Supporting information

Adsorption and oxidative desorption of acetaldehyde over mesoporous $Fe_xO_yH_z/Al_2O_3$

Jae Hwan Jeong^a, Soong Yeon Kim^a, Jeonghun Kim^b, Byeong Jun Cha^a, Sang Wook Han^a,

Chan Heum Park^a, Tae Gyun Woo^a, Chul Sung Kim^{b*}, Young Dok Kim^{a,*}

^a Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea

^b Department of Physics, Kookmin University, Seoul 02707, Republic of Korea

*Corresponding author

E-mail: cskim@kookmin.ac.k (C.S. Kim), ydkim91@skku.edu (Y. D. Kim).

Figure S1. UV-VIS DRS spectra of $Fe_xO_yH_z/Al_2O$

Figure S2. Mossbauer spectrum of $Fe_xO_yH_z/Al_2O_3$ taken at the room temperature

Figure S3. Chromatogram of gases passed through (a) bulk Al_2O_3 and (b) $Fe_xO_yH_z/Al_2O_3$ at 350 °C during TPD.

Figure S4. (a) Acetaldehyde flow rate at the outlet of the reactor with $Fe_xO_yH_z/Al_2O_3$ during acetaldehyde adsorption experiment as a function of time. The blank level without $Fe_xO_yH_z/Al_2O_3$ is also indicated. (b) CO_2 evolution rate and (c) acetaldehyde desorption rate during TPO of $Fe_xO_yH_z/Al_2O_3$ after acetaldehyde adsorption for 1150 min. (d) Percentages of the amount of weakly bound acetaldehyde desorbed at 30 °C during purging, and molecularly desorbed acetaldehyde and emitted CO_2 during TPO from $Fe_xO_yH_z/Al_2O_3$ after acetaldehyde adsorption for 1150 min. These experiments were all conducted under dry conditions and the samples were put in a quartz boat which was located in the middle of a quartz reactor.

Desorbed acetaldehyde and evolved CO_2 on the sample surface by heating and subsequently were injected into a sampling loop of the gas chromatograph with a carrier gas. Here, one can calculate the Acetaldehyde desorption rate and CO_2 evolution rate with the equation shown below.

Acetaldehyde and CO_2 desorption rate = $\frac{C}{C_0} \times \frac{\text{sampling loop volume}}{\text{sampling time}} \times \frac{P}{RT}$

- C_0 : Acetaldehyde or CO_2 peak area in GC analysis when acetaldehyde or CO_2 gas fully occupies a sampling loop

-C: Acetaldehyde or CO_2 peak area in GC analysis when the TPO is carried out after adsorbing acetaldehyde on the sample surface.

The percentage of desorbed acetaldehyde and evolved CO_2 were calculated with the equation shown below.

Percentage of Acetaldehyde and CO₂

 $= \frac{\int (Acetaldheyde \ desorption \ rate \ or \ CO_{2}}{\int (Acetaldheyde \ desorption \ rate)dt + \int (CO_{2})}$

In the calculations of the percentage of acetaldehyde desorption and CO_2 evolution, the amount of acetaldehyde and CO_2 gas were calculated by using TPO data.

Figure S5. Detailed description about the calculations of the desorption rates and percentage of acetaldehyde and CO_2 in Figure 9.

Figure S6. Experiment set-up for acetaldehyde adsorption and oxidative desorption at humidity conditions