Supporting information

Valence Electron and Chemical State Analysis of Be₁₂M (M = Ti, V) Beryllides by Soft X-ray Emission Spectroscopy

 $Keisuke\ Mukai, ^1\ Ryuta\ Kasada, ^{2*}\ Kiyohiro\ Yabuuchi, ^1\ Satoshi\ Konishi, ^1\ Jae-Hwan\ Kim,$

Table S1 Lattice parameters of Be, $Be_{12}Ti$, $Be_{12}V$, and BeO obtained by the structural optimization in the DFT calculations compared with the experimental ones.^{1–4} The calculated lattice parameters agreed well with the experimental ones.

	Calculation		Experimental	
	a (Å)	c (Å	a (Å)	c (Å)
Be	2.257	3.587	2.287^{a}	3.583^{a}
$Be_{12}Ti$	7.430	4.235	7.35^{b}	4.19^{b}
$Be_{12}V \\$	7.215	4.147	7.278^{c}	4.212^{c}
BeO	2.705	4.395	2.698^{d}	4.378^{d}

a Reference 1

³ Masaru. Nakamichi³

¹ Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

² Institute for Material Research, Tohoku University, Sendai 980-8577, Japan

³ Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-166 Obuchi, Omotedate, Rokkasho, Aomori, 039-3212, Japan

^{*} Corresponding author: r-kasada@imr.tohoku.ac.jp

b Reference 2

c Reference 3

d Reference 4

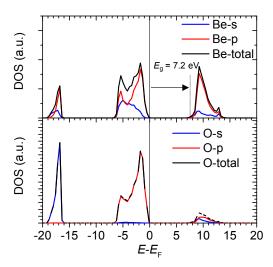


Fig. S1 Partial density of states (DOSs) of BeO plotted with the energy referenced to Fermi energy $E_{\rm F}$. Black, blue, red, and green solid lines represent DOSs of total, s, and p states. The band gap energy of BeO was estimated to be 7.2 eV, which were comparable with the previous calculated values of 7.0 and 7.54 eV.^{5,6} The calculated band gap was underestimated from the experimental band gap of BeO (10.6 eV).⁷ The partial DOS Be-2p convoluted with the Gaussian function is compared with the experimental Be-K α spectrum from the BeO specimen in Fig. 6.

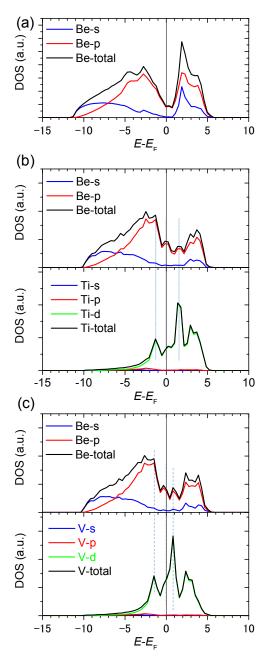


Fig. S2 Density of states in metallic Be (a), $Be_{12}Ti$ (b), and $Be_{12}V$ (c) with the energy referenced to the Fermi levels $E_{\rm f}$. Black, blue, red, and green solid lines represent total, s, p, and d states. The DOSs of Be with the energy referenced with the Be-1s centroid are shown in Fig. 3. The valence electron structure of Be in $Be_{12}Ti$ and $Be_{12}V$ were altered from that of Be in metallic Be. The hybridized peaks of O 2p and Ti/V 3d states shown by blue dashed lines near the Fermi levels ($E - E_{\rm F} = 0$) were seen in $Be_{12}Ti$ and $Be_{12}V$.

References

- Schwarzenberger, D. R. Accurate determination of the lattice parameters of beryllium. *Philos. Mag.* 1959, 4, 1242–1246.
- 2. Gillam, E.; Rooksby, H. P.; Brownlee, L. D. Structural relationships in beryllium–titanium alloys. *Acta Crystallogr.* **1964**, *17*, 762–763.
- 3. Von Batchelder, F.W.; Raeuchle, R.F. The structure of a new series of MBe₁₂ compounds. *Acta Crystallogr.* **1957**, *10*, 648–649.
- 4. Hazen, R. M.; Finger, L. W. High-pressure and high-temperature crystal chemistry of beryllium oxide. *J. Appl. Phys.* **1986**, *59*, 3728.
- 5. Chang, K.J.; Froyen, S.; Cohen, M. The electronic band structures for zincblende and wurtzite BeO. *J. Phys. C: Solid State Phys.* **1983**, *16*, 3475.
- 6. Xu, Y. N.; Ching, W. Y. Electronic, optical, and structural properties of some wurtzite crystals. *Phys. Rev.* B, **1993**, *48*, 4335.
- 7. Roessler, D. M.; Walker, W. C.; Loh, E. Electronic spectrum of crystalline beryllium oxide. *J. Phys. Chem. Solids* **1969**, *30*, 157–167.