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Methods

We first formulated abstract chemical networks with the desired feature detecting prop-

erties. Then, largely following the design principles laid out in,1 we implemented these

chemical reaction networks as DNA strand displacement reactions. All strand displacement

circuits are designed within Microsoft’s Visual DSD software described in2 using default

kinetic parameters and concentrations ∈ [.05 nM, 10 µM]. Then, by adapting the MATLAB

code generated within this program, we exposed these circuits to the pulsatile inputs defined

in the main text, defined by their duty fraction δ, number of pulses n, and period T . All

results shown are from deterministic simulations without leak reactions.

1



Detailed Chemical Networks

All reactions shown utilize the default kinetic parameters within the Visual DSD soft-

ware (3× 10−4 1
nM s

bind, .1226 1
s

unbind corresponding to toe-holds with 4-6 nucleotides3).

Different reaction rates were achieved by selecting appropriate initial concentrations. The

dynamic range we require (∼ 5 orders of magnitude) is also achievable through toehold de-

sign.3 Species with specified initial concentrations are outlined in bold and their values are

given in accompanying tables. All species whose initial concentrations are specified and do

not have explicit time dependence displayed in the main text are held at their initial con-

centrations throughout all simulations. In the tables of concentrations below, parenthetical

values indicate high and low oscillatory values in the time-varying input.
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Pulse Counting
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Figure 1: Full version of DNA strand displacement reaction network for pulse counting
decoder including waste products. The two species in red had their dynamics directly mod-
ulated to the parameters of the input series, with sp 1 (referred to as Ī in the main text)
pulsing exactly out of phase with sp 0 (I in the main text). Graphs and labels are generated
automatically within the Visual DSD software.2 See Table 1 for a list of initial concentrations.
Note that the flux G plotted in Figure 2 is defined G ≡ (

√
sp2 ∗ sp5).
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Table 1: Pulse Counter Initial Conditions

Species Initial Conc. (nM)

sp 0 1 (0)
sp 1 100 (0)
sp 2 50
sp 3 10000
sp 4 10000
sp 5 10
sp 6 10000
sp 8 10000
sp 10 10000
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Duty Fraction
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Figure 2: Full version of DNA strand displacement reaction network for duty cycle decoding,
including waste products. This circuit effectively takes the moving average of the dynamics of
sp 0 and reports it in sp10. See main text Figure 3 for analysis and Figure 5 for performance.
Initial concentrations of bolded species are listed in Table 2.
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Table 2: Duty Fraction Decoder Initial Conditions

Species Initial Conc. (nM)

sp 0 1(0)
sp 1 100
sp 2 100
sp 3 10
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Period Detecting
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Figure 3: Full version of DNA strand displacement reaction network for time period de-
coding, including waste products. By taking the moving average of the incoming flux
G ≡

√
(sp2 ∗ sp5), this circuit decodes the period of sp 0. Initial concentrations of bolded

species are reported in Table 3.
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Table 3: Period Decoder Initial Conditions

Species Initial Conc. (nM)

sp 0 1 (0)
sp 1 100 (0)
sp 2 50
sp 3 10000
sp 4 10000
sp 5 10
sp 6 10000
sp 8 10000
sp 10 10000
sp 11 .1375

Supplemental Calculations

Pulse Counter

I + A
k1−−→ P (1)

A
λ1−−→ φ (2)

Ī
k2−−→ A (3)

(4)

To supplement the analysis presented in the main text, we present the system of correspond-

ing ordinary differential equations governing the evolution of A and P , presented in Equation

6.

Ȧ(t) = k2Ī(t)− k1A(t)I(t)− λ1A(t) (5)

Ṗ (t) = k1A(t)I(t) (6)
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The discussion of timescales relies on exponential decays and exponential approaches to

steady state exhibited by these differential equation in transitioning between the two states

I = C, Ī = 0 and I = 0, Ī = C where C corresponds to the finite value presented in Table 1

for sp 0 and sp10.

When I is turned on, P starts being produced since P requires both I and A to be

present (Note that A has a resting state at a high concentration k2C
λ1

when the input I is

off). However, turning on I also causes exponential decay of A from k2C
λ1

to 0 on a timescale

1
k1C+λ1

.Consequently, the term promoting P decays after a short transient. Thanks to the

simple form of these equations, we can compute P (t) analytically

P (t) =
C2k1k2

λ1

(1− e−(λ1+k1C)t)

k1C + λ1

(7)

which exhibits the dependence of P on the degradation timescale of A, τa = 1
λ1+k1C

.

Note that any pulse of width,

Tδ � τa

will produce a stereotyped exponential decay profile (i.e. independent of T and δ) for P .

This restriction provides one limit on the window of operation for pulse counters.

Finally, once I switches off, A returns to its steady state k2C
λ1

at a timescale 1
λ1

. The pulse

needs to be off for long enough

T (1− δ)� 1

λ1

,

so that A can be restored to its original state between every pulse. This condition ensures

each step up of P will have the same value (the ODE for P only depends on the values of I

and A) and can serve as a proxy for pulse number n.

Within the regime defined by the two inequalities, we find that the circuit presented is

able to count pulses independent of duty fraction or time period.
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Duty Fraction Decoder

The duty fraction decoder is given by the simple network,

I
k−−→ I + P (8)

P
λ−−→ φ (9)

and consequently, P (t) is governed by,

Ṗ (t) = kc(t)− λP (t) (10)

where the input concentration I = c(t) is taken to vary as c(t). The solution to the above

equation can be written in terms of a exponentially decaying kernel,

P (t) = k

∫ t

−∞
c(t′)e−λ(t−t′)dt′. (11)

P(t) will be at its smallest value at the front edge of a pulse; this value, after n−1 pulses

can be computed from the above,

P (t = (n− 1)T ) =
k

λ

(eTλδ − 1)(1− e−(n−1)Tλ)

eTλ − 1
(12)

P(t) will be largest right at the end of the pulse; this value, after n pulses can be computed

to be,

P (t = (n− 1 + δ)T ) =
k

λ

(eTλδ − 1)(e(1−δ)λT − e−(n−1+δ)Tλ)

eTλ − 1
. (13)

We consider the average of these two quantities as representing the readout value of P.
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Adding and simplifying yields

P̄ =
(

eλTδ−1
2(eλT−1)

)
(1 + eλT (1−δ) − e−λT (n−1) − e−λT (δ+(n−1))). (14)

In the limit of

n� 1/(λT ), T � 1/λ,

P̄ ≈ kδ
λ

is proportional to the duty fraction δ but independent of n and T .

Finally, we can consider the difference between the maximal and minimum values of P (t)

as a measure of the variation away from this readout. Taking the difference of Equations 13

and 12 yields

∆P =
(
eλTδ−1
(eλT−1)

)
(−1 + eλT (1−δ) + e−λT (n−1) − e−λT (δ+(n−1))). (15)

For large n and small λT , this approximates to ∆P ≈ kδ
λ
λT (1− δ) ≈ P̄ λT (1− δ). Thus, in

the limit defined above, T � 1
λ
, the fractional variation about P̄ defined as ∆P

P̄
is small, and

P̄ is a reliable readout for the duty fraction δ.
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