhq (103.1 mg , $194 \mu \mathrm{~mol}$) in anhydrous THF (1 mL). After stirring overnight, ether was added until complete precipitation. The brown solid was filtered, dried and solved in the minimum quantity of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution filtered off through celite®. Slow hexane diffusion over the resultant solution afforded in a few days white-off crystals ($106.0 \mathrm{mg}, 62 \%$ yield). Anal. calculated for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{MnN}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}$: $\mathrm{C}, 48.81 ; \mathrm{H}, 4.55 ; \mathrm{N}, 9.49$. Found: $\mathrm{C}, 49.27$; H, 4.74; N, 9.08. FT-IR (ATR) v, cm- ${ }^{-1} 2925-2850$ (C-H)sp3, 1615, 1529, 1388, 1299, 1213, $1020,995,863,810,761,635,581,513,460$. ESI-HRMS calculated for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{MnN}_{4} \mathrm{O}_{3} \mathrm{~S}$ [M-OTf]+: 736.2210, found: 736.2237.

3.5) Synthesis of ${ }^{\text {Me2N }} \mathrm{Ohq}-\mathrm{Fe}$

Scheme S3. Synthesis and nomenclature of new iron triflate complexes used in this work.
$\mathrm{Me}^{\text {Me2N }} \mathrm{Ohq}-\mathrm{Fe}$ was prepared in a similar manner to ${ }^{\text {Me2N }} \mathbf{O}$ hq-Mn, starting from ${ }^{\text {Me2N }} \mathrm{Ohq}$ and $\mathrm{Fe}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ in anhydrous THF, and recrystallized by diffusion of diethyl ether to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex, to obtain pink crystals, which are unstable under air. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{FeN}_{6} \mathrm{O}_{6} \mathrm{~S}_{2} 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 47.18 \mathrm{H}, 4.45 ; \mathrm{N}, 9.04$. Found: C, 47.21; H, 4.28; N, 9.01. FT-IR (ATR) v, cm ${ }^{-1}$: 2919 (C-H)sp3, 1617, 1529, 1388, 1296, 1213,

1159, 1020, 996, 865, 817, 761, 633, 581, 512, 459. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: 153.7 ($\mathrm{s}, 3 \mathrm{H}$), $83.4(\mathrm{~s} 2 \mathrm{H}), 52.4(\mathrm{~s}, 1 \mathrm{H}), 39.4(\mathrm{~s}, 3 \mathrm{H}), 38.1(\mathrm{~s}, 2 \mathrm{H}), 31.5(\mathrm{~s}, 2 \mathrm{H}), 27.6$ (s, 2H), 18.5 (s, 2H), 15.1 (s, 2H), 9.39 (s, 14H), -3.02 (s, 1H), -6.9 (s, 1H), 28.7 (s, 1H). ESIHRMS calculated for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{FeN}_{4} \mathrm{O}_{3} \mathrm{~S}$ [M-OTf] ${ }^{+}$: 737.2179, found: 737.2179.

4) Catalytic studies

Hydrogen peroxide solutions employed in the reactions were prepared by diluting commercially available hydrogen peroxide ($30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution in water, Aldrich) in acetonitrile ($1: 3$ or $1: 7 \mathrm{v}: \mathrm{v}$).

4.1) Reaction conditions (Table 1)

An acetonitrile solution ($750 \mu \mathrm{~L}$) of a given olefin (S1-S2) ($88 \mu \mathrm{mols}$) and the corresponding complex ($1 \mathrm{~mol} \%$ for Mn and $2 \mathrm{~mol} \%$ for Fe) was prepared in a vial (3 mL) equipped with a stir bar and cooled at $0^{\circ} \mathrm{C}$ in an ice bath. 14 equiv. (for Mn catalysts) or 1.4 equiv (for Fe catalysts) of carboxylic acid were directly added to the solution. Then, $70 \mu \mathrm{~L}$ of 3:1 (v:v) acetonitrile:hydrogen peroxide solution 30% (2 equiv., 0.18 mmol) were added by syringe pump over a period of 30 min . The solution was further stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. At this point, 0.5 equiv. of internal standard (1,3,5trimethoxybenzene) and 5 mL of a saturated aqueous solution of NaHCO_{3} were added, and the resulting mixture was extracted with 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$. Then, organic layers were dried over MgSO_{4} and the solvents were removed under reduced pressure. The resultant product was dissolved in CDCl_{3} and the yield and conversion were calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Finally, the solvent was removed under reduced pressure and was dissolved in n-hexane/iso-propanol and analyzed by HPLC.

4.2) Optimization of epoxidation of S1

		Me2NOhq-Mn (1 mol\%) $\mathrm{H}_{2} \mathrm{O}_{2}$, acid$\mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$		
Acid				
	OH pva			OH
Entry	Acid (equiv.)	Equiv. of $\mathrm{H}_{2} \mathrm{O}_{2}$	Conv (yield,\%) ${ }^{\text {[a] }}$	ee (\%) ${ }^{[b]}$
1	2-eha (14)	2	94 (69)	79
4	pva (14)	2	100(79)	69
5	eba (14)	2	95(78)	77
6	aca (5)	2	27(25)	69
7	chca (14)	2	92(73)	65
8	2-eha (5)	2	89(63)	80
9	2-eha (1)	2	89(78)	76
10	eba (5)	2	99(68)	78
11	eba (1)	2	100(73)	74
12	2-eha (1)	3	100(85)	76
$13{ }^{\text {[c] }}$	2-eha (1)	3	77(76)	86
$14^{[\mathrm{c}]}$	2-eha (5)	3	75(64)	88
$15^{[c]}$	2-eha (14)	3	82(80)	88

[a] Epoxide yields and substrate conversion determined by ${ }^{1} \mathrm{H}$-NMR using 1,3,5-trimethoxybenzene as internal standard. [b] ee's determined by HPLC with a chiral stationary phase. [c] Reactions performed at $-40^{\circ} \mathrm{C}$

4.3) Reaction conditions (Tables 2 and 3)

An acetonitrile solution (750 $\mu \mathrm{L}$) of a given olefin (S3-S27) (44 $\mu \mathrm{mols}$) and ${ }^{\text {Me2NOhq-Mn }}$ ($1 \mathrm{~mol} \%$) was prepared in a vial (3 mL) equipped with a stir bar and cooled at $-40^{\circ} \mathrm{C}$ in an acetonitrile frozen bath. $7 \mu \mathrm{~L}$ or $36 \mu \mathrm{~L}$ (neat, 1 or 5 equiv., 44μ mols or $220 \mu \mathrm{mols}$) of $2-$ ethylhexanoic acid were added directly to the solution. Then, $70 \mu \mathrm{~L}$ of $7: 1$ (v:v) acetonitrile:hydrogen peroxide solution 30% (3 equiv., 0.132 mmol) was added by
syringe pump over a period of 30 min . The solution was further stirred at $-40^{\circ} \mathrm{C}$ for 30 minutes. At this point, 0.5 equiv. of internal standard ($1,3,5$-trimethoxybenzene) and 5 mL of a saturated aqueous solution of NaHCO_{3} were added, and the resulting mixture was extracted with 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(x 3)$. Then, organic layers were dried over MgSO_{4}, passed through a plug of silica and the solvents were removed under reduced pressure. The resultant product was dissolved in CDCl_{3} and the yield and conversion were calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Finally, the solvent was removed under reduced pressure and was dissolved in n-hexane/iso-propanol and analyzed by HPLC.

4.4) General procedure for epoxide isolation (Tables 2 and 3)

An acetonitrile solution (0.06M) of a given olefin (S3-S26) ($0.2 \mathrm{mmol}-1.5 \mathrm{mmol}$) and ${ }^{\text {Me2N }}$ OhqMn ($1 \mathrm{~mol} \%, 0.6 \mathrm{mM}$) was prepared in a round-bottom flask equipped with a stir bar and cooled at $-40^{\circ} \mathrm{C}$ in an acetonitrile frozen bath. 1 or 5 equiv. of 2ethylhexanoic acid (or alternative carboxylic acid) were added directly to the solution. Then, the corresponding equivalents of a 7:1 ($\mathrm{v}: \mathrm{v}$) acetonitrile:hydrogen peroxide solution 30% were added by syringe pump over a period of 30 min . The solution was further stirred at $-40^{\circ} \mathrm{C}$ for 30 minutes. At this point, 15 mL of an NaHCO_{3} saturated aqueous solution was added to the mixture. The resultant solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic fractions were dried over MgSO_{4}. The solvent was removed under reduced pressure to afford the epoxide product. This residue was purified by flash column chromatography over silica gel (or neutral alumina) to obtain the pure epoxide.

5) Characterization of isolated epoxide products

E3, purification by crystallization ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane) gave the product as a white solid ($94.5 \mathrm{mg}, 72 \%$ yield, 94% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ MHz, 300K) δ, ppm: $7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H})$, $2.99(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.3,140.4,128.6,128.0$, 125.1, 63.5, 61.3, 36.2, 35.2, 17.8. HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 228.0995$, found: 228.1008.

E4, purification by flash chromatography (neutral alumina; hexane:AcOEt 8:2) gave the product as a white solid (108.3 mg , 78% yield, $84: 16$ E:Z, 96% ee major isomer). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}, 300 \mathrm{~K}) \delta, \mathrm{ppm}: 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 3.58-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H})$, 1.20 (dt, J = 10.4, $7.1 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 165.5,140.6,128.6$, 127.9, 125.1, 63.2, 61.3, 41.0, 40.0, 17.7, 14.4, 13.0. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 234.1489$, found: 234.1483.

E5, purification by flash chromatography (silica-gel; hexane:AcOEt 9:1) gave the product as a pale yellow solid (110.4 $\mathrm{mg}, 87 \%$ yield, 97% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta, \mathrm{ppm}:$ 7.39-7.31 (m, 5H), 4.10 (hept, J = 6.7 Hz, 1H), 3.49 (hept, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.42(\mathrm{~s}, 1 \mathrm{H}), 1.67$ ($\mathrm{s}, 3 \mathrm{H}$), 1.45 ($\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}$), 1.27 (dd, J = 6.7, 1.2 Hz, 3H), 1.18 (dd, J = 6.6, 1.2 Hz, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 165.0,140.7,128.6,127.9,125.0,64.1,61.3,48.0,46.0$, 21.1, 20.9, 20.7, 20.2, 17.9. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 284.1621, found: 284.1616.

E6, purification by flash chromatography (silica-gel; hexane:AcOEt 8:2) gave the product as a white solid (84.9 $\mathrm{mg}, 90 \%$ yield, 99% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: 7.37-7.24 (m, 13H), 7.15-7.13 (m, 2H), 4.90 (d, J= 14.6 $\mathrm{Hz}, 1 \mathrm{H}), 4.56-4.40(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$: 166.9, 140.1, 136.7, 135.8, 129.0, 128.8, 128.6, 128.5, 128.0, 128.0, 127.7, 126.9, 125.0, 63.1, 61.9, 48.9, 48.0, 17.9. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 380.1621, found: 380.1620 .
 E7, isolated starting with 1 mmol of substrate. Purification by flash chromatography (silica-gel; hexane:AcOEt 1:1) gave the product as a white solid; ($58.3 \mathrm{mg}, 25 \%$ yield, 93% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta, \mathrm{ppm}: \delta 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 3.67-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.44(\mathrm{~m}$, $3 \mathrm{H}), 1.74-1.67$ ($\mathrm{m}, 6 \mathrm{H}$), 1.65-1.53 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 164.6,140.5$, 128.6, 127.9, 125.0, 63. 6, 61.2, 45. 8, 42.9, 26.6, 25.6, 24.5, 18.0. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 268.1308, found: 268.1317.

E9, purification by flash chromatography (neutral alumina; hexane:AcOEt 9:1) gave the product as a white solid (96.3 mg , 83% yield, 84% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: 7.39-7.31 (m, 3H), 7.17-7.12 (m, 5H), 6.92-6.89 (m, 2H), 4.65 $(\mathrm{tt}, \mathrm{J}=12.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.59(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.12(q t, \mathrm{~J}=12.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(q t, \mathrm{~J}=$ $13.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 165.5,140.4,137.3,130.3,129.5$, 128.7, 128.0, 127.6, 125.0, 63.3, 62.0, 54. 6, 31.6, 31.3, 25.7, 25.7, 25.3, 17.73. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 336.1958$, found: 336.1949.

E10, purification by flash chromatography (silica gel; hexane:AcOEt 3:1) gave the product as a white solid (90.0 mg , 78% yield, 89% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta, \mathrm{ppm}$: 7.37-7.28 (m, 5H), $6.12(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (dhept, $\mathrm{J}=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H})$, $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{dd}, \mathrm{J}=6.6,3.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 165.9,140.4$, 128.5, 128.1, 125.2, 63.7, 63.0, 41.1, 22.8, 22.6, 17.4. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: \mathbf{2 4 2 . 1 1 5 1}$, found: 242.1145.

E11, purification by flash chromatography (silica-gel; hexane:AcOEt 3:1) gave the product as a white solid (72.1 $\mathrm{mg}, 62 \%$ yield, 92% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: 7.38-7.28 (m, 10H), $6.60(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{qd}, \mathrm{J}=14.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{~s}$, 3 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.8,140.2,137.6,128.8,128.5,128.1,128.0$, 127.8, 125.2, 63.7, 63.2, 43.1, 17.6. HRMS (ESI-MS) m/z calculated for HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 268.1332, found: 268.1353.

E12, purification by flash chromatography (silica-gel; hexane:AcOEt 7:3) gave the product as a pale pink solid (100.9 $\mathrm{mg}, 57 \%$ yield, 90% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H})$, $1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 164.9,140.0,136.6,129.2,128.6,128.3$, 125.3, 124.9, 119.8, 63.9, 63.8, 17.7. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 276.0995$, found: 276.100.

E13, purification by flash chromatography (silica-gel; hexane:AcOEt 8:2) gave the product as a white solid (62.3 $\mathrm{mg}, 30 \%$ yield, 82% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: 7.38-7.30 (m, 5H), $5.98(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~s}$, 3H), 173-1.72 (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 165.8,140.6,128.5,128.0$, 125.2, 63.9, 63.0, 52.1, 41.6, 36.3, 29.4 17.4. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 334.1778$, found: 334.1787.

EO13, purification by flash chromatography (silica-gel; hexane:AcOEt 8:2) gave the product as a white solid (90.0 $\mathrm{mg}, 43 \%$ yield, 84% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: 7.37-7.30 (m, 5H), $6.07(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), ~ 2.33-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H})$, 2.01-1.94 (m, 4H), 1.77-1.70 (m, 9H), 1.65-1.55 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$: $165.9,140.4,128.5,128.1,125.2,69.1,63.8,63.1,54.5,49.0,44.0,40.3,40.2,34.8,30.6$, 17.4. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 350.1727$, found: 350.1727.

E14, purification by flash chromatography (silica-gel; hexane:AcOEt 8:2) gave the product as a colourless oil ($101.47 \mathrm{mg}, 84 \%$ yield, 99% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, 300K) δ, ppm: 7.41-7.26 (m, 13H), 7.19-7.17 (m, 2H), 4.91 (d, J = 14.6 Hz, 1H), 4.61 (d, J = 16.6 Hz, 1H), 4.49 (d, J = $16.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.41(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{dq}, \mathrm{J}=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dq}, \mathrm{J}=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.9,138.4,136.7,135.8,129.0,128.7$, 128.6, 128.5, 127.9, 127.8, 127.7, 126.9, 125.7, 66.4, 63.4, 48.9, 47.9, 24.6, 9.4. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 394.1778$, found: 394.1775.

E15, purification by flash chromatography (silica-gel;
 hexane:AcOEt 8:2) gave the product as a colourless oil ($94.4 \mathrm{mg}, 33 \%$ yield, 85% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, $300 \mathrm{~K})$, ppm: 7.40-7.26 (m, 15H), 5.17 (d, J = $14.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.86(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~s}, 1 \mathrm{H}), 2.07$ (hept, $\mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.02 (dd, J = 6.9, $5.8 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 167.0,136.8,136.7,135.8,129.1,128.7,128.7,128.0$, 127.9, 127.8, 127.8, 127.7, 127.0, 70.2, 61.9, 49.1, 47.8, 31.7, 19.3, 18.3. HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 408.1934, found: 408.1927.

EK16, purification by flash chromatography (silica-gel; hexane:AcOEt 8:2) gave the product as a white solid (65.1 $\mathrm{mg}, 62 \%$ yield, 91% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta$, ppm: 8.05 (dd, J = 7.8, 1.3 Hz, 1H), 7.59 (td, J = 7.6, 1.4 Hz, $1 \mathrm{H}), 7.46$ (td, J = 7.6, 1.3 Hz, 1H), 7.37-7.31 (m, 6H), 7.28-7.26 (m, 3H), 7.18-7.15 (m, 2H), $5.03(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, \mathrm{~J}=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 2.82-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.18(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 196.0, 165.9, 141.0, 136.5, 135.6, 134.4, 133.2, 129.1, 128.9, 128.85, 128.5, 128.2, 128.0, 127.3, 127.0, 123.0, 64.1, 61.1, 49.4, 48.4, 36.8, 26.9. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 420.1570$, found: 420.1570.

E18, purification by flash chromatography (silica-gel; hexane:AcOEt 8:2) gave the product as a colourless oil ($63.8 \mathrm{mg}, 64 \%$ yield, 98% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, 300K) δ, ppm: 7.39-7.33 (m, 6H), 7.29 (dd, J = 6.1, 1.9 Hz, 2H), 7.23-7.17 (m, 3H), 7.11-7.08 (m, 3H), 4.92 (d, J = $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dt}, \mathrm{J}=30.6,15.5$ $\mathrm{Hz}, 3 \mathrm{H}$), $3.62(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.9$, 140.1, 138.2, 136.8, 135.9, 129.0, 128.8, 128.6, 128.4, 127.9, 127.7, 126.9, 125.6, 122.1, 63.0, 62.0, 48. 9, 48.0, 21.4, 18.0. HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 394.1778$, found: 394.1764.

E19, purification by flash chromatography (silica-gel; hexane:AcOEt 8:2) gave the product as a colourless oil ($62.3 \mathrm{mg}, 74 \%$ yield, 99% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{CDCl} 3,300 \mathrm{MHz}$, 300K) δ, ppm: 7.42-7.30 (m, 6H), 7.27 (d, J = $6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21-7.10 (m, 6H), 4.92 (d, J = 14.6 Hz, 1H), 4.56 (d, J= 16.6 Hz, 1H), 4.47 (d, J = 16.6 Hz, $1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ δ ppm: 166.96, 137.78, 137.19, 136.74, 135.82, 129.18, 129.01, 128.72, 128.59,
127.93, 127.70, 126.87, 124.97, 63.16, 61.87, 48.87, 47.91, 21.08, 17.94. HRMS (ESI-MS) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 394.1778$, found: 394.1765.

E20, purification by flash chromatography (silica-gel; hexane:AcOEt 9:1) gave the product as a colourless oil ($73.3 \mathrm{mg}, 65 \%$ yield, $98 \% \mathrm{ee}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}, 300 \mathrm{~K}$) $\delta, \mathrm{ppm}: 7.57$ ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40-7.30 (m, 8H), 7.29 (dd, J = 5.3, 2.6 Hz, 2H), 7.17-7.15 (m, 2H), $4.83(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-$ $4.53(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.4,144.1$, $136.6,135.8,129.1,128.8,128.6,128.0,127.8,126.7,125.6,125.5,125.5,62.9,61.6$, 49.1, 48.4, 17.7. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 448.1495, found: 448.1482.

E21, purification by flash chromatography (silica-gel; hexane:AcOEt 7:3) gave the product a a clear oil ($51.7 \mathrm{mg}, 57 \%$ yield, 98% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}, 300 \mathrm{~K}$) $\delta, \mathrm{ppm}: 7.44-7.30$ (m, 7H), 7.27-7.15 (m, $5 \mathrm{H}), ~ 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.39(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}$, $1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 167.0,159.3,136.7,135.8,132.1$, 129.0, 128.7, 128.6, 127.0, 127.7, 126.8, 126.3, 113.9, 63.3, 61.7, 55.3, 48.9, 48.0, 17.9. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 410.1727$, found: 410.1736.

E22, purification by flash chromatography (neutral alumina; hexane:AcOEt 8:3) gave the product as a colourless oil ($86.7 \mathrm{mg}, 83 \%$ yield, 99% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl $\left.{ }_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta, \mathrm{ppm}: 7.40-7.33$ (m, 6H), 7.29$7.27(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H})$, $1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 166.6,138.7,136.6,135.9,133.9,129.1$, 128.8, 128.7, 128.6, 128.0, 127.8, 126.7, 126.5, 63.1, 61.5, 49.0, 48.3, 17.8. HRMS (ESI$\mathrm{MS}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{CINNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 414.1231, found: 414.1218.

E25, purification by flash chromatography (silica-gel; hexane:AcOEt 9:1) gave the product as a clear oil (55.0 $\mathrm{mg}, 51 \%$ yield, 95% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right)$ δ, ppm: 7.43-7.22 (m, 10H), 4.84 (d, J=14.6 Hz, 2H), 4.58$4.41(\mathrm{~m}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 1.59-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.16(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{td}, \mathrm{J}=$ $6.6,3.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 167.9,136.8,136.1,129.0,128.7$, 128.5, 127.9, 127.6, 126.9, 126.8, 62.9, 60.0, 49.0, 48.1, 35.3, 33.7, 28.0, 22.5, 17.3. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 374.2091$, found: 374.2089.

E26, isolated starting with 1.5 mmol of substrate.
 Purification by flash chromatography (silica-gel; hexane:AcOEt 9:1) gave the product as a white off solid ($291.6 \mathrm{mg}, 35 \%$ yield, 95% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, 300K) δ, ppm: 7.39-7.10 (m, 15H), 4.81 (d, J = 14.7 Hz, 1H), 4.47-4.30 (m, 3H), 3.40 (s, 1H), 2.93-2.80 (m, 2H), $1.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ ppm: 167.6, 136.8, 135.9, 135.9, 129.6, 129.0, 128.7, 128.5, 128.5, 127.8, 127.6, 126.9, 126.7, 62.6, 59.0, 48.8, 47.9, 43.5, 17.5. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{2}$ [M+Na] ${ }^{+}: 394.1778$, found: 394.1768.

K26, isolated starting with 1.5 mmol of substrate. Purification by flash chromatography (silica-gel; hexane:AcOEt 9:1) gave the product as a white off solid ($157.5 \mathrm{mg}, 19 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 300 \mathrm{~K}\right.$) ס, ppm: 7.69-7.67 (m, 2H), 7.54-7.49 (m, 1H), 7.40-7.26 (m, 11H), 7.09-7.07 (m, 2H), 6.59 (d, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.64(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ (ppm: 197.7, 167.3, 144.1, 136.7, 136.6, 135.8, 132.6, 131.1, 129.5, 129.0, 128.8, 128.5, 128.4, 127.9, 127.7, 126.8, 50.5, 47.4, 15.2. HRMS (ESI-MS) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 370.1802$, found: 370.1786.

6) Substrates and products characterization

6.1) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of synthetized substrates

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 3}$ in CDCl_{3}

-168.48

$\stackrel{\text { Ni }}{\text { No }}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 5}$ in CDCl_{3}

$$
\begin{array}{lll}
\underset{\sim}{n} & \infty, \infty \\
\underset{\sim}{\infty} & \stackrel{\infty}{+} \underset{\sim}{\sim} \\
\underset{\sim}{\sim} & \text { rir }
\end{array}
$$

${ }^{13} \mathrm{C}$－NMR of $\mathbf{S 5}$ in CDCl_{3}

$\stackrel{m}{ }$	¢ ${ }_{6}$	motomin		
$\stackrel{\infty}{\oplus}$	よう	ヘヘヘベN		

$$
\begin{aligned}
& \text { 守守守守 }
\end{aligned}
$$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 7}$ in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{S 7}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 8}$ in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{S 8}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 9}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of S 10 in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of S 10 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 1 1}$ in CDCl_{3}

N	\underline{m}	
$\stackrel{\circ}{0}$	in	
\checkmark		

$\stackrel{\infty}{\dot{j}} \stackrel{n}{\underset{1}{n}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 1 2}$ in CDCl_{3}

\circ
$\stackrel{\infty}{1}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 1 3}$ in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{S 1 3}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of S 14 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{S15}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of S15 in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathbf{S 1 6}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 1 7}$ in CDCl_{3}

$m o g$
∞
in

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 1 8}$ in CDCl_{3}

∞	
0	
$\dot{\sim}$	
\vdots	

 $\underset{\sim}{\sim}$

${ }^{13} \mathrm{C}$-NMR of S 18 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of S 19 in CDCl_{3}

ஸin

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 2 0}$ in CDCl_{3}

$$
\begin{aligned}
& \begin{array}{cc}
\underset{\sim}{\sim} \\
\stackrel{y}{寸} \\
\stackrel{y}{\sim}
\end{array}
\end{aligned}
$$

Ning

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 2 2}$ in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{S 2 2}$ in CDCl_{3}


```
\(\stackrel{\bullet}{\infty} \stackrel{+}{\infty}\)
```


${ }^{13} \mathrm{C}$-NMR of $\mathbf{S 2 3}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 2 4}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{S 2 5}$ in CDCl_{3}

6.2) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ NMR spectra of isolated products

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of E 3 in CDCl_{3}

$\begin{gathered} n \\ \underset{\sim}{0} \\ \underset{\sim}{0} \end{gathered}$	$\stackrel{N}{n}$	ำัำ がN		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \\ & \end{aligned}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 4 in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of E 4 in CDCl_{3}

$\stackrel{\circ}{1}$	\bigcirc	¢ Non			
$\stackrel{8}{6}$	$\stackrel{\sim}{\circ}$	${ }_{0}^{\infty}$	N	\bigcirc	¢̣¢on
$\stackrel{1}{1}$	\%	$\xrightarrow{7}$	¢0	ザ	\cdots

${ }^{1} \mathrm{H}$-NMR of E5 in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of E 5 in CDCl_{3}
-165.00

-

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 6 in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathrm{E6}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 7 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 9 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 10 in CDCl_{3}

${ }^{13} \mathrm{C}$－NMR of E 11 in CDCl_{3}

$\stackrel{\circ}{\sim}$		$m o$	m
$\stackrel{\square}{0}$		mim	$\stackrel{\sim}{m}$
$\stackrel{\square}{1}$	い「－ゴー	0	\dagger

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 12 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 13 in CDCl_{3}
$\stackrel{\circ}{\circ}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of EO 13 in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of EO 13 in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of E 14 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 18 in CDCl_{3}

$\stackrel{\underset{\sim}{m}}{\underset{i}{i}} \stackrel{\underset{i}{*}}{i}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 19 in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of E 19 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 20 in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of E 2 O in CDCl_{3}

$\stackrel{\sim}{m}$			
$\stackrel{0}{6}$		$$	
		Nob	${\underset{y}{寸}}_{\substack{\infty}}^{\infty}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of E 21 in CDCl_{3}
-167.00
sع'6SI-

n

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 22 in CDCl_{3}

$\stackrel{\circ}{\circ}$

$\stackrel{n}{\stackrel{n}{i}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 25 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of E 26 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{K} 26 \mathrm{in} \mathrm{CDCl}_{3}$

6.3) HPLC of products

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\text {'PrOH }}=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=18.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=24.6 \mathrm{~min}$

E1

Racemic

Table 1 entry 6

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\prime}$ PrOH $=85 / 15,25^{\circ} \mathrm{C}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=6.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=8.1 \mathrm{~min}$

E2

Racemic

Table 1 entry 12

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=70 / 30,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=13.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=21.4 \mathrm{~min}$

E3

Racemic

Table 2 entry 1

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\prime} \mathrm{PrOH}=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=27.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=29.2 \mathrm{~min}$

E4

Racemic

Table 2 entry 2

HPLC analysis: Chiralpack IC, n-Hex:iPrOH $=80 / 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, $25{ }^{\circ} \mathrm{C}$, t.r.e1 = 16.6 min , t.r.e2 $=18.9 \mathrm{~min}$.

E5

Racemic

Table 2 entry 3

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\prime}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=16.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=19.6 \mathrm{~min}$

E6

Racemic

Table 2 entry 4

HPLC analysis: Chiralpack IC, n -Hex:iPrOH $=70 / 30$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, 25 © C, t.r.e1 $=14.3 \mathrm{~min}$, t.r.e2 $=20.7 \mathrm{~min}$.

E7

Racemic

Table 2 entry 5

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=70 / 30,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=12.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=15.3 \mathrm{~min}$

E9

Racemic

Table 2 entry 7

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\prime} \mathrm{PrOH}=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=7.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=16.6 \mathrm{~min}$

E10

Racemic

Table 2 entry 8

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{epoxide} 1)=7.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=14.0 \mathrm{~min}$

E11

Racemic

Table 2 entry 9

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\prime}$ PrOH $=70 / 30,25^{\circ} \mathrm{C}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=6.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=7.3 \mathrm{~min}$

E12

Racemic

Table 2 entry 10

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{epoxide} 1)=4.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=11.6 \mathrm{~min}$

E13

Racemic

Table 2 entry 11

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=15.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=21.8 \mathrm{~min}$

EO13

Racemic

Table 2 entry 11

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=11.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=16.2 \mathrm{~min}$

E14

Racemic

Table 3 entry 1

HPLC analysis: Chiralpack IA, n-Hex: ${ }^{\text {'PrOH }}=90 / 10,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=25.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=26.9 \mathrm{~min}$

E15

Racemic

Table 3 entry 2

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\text {'PrOH }}=70 / 30,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=18.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=21.3 \mathrm{~min}$

Table 3 entry 3

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=15.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=18.8 \mathrm{~min}$

Racemic

Table 3 entry 5

UV-VIS spectra of the enantiomers

LTHY Apex spectrum of Peak 18.831 of MME-NBN2-RAC.D

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{epoxide} 1)=7.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=10.6 \mathrm{~min}$

Table 3 entry 6

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=90 / 10,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=17.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=20.9 \mathrm{~min}$

Racemic

Table 3 entry 7

HPLC analysis: Chiralpack IA, n-Hex: ${ }^{\prime}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{epoxide} 1)=8.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=13.2 \mathrm{~min}$

E21

Racemic

Table 3 entry 8

UV-VIS spectra of the enantiomers
UUV Apex spectrum of Peak 8.421 of PMEOPHME-NBN2-RAC.D

- - \square |x

ZUV Apex spectrum of Peak 13.156 of PMEOPHME-NBN2-RAC.D
-

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\text {P }} \mathrm{PrOH}=90 / 10,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=29.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=31.6 \mathrm{~min}$

E22

Racemic

Table 3 entry 9

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=70 / 30,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=12.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=14.0 \mathrm{~min}$

E23

Racemic

Table 3 entry 10

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{i}$ PrOH $=80 / 20,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=16.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=18.7 \mathrm{~min}$

E24

Racemic

Table 3 entry 11

UV-VIS spectra of the enantiomers
[UV Apex spectrum of Peak 16.171 of CCPL3CAT325D_IC_80H20I_1.D

- -

HPLC analysis: Chiralpack IC, n-Hex: ${ }^{\prime} \operatorname{PrOH}=90 / 10,25^{\circ} \mathrm{C}$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ nm, Z isomer: $\mathrm{t}_{\mathrm{R}}($ epoxide 1$)=10.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=12.0 \mathrm{~min} ; E$ isomer: $\mathrm{t}_{\mathrm{R}}($ epoxide 1$)$ $=24.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=27.2 \mathrm{~min}$

E25

Racemic

Table 3 entry 12

UV-VIS spectra of the enantiomers

WUV Apex spectrum of Peak 27.176 of CCPLP2CAT324I.D -

HPLC analysis: Chiralpack IA, n-Hex: ${ }^{\text {'PrOH }}=90 / 10,25^{\circ} \mathrm{C}$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ epoxide 1$)=37.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ epoxide 2$)=56.8 \mathrm{~min}$

Table 3 entry 13

UV-VIS spectra of the enantiomers

|_UV Apex spectrum of Peak 39.781 of LVL6P69B_IA_90H10I_05ML_MIN.D

- 1 - x

7) References

1. Fristrup, P.; Dideriksen, B. B.; Tanner, D.; Norrby, P.-O. J. Am. Chem. Soc. 2005, 127, 13672.
2. Garcia-Bosch, I.; Ribas, X.; Costas, M. Adv. Synth. Catal. 2009, 351, 348.
3. Nishikawa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 8432.
4. Lu, S.-M.; Bolm, C. Chem. Eur. J. 2008, 14, 7513.
5. Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2015, 137, 11254.
6. Tsuchiya, Y.; Hamashima, Y.; Sodeoka, M. Org. Lett. 2006, 8, 4851.
7. Nishikawa, K.; Fukuda, H.; Abe, M.; Nakanishi, K.; Tazawa, Y.; Yamaguchi, C.; Hiradate, S.; Fujii, Y.; Okuda, K.; Shindo, M. Phytochemistry 2013, 96, 223.
8. Bush, A. G.; Jiang, J. L.; Payne, P. R.; Ogilvie, W. W. Tetrahedron 2009, 65, 8502.
9. Bernasconi, M.; Ramella, V.; Tosatti, P.; Pfaltz, A. Chem. Eur. J. 2014, $20,2440$.
10. Comito, R. J.; Finelli, F. G.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135, 9358.
11. Lempenauer, L.; Duñach, E.; Lemière, G. Chem. Eur. J. 2017, 23, 10285.
12. Hennum, M.; Odden, H. H.; Gundersen, L.-L. Eur. J. Org. Chem 2017, 2017, 846.
13. Yan, Q.; Kong, D.; Zhao, W.; Zi, G.; Hou, G. J. Org. Chem. 2016, 81, 2070.
14. Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 1040.
15. Liu, R.; Yang, Z.; Ni, Y.; Song, K.; Shen, K.; Lin, S.; Pan, Q. J. Org. Chem. 2017, 82, 8023.
16. Rudler, H.; Comte, V.; Garrier, E.; Bellassoued, M.; Chelain, E.; Vaissermann, J. J. Organomet. Chem. 2001, 621, 284.
17. Liu, L.; Du, L.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2014, 16, 5772.
18. Saito, Y.; Ouchi, H.; Takahata, H. Tetrahedron 2008, 64, 11129.
19. Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. Asian J. 2014, 9, 179.
20. Chen, Y.; Turlik, A.; Newhouse, T. R. J. Am. Chem. Soc. 2016, 138, 1166.
21. Cussó, O.; Garcia-Bosch, I.; Font, D.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Org. Lett. 2013, 15, 6158.
22. Cussó, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. J. Am. Chem. Soc. 2013, 135, 14871.
23. Milan, M.; Bietti, M.; Costas, M. ACS Centr. Sci. 2017, 3, 196.
24. Font, D.; Canta, M.; Milan, M.; Cussó, O.; Ribas, X.; Klein Gebbink, R. J.; Costas, M. Angew. Chem. Int. Ed. 2016, 55, 5776.
25. Elliott, M. C.; Williams, E. Org. Biomol. Chem. 2003, 1, 3038.
26. Zhang, C. X.; Kaderli, S.; Costas, M.; Kim, E.-i.; Neuhold, Y.-M.; Karlin, K. D.; Zuberbuehler, A. D. Inorg. Chem. 2003, 42, 1807.
