Supporting Information

Sol-Gel Derived Benzo-Crown Ether-Functionalized Silica gel for Selective Adsorption of Ca²⁺ Ions

(1. College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning SHIHUA University, Fushun 113001, Liaoning, China; 2. College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 100142, Liaoning, China)

* Corresponding author

E-mail: httyf_77@163.com (H.-T. Fan) and yaohui7225@sohu.com (H. Yao)

Supporting Information

Adsorption isotherms

The linearized equations of Langmuir and Freundlich isotherm can be expressed as Eqs. (S1) and (S2), respectively.

$$C_{\rm e}/q_{\rm e} = 1/(q_{\rm max} b) + C_{\rm e}/q_{\rm max}$$
 (S1)

$$\log q_{\rm e} = \log k_{\rm F} + (1/n) \log C_{\rm e} \tag{S2}$$

$$q_{\rm e} = B_{\rm T} \ln A_{\rm T} + B_{\rm T} \ln C_{\rm e} \tag{S3}$$

$$B_{\rm T} = {\rm RT}/b_{\rm T} \tag{S4}$$

where q_e (mg g⁻¹) is the amount of Ca²⁺ ions adsorbed per unit mass of BCES at equilibrium; C_e (mg L⁻¹) is the concentration at equilibrium; q_{max} (mg g⁻¹) is the maximum adsorption at monolayer coverage; b (L mg⁻¹) is the adsorption equilibrium constant; K_F (L g⁻¹) is a Freundlich constant; n is a constant; n and n are the Temkin constant (KJ mol⁻¹) which related to heat of adsorption, n is the equilibrium binding constant (mg L⁻¹), n is the universal gas constant (8.314 J mol⁻¹ K⁻¹) and n (K) is the solution temperature.

Kinetic analysis

The pseudo-first-order and pseudo-second-order rate expressions are linearly expressed as:

$$\log(q_e - q_t) = \log q_e - k_1 t / 2.303 \tag{S5}$$

$$t/q_{t} = 1/k_{2}q_{e}^{2} + t/q_{e}$$
 (S6)

where k_1 (min⁻¹) is the rate constant of the pseudo-first-order adsorption. q_e and q_t (mg g⁻¹) are the adsorption capacity at equilibrium and the adsorption amount at time t (min), respectively. k_2 (g mg⁻¹ min⁻¹) is the rate constant of the pseudo-second-order equation.

The intraparticle diffusion model is linearly expressed as

$$q_{\rm t} = k_{\rm pi} t^{0.5} + C_{\rm pi} \tag{S7}$$

Where k_{pi} is the intraparticle diffusion rate constant of stage i (mg g⁻¹ min^{-0.5}), C_{pi} , the intercept of stage i, gives an idea about the thickness of boundary layer, i.e., the larger of the intercept, the greater of the boundary layer effect.