Supporting Information

Variation of Donor- and Acceptor Strength in Analogues of Brooker's Merocyanine and Generalization to Various Classes of Charge Transfer Compounds

M. Dekhtyar ${ }^{a)^{*}}$, W. Rettig ${ }^{b)}$, A. Rothe ${ }^{b)}$, V. Kurdyukov ${ }^{a)}$, A.Tolmachev ${ }^{a)}$
${ }^{\text {a) }}$ Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanskaya str. 5, Kiev, 02094, Ukraine
${ }^{\text {b) }}$ Institute of Chemistry, Humboldt University of Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany

*Corresponding author: mdekh@mail.ru

Determination of the 0-0 Band

We proceed in several steps:
a) We perform a full nonlinear least-squares band fitting for the structured spectra, involving Gaussian shaped vibronic subbands. ${ }^{1}$ From these fits, an average vibronic spacing $\Delta v_{\text {vib }}$ is deduced.
b) It is assumed that $\Delta v_{\text {vib }}$ can be applied to all spectra including the unstructured ones.
c) It is assumed that the band maxima correspond approximately to the energy of the 0-0 or of one of the higher vibronic bands.

The $0-0$ energies are then given by eqs. $S 1$ and $S 2$, where $n_{\text {abs }}$ and $n_{\text {fluo }}$ are the number of vibronic quanta corresponding to the maximum of the absorption and fluorescence band.

$$
\begin{align*}
& v_{\max }(\text { abs })-\mathrm{n}_{\mathrm{abs}} * \Delta v_{\mathrm{vib}}=v_{00}(\mathrm{abs}) \tag{S1}\\
& v_{\max }(\text { fluo })+\mathrm{n}_{\text {fluo }} * \Delta v_{\mathrm{vib}}=v_{00} \text { (fluo) } \tag{S2}
\end{align*}
$$

d) The steepness of the red absorption and blue fluorescence tail is taken as an indicator for the number of vibronic quanta involved in the band maximum. A simple parameter, the wavenumber at a third of the maximum intensity, $v_{3 \mathrm{~L}}$, can serve for this purpose as shown below. The correct performance of this simplified analysis is double-checked by comparing to the full band fitting analysis.

Several examples for this analysis are shown in Fig. S1. As can be seen from the third spectrum of Fig. S1, $v_{3 L}$ of the absorption spectrum corresponds fairly closely to v_{00} for $n_{a b s}=2$ (i.e. when the maximum corresponds to the 02 vibronic transition) or for larger n . We can
therefore use $v_{3 L}$ for determining v_{00} in the case of unstructured broad absorption bands using $\Delta v_{\text {vib }}$ and eq. S1. If the band maximum corresponds to the 00 or 01 -transition (NO-DP in acetonitrile and diethyl ether, upper two spectra of Fig. S1), the difference between v_{00} and $v_{3 L}$ becomes larger but generally remains below ca $1000 \mathrm{~cm}^{-1}$.

The analysis of all spectra in acetonitrile is contained in Table 1 of the main text, where v_{00} is determined by varying $n_{a b s}=0,1,2$, etc. until the absolute value of $\left[v_{3 L}-v_{00}(a b s)\right]$ is $<$ $1000 \mathrm{~cm}^{-1}$. In fact, for $\mathrm{n}_{\mathrm{abs}}=2$, this difference is only around $300 \mathrm{~cm}^{-1}$ and raises to ca $900 \mathrm{~cm}^{-1}$ in the case of $\mathrm{n}_{\mathrm{abs}}=0$ where the spectra are structured in all cases. These differences, especially for $n_{\text {abs }}=1$ and larger, are well below the vibrational spacing $\Delta v_{\text {vib }}=1310 \mathrm{~cm}^{-1}$ determined by a fit of the upper 3 spectra in Fig. S , and the assignment of n is therefore unambiguous.
e) A further parameter indicating directly the vibronic band at the maximum is the band halfwidth. It is around $2500 \mathrm{~cm}^{-1}$ for $\mathrm{n}_{\text {abs }}=0$, and ca $5000 \mathrm{~cm}^{-1}$ for $\mathrm{n}_{\mathrm{abs}}=2$, with values ranging in between for $n_{\text {abs }}=1$. The difference between these values is consistent with multiples of $1200-1300 \mathrm{~cm}^{-1}$, i.e. close to the assumed vibronic spacing $\Delta \nu_{\text {vib }}$.

Figure S1: Schematic determination of $v_{00}($ abs $)$ and $v_{00}(f l u o)$ from $v_{3 L}$, the intensity at a third of the maximum, for 4 different cases of structured and unstructured spectra. $\Delta v_{\mathrm{St}}(00)$ is the Stokes shift as measured from the 00 -energies. It is indicated graphically by filled diamonds. The vibrational spacing $\Delta \nu_{\text {vib }}$ is indicated by double arrows.

Table S1: Absorption and fluorescence characteristics of the basic forms of the dyes (a-NODP, b-NO-DT, c-OO-DP, d - SO-DP) as a function of polarity (EOE, EtOAc, THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ACN) obtained from experimental spectra and by fitting (based on the solvatochromic spectral results and Gaussian fits for basic forms in respective Figs. 3a,b,c,d of the main text). Maximum $v_{\max }(\mathrm{abs})$; halfwidth (FWHM) $\Delta v_{1 / 2} ; 00$-band $v_{00}(\mathrm{abs})$; vibrational quantum at the absorption maximum $\mathrm{n}_{\mathrm{abs}}$; similar values for the fluorescence. $\Delta \mathrm{f}$ is the usual polarity function according to Lippert, rel I (01) is the relative intensity of vibrational subbands from band fitting.

Table S1a)

compound			EOE	EtOAc	THF	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ACN
NO-DP	absorption analysis	$V_{\text {max (abs) }}$ $\Delta \mathrm{f}$ $V_{00(a b s)}$ $\Delta v_{1 / 2}$	$\begin{aligned} & 16900 \\ & 0.1669 \\ & 15590 \\ & 3800 \end{aligned}$	$\begin{aligned} & 16750 \\ & 0.19964 \\ & 15440 \\ & 3500 \end{aligned}$	$\begin{aligned} & 16650 \\ & 0.20957 \\ & 15340 \\ & 3400 \end{aligned}$	$\begin{aligned} & 15500 \\ & 0.21697 \\ & 15500 \\ & 2900 \end{aligned}$	15800 0.30542 15800 2350
	absorption fit	$\begin{aligned} & \text { rel I }(01)^{\mathrm{a})} \\ & \mathrm{n}_{\text {abs }} \\ & \mathrm{v}_{00} \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1 \\ & 15564 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1 \\ & 15477 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 1 \\ & 15405 \end{aligned}$	$\begin{gathered} 0.87 \\ 0 \\ 15439 \end{gathered}$	$\begin{gathered} 0.67 \\ 0 \\ 15727 \end{gathered}$
	fluorescence analysis	$V_{\max (f l u o)}$ $V_{00 \text { (fluo) }}$ $\mathrm{n}_{\text {fluo }}$	$\begin{gathered} 13800 \\ 13800 \\ 0 \\ \hline \end{gathered}$	-b)	- b)	-b)	$\begin{aligned} & 14200 \\ & 14200 \\ & 0 \\ & \hline \end{aligned}$

a) rel I (01) $=\mathrm{I}(01) / \mathrm{I}(00)$
b) not measured

Table S1b)

compound			EOE	EtOAc	THF	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ACN
NO-DT	absorption analysis	$v_{\max (\exp)}$ $\Delta \mathrm{f}$ $v_{00(a b s)}$ $\Delta \nu_{1 / 2}$	$\begin{array}{\|l\|} \hline 16750 \\ 0.1669 \\ 15440 \\ 4300 \end{array}$	$\begin{aligned} & 16500 \\ & 0.19964 \\ & 15190 \\ & 3950 \end{aligned}$	$\begin{aligned} & 16350 \\ & 0.20957 \\ & 15040 \\ & 3700 \end{aligned}$	$\begin{aligned} & \hline 16300 \\ & 0.21697 \\ & 14990 \\ & 3600 \end{aligned}$	$\begin{aligned} & 15350 \\ & 0.30542 \\ & 15350 \\ & 2900 \end{aligned}$
	absorption fit	$\begin{aligned} & \hline \operatorname{rel~I}(01)^{\mathrm{a})} \\ & \mathrm{n}_{\text {abs }} \\ & \mathrm{v}_{00} \end{aligned}$	$\begin{aligned} & \hline 1.60 \\ & 1 \\ & 15264 \end{aligned}$	$\begin{aligned} & \hline 1.37 \\ & 1 \\ & 15121 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1 \\ & 15050 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.11 \\ 1 \\ 14995 \end{array}$	$\begin{aligned} & 0.86 \\ & 0 \\ & 15261 \end{aligned}$
	fluorescence analysis	$v_{\max (f l u o)}$ $V_{00(f l u o)}$ $\mathrm{n}_{\text {fluo }}$	$\begin{array}{\|c\|} \hline 13200 \\ --- \\ 13200 \\ 0 \end{array}$	$\begin{gathered} 13100 \\ --- \\ 13100 \\ 0 \end{gathered}$	$\begin{gathered} 13100 \\ ---- \\ 13100 \\ 0 \end{gathered}$	$\begin{array}{\|c} 13100 \\ ---- \\ 13100 \\ 0 \end{array}$	$\begin{gathered} 13300 \\ --- \\ 13300 \\ 0 \end{gathered}$

a) rel I (01) $=\mathrm{I}(01) / \mathrm{I}(00)$

Table S1c)

compound			EOE	THF	ACN
OO-DP	absorption analysis	$v_{\text {max (abs) }}$ $\Delta \mathrm{f}$ $V_{00(a b s)}$ $\Delta v_{1 / 2}$	$\begin{aligned} & \hline 19450 \\ & 0.1669 \\ & 16830 \\ & 4800 \end{aligned}$	$\begin{aligned} & 19000 \\ & 0.20957 \\ & 16380 \\ & 5550 \end{aligned}$	$\begin{aligned} & 18750 \\ & 0.30542 \\ & 16130 \\ & 4900 \end{aligned}$
	absorption fit	$\begin{aligned} & \text { rel I }(01)^{\mathrm{a})} \\ & \text { rel I }(02)^{\mathrm{b})} \\ & \mathrm{n}_{\text {abs }} \\ & \mathrm{v}_{00} \end{aligned}$	$\begin{aligned} & \hline 2.6 \\ & 3.32 \\ & 2 \\ & 16622 \end{aligned}$	$\begin{gathered} \hline 2.48 \\ 3.03 \\ 2 \\ 16264 \end{gathered}$	$\begin{gathered} \hline 2.41 \\ 2.89 \\ 2 \\ 15978 \end{gathered}$
	fluorescence analysis	$V_{\max (f l u o)}$ $V_{00 \text { (fluo) }}$ $\mathrm{n}_{\text {fluo }}$	$\begin{gathered} 14800 \\ 16110 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 14700 \\ 16010 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 13600 \\ 14910 \\ 1 \\ \hline \end{gathered}$

a) rel $\mathrm{I}(01)=\mathrm{I}(01) / \mathrm{I}(00)$, b) rel I $(02)=\mathrm{I}(02) / \mathrm{I}(00)$

Table S1d)

compound						
			EOE	EtOAc	THF	ACN
SO-DP $^{\text {a) }}$	absorption	$v_{\max (\text { abs }}$	19250	18600	18850	18700
	analysis	$\Delta \mathrm{f}$	0.1669	0.19964	0.20957	0.30542
		$v_{00(\text { abs })}$	16630	15980	16230	16080
		$\Delta v_{1 / 2}$	4500	4600	4650	4850
		$\mathrm{n}_{\text {abs }}$	2	2	2	2

a) Absorption spectra are unstructured and fluorescence is extremely weak: Peakfit absorption and fluorescence analysis could not be performed.

Table S2: Absorption and fluorescence characteristics of the acidic forms of the dyes (a $-\mathrm{NOH}-$ DP, b - NOH-DT, $\mathrm{c}-\mathrm{OOH}-\mathrm{DP}, \mathrm{d}-\mathrm{SOH}-\mathrm{DP}$) as a function of polarity (EOE, EtOAc, THF, ACN) obtained from experimental spectra (based on the solvatochromic spectral results for acidic forms in respective Figs. 3a,b,c,d of the main text); the notation is the same as in Table S1. Band fitting was not possible for the unstructured spectra.

Table S2a)

compound						
			EOE	EtOAc	THF	ACN
NOH-DP	absorption	$v_{\max }$ (abs)	24700	24700	24200	24650
	analysis	$\Delta \mathrm{f}$	0.1669	0.19964	0.20957	0.30542
		$v_{00(\text { abs }}$	22080	22080	21580	22050
		$\Delta v_{1 / 2}$	4100	4200	4450	4300
		$\mathrm{n}_{\text {abs }}$	2	2	2	2
		fluorescence	$v_{\max }$ (fluo)	18100	18100	18100
	analysis	$\Delta v_{1 / 2}$	3300	3350	3050	2950
		$v_{00(f l u o)}$	20720	20720	20720	20600
		$n_{\text {fluo }}$	2	2	2	2

Table S2b)

compound			EOE	EtOAc	THF	ACN
NOH-DT	absorption analysis	$v_{\text {max (abs) }}$ $\Delta \mathrm{f}$ $v_{00(a b s)}$ $\Delta v_{1 / 2}$ $\mathrm{n}_{\text {abs }}$	$\begin{gathered} 23850 \\ 0.1669 \\ 21230 \\ 5100 \\ 2 \end{gathered}$	$\begin{gathered} \hline 24000 \\ 0.19964 \\ 21380 \\ 5250 \\ 2 \end{gathered}$	$\begin{gathered} 23650 \\ 0.20957 \\ 21030 \\ 5300 \\ 2 \end{gathered}$	$\begin{gathered} \hline 24050 \\ 0.30542 \\ 21430 \\ 5250 \\ 2 \end{gathered}$
	fluorescence analysis	$v_{\max (f l u o)}$ $\Delta v_{1 / 2}$ $v_{00 \text { (fluo) }}$ $\mathrm{n}_{\text {fluo }}$	$\begin{array}{r} 17800 \\ 3000 \\ 20420 \\ 2 \end{array}$	$\begin{array}{r} 17600 \\ 3050 \\ 20220 \\ 2 \end{array}$	$\begin{gathered} 17500 \\ 3050 \\ 20120 \\ 2 \end{gathered}$	$\begin{gathered} 17400 \\ 2950 \\ 20020 \\ 2 \end{gathered}$

Table S2c)

compound					
			EOE	THF	ACN
OOH-DP	absorption	$v_{\max (\text { abs }}$	19300	19150	19950
	analysis	$\Delta \mathrm{f}$	0.1669	0.20957	0.30542
		$\mathrm{v}_{00(\text { (abs }}$	17990	17840	18640
		$\Delta v_{1 / 2}$	2950	3750	3100
		$\mathrm{n}_{\text {abs }}$	1	1	1
		fluorescence	$v_{\max }$ (fluo)	16600	16000
analysis	$\Delta v_{1 / 2}$	1900	2300	2200	
		$v_{00(\text { fluo }}$	17910	17310	17510
		$n_{\text {fluo }}$	1	1	1

Table S2d)

compound						
			EOE	EtOAc	THF	ACN
SOH-DP	absorption	$v_{\max }$ (abs)	18450	18850	18100	19000
	analysis	$\Delta \mathrm{f}$	0.1669	0.19964	0.20957	0.30542
		$v_{00(\text { (abs }}$	17140	17540	16790	17690
		$\Delta v_{1 / 2}$	3200	3200	3050	3250
		$n_{\text {abs }}$	1	1	1	1
		fluorescence	$v_{\max }$ (fluo)	15300	15200	15000
	analysis	$\Delta v_{1 / 2}$	1950	2065	1950	2150
		$v_{00(\text { fluo }}$	16610	16510	16310	16310
		$n_{\text {fluo }}$	1	1	1	1

Appendix

General Concept of Electron Donor Ability Φ and Effective Length L of Residues in the Framework of the Long-Chain Approximation

The long-chain approximation is an analytical method using topological indices ${ }^{2}$ to describe the electronic properties of chain-like polymethine compounds containing, in the general case, two end groups. ${ }^{3-5}$ The basic topological indices of end groups are electron donor ability Φ and effective length L.

The electron donor ability Φ of a residue is a characteristic of its donor/acceptor properties: it estimates the energy gap position relative to the Fermi level for a sufficiently long odd $(2 n+1)$-methine chain with two corresponding end groups. This quantity is defined as $F=90^{\circ} \lim _{\mathrm{n} \rightarrow \infty}\left[\left(E_{\text {LUMO }}-\alpha\right) /\left(E_{\text {LUMO }}-E_{\text {Номо }}\right)\right]$ where $\mathrm{E}_{\text {НОмо }}$ and $\mathrm{E}_{\text {LUMO }}$ are the energies of the highest occupied and lowest unoccupied molecular orbitals and $\alpha \equiv 0$ is the Coulomb integral of the C atom. Φ is measured in degrees so that its value ranges from 0° (for the least electrondonor residues with the nonbonding LUMO coinciding with the Fermi level) to 90° (for the most electron-donor residues with the nonbonding HOMO coinciding with the Fermi level).

The effective length L of a residue estimates the longest absorption wavelength of the above-described polymethine system as $(L+n) \cdot 100 \mathrm{~nm} . L$ shows to what extent the first electronic transition of a sufficiently long odd $(2 n+1)$-methine chain is red-shifted when two corresponding end groups are bound to it. This dimensionless quantity is defined as $L=\lim _{\mathrm{n} \rightarrow \infty}\left[\pi \beta /\left(E_{\text {номо }}-E_{\mathrm{LUMO}}\right)-n\right]$ where $\beta \equiv-1$ is the resonance integral of the CC bond; the larger the L value of an end group, the closer to each other the frontier MOs are in the correspondingly terminated polymethine chain. In other words, the effective length L of a residue expresses its π-conjugation length, or "mesomeric box", in terms of the equivalent amount of methine pairs (so-called vinylene groups).

Calculation of Φ and L of Residues by the Asymptotic Nonbonding MO Coefficients

As a linear conjugated system grows longer, its frontier MOs tend to come closer to each other and finally transform into a degenerated nonbonding MO (NBMO). This is how a notion of
an asymptotic NBMO can be introduced. ${ }^{3-5}$ The procedure for calculating asymptotic NBMO coefficients on end groups of a sufficiently long polymethine chain does not differ from that used for finding a "real", or exact, NBMO. ${ }^{6}$ The set of NBMO coefficients C_{q} on a N-atomic conjugated residue is found as a solution of system of equations (1), with H_{pq} as Hamiltonian matrix elements (diagonal, $\mathrm{q}=\mathrm{p}$, implying atomic Coulomb integrals α_{p} and off-diagonal, $\mathrm{q} \neq \mathrm{p}$, implying bond resonance integrals $\beta_{p q}$):

$$
\begin{equation*}
\sum_{q=1}^{N} H_{\mathrm{pq}} C_{\mathrm{q}}=0 ; p=1,2, \ldots, N \tag{1A}
\end{equation*}
$$

This system of equations has a single (trivial) solution, with all C_{q} equal to zero, for most of conjugated molecules. In general, odd alternant hydrocarbons (systems without oddmembered rings) are the only class of conjugated organics always possessing NBMO. Some exceptions occur among compounds of other classes. The concept of asymptotic NBMO provides a set of nonzero C_{q} values for an arbitrary conjugated residue.

Rewriting the corresponding equations for each p -th atom with the finite non-dimensional parameters h_{p} and η_{pq},

$$
\begin{align*}
& \mathrm{h}_{\mathrm{p}} C_{\mathrm{p}}+\sum_{\mathrm{q}}^{\text {over bonds }} \eta_{\mathrm{pq}} C_{\mathrm{q}}=0 ; \tag{2A}\\
& \mathrm{h}_{\mathrm{p}}=\left(\alpha_{\mathrm{p}}-\alpha\right) / \beta ; \eta_{\mathrm{pq}}=\beta_{\mathrm{pq}} / \beta ; \alpha=0 ; \beta=-1
\end{align*}
$$

it is convenient to find the asymptotic NBMO coefficients by a simple non-computer "paper-and-pencil" technique ${ }^{6}$ and exemplified here by the 4 -pyridinium end group (with the conventional values of the N atom topological parameters, $\mathrm{h}_{\mathrm{N}}=1, \mathrm{~h}_{\mathrm{CN}}=1-$ see Ref. 7):

Conditions (2A) imposed on NBMO coefficients are satisfied for all atoms of the above system except the 0 -th atom (the first atom of the polymethine chain); it is assumed that the
corresponding discrepancy can be cancelled elsewhere within the sufficiently long polymethine chain between the end groups (in view of the asymptotic nature of the NBMO found).

The electron donor ability Φ and effective length L of a residue are related, in a straightforward way, to NBMO coefficients on its atoms:

$$
\begin{align*}
L & =\left(2 \sum_{q=1}^{N} C_{\mathrm{q}}^{2}+C_{0}^{2}\right) /\left(C_{1}^{2}+C_{0}^{2}\right) \tag{3A}\\
F & =\arctan \left(C_{0} / C_{1}\right) \tag{4A}
\end{align*}
$$

For instance, the 4 -pyridinium end group is characterized by $\Phi=\arctan (4 / 1) \approx 76^{\circ}$ and $L=[2 \cdot(4 \cdot 3+3)+16] /(1+16) \approx 2.7$

Taking advantage of the simple structure of 4-X heterosubstituted phenyl group, it is possible to generalize the expressions for asymptotic NBMO coefficients on it and, accordingly, for electron donor ability and effective length in terms of h_{X} and $\eta_{C X}$, heteroatomic and heterobond parameters:

Table 1A lists the electron donor ability and effective length calculated as the functions of h_{X} and η_{CX} parameters for the 4-X hetaryl as well as phenyl and 3-penta-1,3-dienylium groups. As seen, the Φ and L values for the hetero substituted phenyl ring approach those for the conjugated 5-
methine chain as the heteroparameter η_{CX} approaches zero (i.e., the heteroatom is gradually removed from the ring).

Table 1A: Electron donor ability Φ and effective length L for some six-membered (het)aryl groups $x \checkmark$ with the conventional values of h_{X} and η_{CX} parameters. ${ }^{7}$

X	h_{X}	η_{CX}	Φ (degrees)	L
N	1	1	76	2.7
O	2	0.8	52	4.0
S	0.7	0.4	42	5.6
Se	0.65	0.35	37	6.0
Any completely separated heteroatom thus yielding the 3-penta-1,3-dienylium group	Any $\mathrm{h}_{\mathrm{X}} \neq 0$	0	0	6.0
C	0	1	0	2.5

References

(1) Program "peak-fit", v 4, AISN software Inc, 1995.
(2) Applications of Topological Methods in Molecular Chemistry; Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E., Eds. In: Challenges and Advances in Computational Chemistry and Physics, vol. 22. Springer International Publishing AG Switzerland: Basel, 2016.
(3) Dyadyusha, G. G.; Kornilov, M. Yu.; Dekhtyar, M. L. On the application of the inverse adjacency matrix in HMO method. J. Inf. Rec. Mater. 1988, 16, 275-283.
(4) Dyadyusha, G. G.; Kachkovsky, A. D.; Dekhtyar, M. L.. Colour and topology of conjugated systems. J. Mol. Struct. (THEOCHEM) 1990, 217, 195-206.
(5) Dekhtyar, M. L. Application of the quasi-long chain approximation to structural perturbations of polymethine dyes. Dyes Pigm. 1995, 28, 261-274.
(6) Dewar, M. J. S. A Molecular Orbital Theory of Organic Chemistry. J. Am. Chem. Soc. 1952, 74, 3341-3363.
(7) Streitwieser, A. Molecular Orbital Theory for Organic Chemists; J. Wiley \& Sons, Inc.: New York, 1961.

